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ABSTRACT: With a resurgence in interest in covalent drugs, there is need to identify new moieties capable of cysteine bond 

formation that are differentiated from commonly employed systems such as acrylamide. Herein, we report on the discovery of new 

alkynyl benzoxazine and dihydroquinazoline moieties capable of covalent reaction with cysteine. Their utility as alternative 

electrophilic warheads for chemical biological probes and drug molecules is demonstrated through site-selective protein modification 

and incorporation into kinase drug scaffolds. A potent covalent inhibitor of JAK3 kinase was identified with superior selectivity 

across the kinome and improvements in in vitro pharmacokinetic profile relative to the related acrylamide-based inhibitor. In addition, 

the use of a novel heterocycle as cysteine reactive warhead is employed to target Cys788 in c-KIT where acrylamide has previously 

failed to form covalent interactions. These new reactive and selective heterocyclic warheads supplement the current repertoire for 

cysteine covalent modification whilst avoiding some of the limitations generally associated with established moieties.

INTRODUCTION

Targeted covalent inhibitors (TCIs) are designed to bind covalently to poorly conserved amino acids within a biological protein target, 

effecting a change in biological function.1 In contrast to traditional non-covalent inhibitors, TCIs are designed to initially make a 

reversible interaction with the binding site, followed by covalent bond formation with a reactive protein residue, typically a 

nucleophilic amino acid.2 A number of amino acids including lysine and aspartic acid have been targeted,3 however, most commonly, 

interactions with cysteine are favoured.4 In particular, nucleophilic non-catalytic cysteines located within different parts of the ATP 

binding site of various kinases provide numerous opportunities for irreversible inhibitor development.5 A recent review by Gray et 

al.4 has detailed the locations of all cysteines across the human kinome, classifying the accessible cysteines into groups based on their 

position within the active site. This provides useful information to aid compound design, allowing incorporation of an electrophilic 
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group at the appropriate position.6 However, placement of an electrophilic group within proximity of an accessible cysteine is not 

necessarily sufficient to promote a rapid and stable covalent binding interaction. Reaction must be both electronically and sterically 

favoured,7 with the pKa of the targeted cysteine also playing a significant role.1 Due to the increased strength and often irreversible 

nature of the covalent bonds formed between a TCI and target, the use of covalent inhibitors offers the potential for increased potency 

and selectivity as well as prolonged pharmacodynamic effects, and hence, a potential for reduced dose and increased duration of 

action.8 The specific nature of the interaction can also improve selectivity. There are over 40 covalent drugs currently approved by 

the US FDA; however, only a handful of these covalent interactions have been discovered through rational design.9 In recent years, 

a number of specific covalent kinase inhibitors have been approved: afatinib (2013), ibrutinib (2013), osimertinib (2015), neratinib 

(2017) and acalabrutinib (2017).3,10,11 With the recent success of these drugs there has been renewed interest in the development of 

TCI’s.2,3,8,9,12-15 Despite significant effort, the simple acrylamide Michael acceptor remains the most frequently used moiety for 

cysteine capture due to its ease of synthesis, acceptable reactivity window, selectivity for cysteine over other amino acids and ADMET 

compatibility.14 A recent review by Bourne and Zhao reported that ca. 85% of known cysteine targeting kinase inhibitors had an α,β-

unsaturated carbonyl system as the means of capturing cysteine through Michael addition.3
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Figure 1. Representative drug scaffolds bearing an α,β-unsaturated Michael acceptor for covalent reaction with cysteine.

Acrylamide reactivity is greatly influenced by the nature of its connection to the recognition binding element, which in turn is dictated 

by that which is tolerated based on SAR for the chosen target. Therefore, there remains a significant need for additional cysteine 

reactive warheads with tuneable properties and reactivity profiles. Novel warheads that can present vectors typically not accessible 

using acrylamides are of particular interest. Several groups have been working in this area and have recently reported novel methods 

of cysteine capture.16-21 Chen et al. have reported the use of allenamides as bioisosteres of acrylamide in EGFR inhibitors,16 whilst 

latent alkynes have been described for the covalent inhibition of Cathepsin K.17 Moreover, targeting cysteine for the chemical site-

selective modification of proteins has become a useful technique for many biological and therapeutic applications.22,23 For example, 

this can be used for the formation of antibody drug conjugates (ADC’s) for use in cancer therapy24 and requires the use of highly 

reactive moieties to ensure rapid and selective conversion to the conjugate products. In recent years, the toolbox of reactions for 
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cysteine protein modification has greatly increased with many research groups having developed efficient methods. For example, in 

