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The highly regioselective, stereospecific ring-opening of trisub-

stituted N-tosylaziridines possessing vinyl and hydroxymethyl

groups by sulfone- and sulfide-stablised carbanions is reported.

Aziridines are valuable intermediates for the synthesis of nitrogen-

containing molecules.1 In general, 1,2-disubstituted aziridines

suffer attack by anionic nucleophiles at the less substituted

3-position. When both carbon atoms are substituted, competing

steric and electronic effects may be such that the regioselectivity of

nucleophilic ring-opening is eroded. This Communication reports

a series of ring-opening reactions of 1,2,3-trisubstituted aziridines

by sulfur-stabilised carbanionic nucleophiles, and demonstrates

that vinyl and lithiated hydroxymethyl groups are effective

directing groups for highly regioselective C–C bond-forming

transformations.

We began by investigating the reactivity of aziridine 2. This

was readily synthesised as the racemic trans-(2R*,3R*) isomer

from E-4-(4-methoxyphenyl)-2-buten-1-ol 12 by the routes

shown in Scheme 1. The more direct sequence involved

aziridination of 1,3 oxidation and Wittig methylenation. Prob-

lems of irreproducibility4 of the Wittig reaction on scale-up

led to the development of a more robust route, in which

epoxidation of 1, Swern oxidation and methylenation gave

vinylepoxide 3. Ammonolysis, N-tosylation and cyclisation

under Mitsunobu conditions gave 2 in 51% overall yield for

the six-step sequence from 1. Enantiomerically pure (2R,3R)-2

was made using the same sequence, carrying out the epoxida-

tion of 1 using Sharpless AE instead of m-CPBA.

Reaction of enantiomerically pure aziridine (2R,3R)-2 with

the lithio-anion of 4a gave a single product. Assignment of

structure 5a followed from the TsNHCH methine d-value of

3.74 ppm, indicative of its non-allylic nature. Reaction of the

conjugate base of 4b with (2R,3R)-2 in similar fashion gave in

excellent yield a 3 : 1 mixture of diastereoisomeric sulfonamides

5b. Treatment of 5b with BF3�OEt2 gave in high yield a mixture

of tetrahydropyridines, which upon exposure to SnCl4 gave in

56% yield a single tricyclic product 6.5 The structure of 6, and

therefore that of 5b followed from the absence of coupling

between H-2 and the ethenyl methine proton (Scheme 2).

Further studies showed that the anion of allylic sulfone 4c

combined with (�)-2 to give 5c as a single regio- and stereo-

isomer, as evidenced by X-ray crystallographic analysis

Scheme 1 Synthesis of (�)-2. Reagents and conditions: (i) Chloramine-

Ts, PhNMe3Br3, MeCN, rt, 24 h: 77%; (ii) Dess–Martin periodinane,

wet CH2Cl2, rt, 2 h: 60%; (iii) Ph3PCH3Br, KN(SiMe3)2, THF,�20 1C,
35 min, then rt, 10 min: 71%; (iv) m-CPBA, CH2Cl2, �78 1C- rt, 4 h:

96%; (v) (COCl)2, DMSO, Et3N, CH2Cl2, �78 1C - rt, 1 h; (vi)

Ph3PCH3Br, KHMDS, THF, �20 1C, 1.5 h: 83% over two steps from

epoxyalcohol; (vii) aq. NH4OH (28% NH3), 110 1C (microwave),

35 min: 84%; (viii) TsCl, DMAP, Et3N, CH2Cl2, �5 1C - 0 1C, 3 h:

81%; (ix) DIAD, PPh3, THF, �25 1C then �5 1C, 13 h: 94%.

Scheme 2 Ring-opening reactions of (2R,3R)-2. Reagents and condi-

tions: (i) 4a + nBuLi, THF, �50 1C - �20 1C, then (R,R)-2, �20 1C

- rt, 12 h: 74% based on (R,R)-2; (ii) 4b + nBuLi, THF, �30 1C,

then (R,R)-2, �30 1C- �15 1C- rt, 12 h: 90% based on 2; (iii) BF3�
OEt2, CH2Cl2, �78 1C - �50 1C, 2.5 h: 83%; (iv) SnCl4, CH2Cl2,

�78 1C - 0 1C, 5 h: 56%.
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(Fig. 1). Upon lithiation and reaction with (�)-2, allylic sulfide
4d gave a 5 : 1 diastereoisomeric mixture of adducts 5d.6 The

major isomer was again assigned by X-ray crystallography, of

the N-methyl derivative 7 (Fig. 1); this was made in 82% yield

by treatment of the separated major (2R*,3S*,4S*) diastereo-

isomer of 5dwith tBuOK and CH3I in THF. Propargylic sulfide

4e was doubly deprotonated7 and combined with (�)-2 to give

the terminal alkyne 5e as a 2 : 1 mixture of isomers. Finally,

reaction of the potassium enolate of methyl 2-tosylacetate with

(�)-2 resulted in regioselective ring-opening followed by cycli-

sation in situ to give the N-tosyl-g-lactam 8 (Scheme 3, Table 1).