2016, Bernardes et al. reported the use of carbonylacrylic reagents for irreversible cysteine selective protein modification and have 

more recently described the use of quaternized pyridine salts for cysteine capture.25, 26 Recently, novel divinylpyrimidine linkers have 

also been developed for selective bioconjugation through re-bridging of reduced disulfide bonds in native antibodies.27 

In this study, we report our efforts towards the synthesis and evaluation of a series of novel heterocyclic warheads capable of cysteine 

capture. Reactivity of warhead fragments was assessed using glutathione reactivity and quantum mechanical (QM) calculations. 

Promising scaffolds were investigated further in protein labelling studies and incorporated into drug scaffolds. Overall, our 

investigations have shown that electrophilic heterocycles could serve as alternative warheads in chemical biology and medicinal 

chemistry, with the possibility for improved pharmacokinetic properties over acrylamide matched pairs. Labelling studies have also 

suggested that our novel warheads have potential application in the field of protein modification. Moreover, we have demonstrated 

the utility of the benzoxazine warhead for covalent modification where acrylamide has previously failed.

RESULTS AND DISCUSSION

Exploration of Heterocycle Activity Towards Glutathione. We hypothesized that rigidification of a Michael acceptor-like system 

through incorporation into a heteroatomic ring would provide functionality which would have a specific vector for nucleophilic 

cysteine attack, thereby, potentially holding it in the reactive conformation. Initially, 5-membered ring systems bearing electrophilic 

alkenes were explored. However, these compounds proved to be highly reactive towards glutathione addition and in most cases were 

unstable even in buffer, rendering them incompatible for incorporation into drug-like systems (Table 1). Glutathione reactivity for 

marketed drugs can vary greatly depending on the molecular structure, for example, osimertinib and acalabrutinib have half-lives of 

121 and 809 minutes towards glutathione respectively under this same protocol. Although there is no ideal value, compounds that are 

too reactive may be highly cleared and generate non-specific adducts.

Table 1. Half-life of 5-membered heterocycles in the presence of glutathione (GSH) and pH7.4 buffer solution.

PhPh

N
O

O

N
O

NBn

O

O

1 2 3

GSH t½ (min) <0.5 NV* 8.4

Buffer t½ (min) 2531 NV* >10000

Compound concentration 1 μM in the presence of 4.6 mM glutathione (GSH) at 37°C over 20 hours. Half-life determined using 

LCMS and first order kinetics from disappearance of parent with verapamil as internal standard. *No visible peak by LCMS.

These results led to a change in strategy whereby more stable, less reactive electrophilic heterocyclic ring systems were sought. 

Exploration of alternative scaffolds led to the initial discovery of bicyclic compound 5a which was similarly highly reactive and 

unstable in buffer. Notably, the level of reactivity observed for the cyclized benzoxazine 5a is in stark contrast to the corresponding 

much less reactive aniline amide 4a (Table 2). Substitution at both the α and β carbons with a methyl group (5b and 5c) also gave 

molecules which were unstable and highly reactive towards glutathione. Comparatively, the uncyclized anilides (4b and 4c) were 

found to be inert and completely unreactive towards glutathione addition. We attributed the instability of the cyclized systems (5a-c) 
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to intermolecular [4+2] cycloaddition of the ene-imine system, thus removal of the alkene group in favour of acetylene was 

investigated. Compound 5d was chemically stable in buffer but with a high level of reactivity towards glutathione. Substitution at the 

reactive centre gave methyl acetylene 5e which gratifyingly demonstrated an acceptable stability and reactivity profile, with an 

increase in reactivity of ~15 fold towards glutathione in comparison to corresponding alkyne amide 4e.

Table 2. Half-life of 4a-e and 5a-e in the presence of glutathione (GSH) and pH7.4 buffer solution alongside calculated LUMO 

energies.

O

RN
H RN

O

4a-e 5a-e

R
GSH t½

(min)

Buffer t½

(min)

LUMO

(Hartree)

GSH t½

(min)

Buffer t½

(min)

LUMO

(Hartree)

a 299 >10000 -0.02663 NV* 2680 -0.03106

b >10000 >10000 -0.01983 1.4 610 -0.02666

c >10000 >10000 -0.01733 1.6 3464 -0.02913

d 19 >10000 -0.02594 7 >10000 -0.03341

e 1268 >10000 -0.01887 82 >10000 -0.02739

*Measurement could not be obtained due to high reactivity.

Figure 2. Comparative LUMO and adduct formation energies between cyclized (4a-e) and uncyclized (5a-e) warheads.

The increase in reactivity observed when going from the amides 4a-e to cyclized benzoxazines 5a-e can be partially explained by 

differences in electronic factors. Incorporation of the benzoxazine moiety extends the conjugation of the Michael acceptor with the 
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aromatic ring, and this increase in electrophilicity is reflected in calculated LUMO energies, with a lowering of the LUMO observed 

in all cases when cyclization occurs (Figure 2). Conjugation of the Michael acceptor orbitals to the aromatic ring also holds the 

acceptor in a more planar conformation allowing for easier orbital overlap. Adduct formation energy (ΔER) was calculated 

(compounds 4a-14) following previous literature observations that ΔER displayed a stronger correlation with log[GSH t1/2] than the 

transition state energy barrier (ΔE‡),28 albeit ΔE‡ was calculated for a small subset of compounds to confirm the relationship with ΔER 

(Table S1). Overall, the correlation between log[GSH t1/2] and LUMO was poor (R2 = 0.064, Figure S5) with little improvement for 

ΔER (R2 = 0.2, figure S6). Possible reasons for this weak relationship could be the variety of different compounds as defined by 

warhead and bicycle size. Even within defined subsets the electronics of warheads can change significantly. The correlation between 

log[GSH t1/2] and ΔE‡
 showed a vast improvement (R2 = 0.73, Figure S7) using more defined subsets, however, this could be heavily 

influenced by subset bias. It is interesting to note that the relationship between ΔE‡ and ΔER is not linear as expected but instead 

dependent upon warhead valence showing strong correlation within these groups (R2 = 0.9 & R2 = 0.98 Figure S8). Based on this 

observation, when correlation between log[GSH t1/2] and ΔER is split similarly based on warhead valence it can be seen that 

acrylamides within this set show a strong correlation (R2 = 0.71) and acetylenes a weak correlation (R2 = 0.03) (Figure S8), suggesting 

that prediction of acetylene based warheads across chemotypes is non-trivial.29,30 Recent literature has similarly demonstrated that 

these approaches also fail for the reactivity prediction of drug-like compounds.31 With electronics being a large contributing factor to 

the reactivity of the cyclic systems, substitution of the heterocyclic warhead with varying functional groups around the aromatic ring 

was explored (Table 3). In all cases reactivity towards glutathione was within two-fold of the parent compound 5e and compounds 

were found to be stable in buffer solution. Despite only small changes, the observed differences in reactivity largely correlated with 

expected redistribution of electron density around the ring as predicted by LUMO calculations (Figure S9).

Table 3. Half-life in minutes of bicyclic systems bearing functional groups on the aromatic ring with glutathione (GSH)

R4
R3

R2
R1

N

O

R1 R2 R3 R4

OMe 74 78 133 77

H 82 82 82 82

Br 155 105 125 147

CO2Me - 134 58 109

Effect of Scaffold Hopping on Heterocycle Reactivity. Having identified compound 5e as a novel electrophile and explored the 

effect of electronic changes around the ring, further structural changes to the scaffold were explored (Table 4). Ring expansion to the 