These results demonstrate the powerful directing effect of the

vinyl group on the regiochemistry of aziridine ring-opening.

This may be rationalised in terms of selective weakening of the

allylic C–N bond of the aziridine by pCQC–s*C–N overlap.

Aryl groups have been reported to show analogous directing

effects, in ring-opening reactions of arylaziridines by electron-

rich arenes proceeding through SEAr-type mechanisms,8–13 by

sulfoxonium ylides,14 and by organometallic reagents.15 In

contrast, reaction of vinylaziridines with organomagnesium16

and organocopper17–19 reagents frequently gives predominantly

the allylic amine products of SN2
0-type ring-opening.

The second part of this investigation focused on the regio-

selective ring-opening of hydroxymethyl-substituted aziridines.

Prior to our work, a single example of such a process had

been reported.20 Two hydroxymethyl-substituted aziridines

were selected for our study. Substrate (�)-9 had already been

prepared by direct aziridination of 1; syn-configured indole-

containing aziridine (�)-12 was assembled in good overall yield

from racemic aziridine 1021,22 by KH-mediated aza-Payne

rearrangement,23 BF3�OEt2-assisted ring-opening of the resul-

tant epoxide 11 by 1-methylindole,24 and cyclisation of product

alcohol 13 under Mitsunobu conditions followed by silyl

deprotection (Scheme 4).

Reaction of O-lithiated 9 with lithio-4c gave a 10 : 1 mixture

of diastereoisomers of tosamide 14 in 52% yield. Similar

reaction of O-lithio-12 with 4b gave a 1 : 1 mixture of adducts

16 in 83% yield. No products corresponding to aza-Payne

rearrangement of 9 or of 12 were detected in their ring-opening

reactions. Treatment of the major isomer of 14 with para-

formaldehyde under acidic conditions gave N-tosylaminal 15,

whose identity was firmly establised by X-ray crystallographic

Fig. 1 The molecular structures of (�)-5c (left, major isomer) and

(�)-7 (right).

Scheme 3 Ring-opening reactions of 2 by sulfur-stabilised carbanions 4.

Table 1 Ring-opening reactions of 2

Entry Ar R n Ratio 4 : 2
Yield
of 5 (%) dr

aa Tol H 2 2 74 —
ba Tol (MeO)2CHCH2 2 1.5 90 3 : 1b

cc Ph E-PhCHQCH 2 1.3 45 10 : 1d

d
c Ph H2CCH 0 1.1 76 5 : 1e

e
cf Ph HCC 0 1.2 76 2 : 1g

f
ch Ph MeO2C 2 1 89i 1 : 0

a Enantiomerically pure (2R,3R)-2 was used. b The major diastereo-

isomer had (2R,3S,4R) configuration. c Racemic (2R*,3R*)-2 was

used. d The major diastereoisomer had (2R*,3S*,4R*) configuration.
e The major diastereoisomer had (2R*,3S*,4S*) configuration.
f 2 Equiv. of nBuLi with respect to 4e was used. g The major/minor

diastereoisomer structures were not assigned. h 1.1 Equiv. of KH with

respect to 4f was used. i The product was lactam 8.

Scheme 4 Synthesis of 12 and ring-opening reactions of 9 and 12.

Reagents and conditions: (i) NaH, THF, 0 1C, 3 h: 100%;

(ii) 1-methylindole, BF3�OEt2, NaHCO3 (anhyd. solid), CH2Cl2,

�70 1C: 85%; (iii) PPh3, DIAD, THF, rt, 1 h: 97%; (iv) TBAF,

THF, 0 1C 10 min: 91%; (v) nBuLi added to 9, THF, �78 1C, 5 min,

then PhCHQCHCHLiSO2Ph (generated from 4c + nBuLi, THF),

�78 1C - rt: 52%; (vi) (HCHO)n, cat. p-TsOH�H2O, benzene, 90 1C,

6 h: 62%; (vii) nBuLi added to 4b, THF, �78 1C, 30 min, then O-Li-12

in THF added, �78 1C - rt, 16 h: 83%.
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analysis. Structural assignment of 16 followed from the con-

version of one of the diastereoisomers into tetrahydropyran 17

on brief treatment with acid (Scheme 4). The X-ray structures

of 15 and 17 are shown in Fig. 2.25

It seems likely that the lithiated oxygen moiety in 9 and 12

interacts in an attractive sense with lithiated 4, directing ring-

opening to the proximal aziridine carbon.20 Supporting this

idea is the observation that reaction of the O-MOM analogue

of 12 with lithio-4b gave a mixture of regiosiomeric products,

corresponding to non-selective aziridine ring-opening.

In summary, we have shown that functionally diverse sulfur-

stabilised carbanionic species react stereospecifically with both

vinyl- and hydroxymethyl-containing 1,2,3-trisubstituted

aziridines with complete regioselectivity. We anticipate that

these transformations will be useful in the synthesis of alkaloids

and related structures, and we are currently investigating the

total synthesis of several natural product targets based on this

chemistry.
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