7-membered ring system gave compound 6 with promising stability and reactivity. This analogue was found to have a decreased level 

of reactivity relative to the parent 5e. This is most likely due to less efficient orbital overlap between the benzoxazine and aromatic 

ring in the 7- versus 6-membered ring system. Interestingly, the 7-membered isomer 7 was found to be unstable in buffer; this was 

most likely because of β elimination to give the ring opened alkene and amide functionalities. Ring-contraction to the 5-membered 

aromatic heterocycle 8 also resulted in a large decrease in reactivity along with some inherent instability. Isomeric forms of 5e were 

also explored. Switching the oxygen and carbon centres (9) resulted in an increase in reactivity as expected from the removal of the 

mesomeric electron donor. Compound 10, in which the heteroatoms are swapped relative to 5e was prone to hydrolysis at the imine 
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centre, whilst exchange of oxygen for a nitrogen in dihydroquinazoline 11 gave a compound with very high reactivity towards 

glutathione but which was intriguingly completely stable in buffer. Compound 11 was shown to have a measured pKa of 8.05 

compared to 2.69 for the oxygen heterocycle 5e. It is plausible that the observed increase in reactivity is mediated by intermolecular 

deprotonation of the reactive thiol by this warhead and it has previously been proposed that acrylamides bearing N,N-

dimethylmethanamine at the β-position have a higher reactivity towards glutathione as a result of intramolecular base catalysis.14,32 

Although likely unsuitable for incorporation into drug-like molecules, the high reactivity and stability of 11 suggested utility in protein 

labelling studies. Removal or substitution of the geminal dimethyl with a carbonyl gave compounds 12 and 13 which were 

unsurprisingly inherently unstable. It was found that larger spirocyclic groups could be incorporated and tolerated at this position 14, 

and that the basic centre here has no impact on reactivity of the electrophile. Comparatively, inclusion of a basic dimethylamino 

group at the terminus of the Michael acceptor motif 15 results in a >50-fold increase in reactivity towards glutathione, relative to the 

parent 5e. A much greater rate acceleration was observed for its incorporation into this benzoxazine scaffold than has previously been 

reported in similarly substituted acrylamide and ynamide Michael acceptors.14,32,33

Table 4. Half-life in minutes of warhead isomers in the presence of glutathione (GSH) and pH7.4 buffer.

ID GSH t1/2 Buffer t1/2 ID GSH t1/2 Buffer t1/2

O
N

6 206 >10000 NH

N
11 1.5 >10000

O
N

7 135 6153

O

N

O 12 55 70

O

N
8 620 6183

O

N 13 79 3390

O

N
9 37 >10000

N

N

O 14 82 >10000

N

O
10 66 5924

N

N

O
15 1.3 4996

Warhead Selectivity. To ensure the two main warheads of interest 5e and 11 were selective for cysteine over other nucleophilic 

amino acids, kinetic experiments were conducted in both d6-DMSO and pH8 buffer and monitored by 1H NMR and LCMS 

respectively (Figure 3). NMR experiments were conducted according to a procedure published by Golding et al.34 whilst LCMS 

experiments were designed to mimic GSH assay data at a slightly higher pH. No reaction was observed for either compound with 

lysine or serine, but complete reaction of the warheads with cysteine occurred. As expected, the dihydroquinazoline analogue 11 

showed a much faster reaction rate than its oxygen counterpart 5e, with complete reaction having occurred before initial spectral data 
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could be obtained; thus, an accurate half-life could not be determined in either solvent. Half-lives of 5e with cysteine were calculated 

by following the disappearance of starting material over time. A mixture of E- and Z-isomeric products were also observed for both 

warheads along with peaks pertaining to bis-addition products after a longer period of incubation.

Figure 3. Half-life data for reaction of 5e with ‘capped’ cysteine. NMR data for 5e in d6-DMSO containing DABCO (0.3 eq.) and 

DMF as internal standard. LCMS data for 5e in pH8 phosphate buffer containing verapamil as internal standard.

Protein Labelling Studies. Having demonstrated the selective nature of warheads 5e and 11 towards cysteine over other amino acids 

in analytical assays, we decided to test the reactivity towards cysteine-containing protein C2Am (an engineered variant of the C2A 

domain of Synaptotagmin-I). In both cases, conversion of protein to the corresponding conjugate occurred within 3.5 hours (Figure 

4). Interestingly, only 10 equivalents of dihydroquinazoline analogue 11 were required to affect this reaction. Selectivity for cysteine 

was determined after trypsin digest and subsequent peptide mapping using mass spectrometry. This data corroborates our previously 

observed reactivity with native amino acids, demonstrating the bicyclic warheads are highly selective for cysteine. Notably, both 

conjugates were also found to be stable in human plasma (10%) solutions over the course of a week (Figures S21-S24). However, 

when exposed to solutions of 1 mM GSH, the conjugates show significant GSH substitution, indicating cleavage of 5e or 11 from the 

protein (Figures S17-S20). While the mechanism of such displacement is not in the scope of this project, further studies may reveal 

if such characteristics could lend themselves to a drug delivery platform, wherein the payload could be released upon interacting with 

cellular GSH levels. We also explored reaction of 5e and 11 with the HER2 nanobody 2Rb17c. 2Rb17c displays a reactive, engineered 

cysteine at the C-terminus of a flexible side chain, making it an ideal target for bioconjugation.35 Again, as expected, 

dihydroquinazoline analogue 11 showed a much higher level of reactivity than the benzoxazine 5e (Figure 5). Complete conversion 

to the conjugate was observed for 11 in 3 hours with 50 equivalents, whilst 5e showed only partial conversion using 1000 equivalents 

within the same period. Extended reaction time led to the formation of dimer, due to depletion of TCEP in phosphate buffer. Although 

this transformation required the utilization of a greater number of equivalents of 11, the result was found to be comparable to labelling 

of the same nanobody with a carbonylacrylic reagent.36 Although likely too reactive to be incorporated into a drug, these data suggest 

Page 7 of 24

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



the dihydroquinazoline analogue 11 holds potential as a fragment probe for site-selective cysteine protein modification which requires 

quick and effective reaction. Often maleimides are used for this purpose due to their high levels of reactivity; however, the products 

and maleimides themselves are often unstable and prone to retro-Michael addition and hydrolysis.23,37 Indeed, when we compare 

simple maleimides with similar reactivity levels to our dihydroquinazoline warhead there are large differences in buffer stability. For 

example, N-(p-tolyl)maleimide has a measured half-life of 57 minutes in pH7.4 buffer, compared to >10000 minutes for 

dihydroquinazoline 11. Moreover, maleimides often show some lysine reactivity at slightly basic pH, differentiating our new warhead 

further.25
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Figure 4. a) Schematic of the reaction of C2Am with bicyclic warheads 5e and 11 b) Deconvoluted LCMS mass spectrum for the 

C2Am-11 conjugate (Product: 16420 m/z ; [M+198]+) c) Deconvoluted LCMS mass spectrum for the C2Am-5e conjugate (Product: 

16421 m/z ; [M+199]+) d) MS/MS spectrum of the 582.30 m/z doubly charged ion of the tryptic peptide VPYCELGGK, modification 
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at the Cys residue of C2Am-11 e) MS/MS spectrum of the 582.79 m/z doubly charged ion of the tryptic peptide VPYCELGGK, 

modification at the Cys residue of C2Am-5e. 

Figure 5. a) Schematic of the reaction of 2Rb17c with bicyclic warheads 5e and 11 b) Deconvoluted LCMS mass spectrum for the 

2Rb17c-11 conjugate (Product: 15064 m/z ; [M+198]+, calc.d 15059) c) deconvoluted LCMS mass spectrum for the C2Am-5e 

conjugate (Product: 15060 m/z ; [M+199]+, calc.d 15060)

Utilization of Warheads in Kinase Drug Scaffolds. To explore application of these heterocyclic systems in a drug-like setting, we 

proposed to incorporate benzoxazine 5e into a kinase inhibitor which was already known to bind to a cysteine residue. Scaffolds 5e, 

6 and 9 all represent potentially useful warheads to explore, showing high buffer stability and acceptable GSH reactivity – we 

prioritized 5e due to its intermediate reactivity, ease of synthesis and lower size and lipophilicity relative to 6. EGFR T790M is a well 

explored kinase mutant with multiple known inhibitors, including osimertinib which binds to C797 in the active site.38 We therefore 

proposed that by paring back the osimertinib scaffold, removing the methoxy group and basic side chain for ease of synthesis, that 

we could retain some EGFR potency and allow for a comparison between acrylamide 16, methylacetylene amide 17 and our warhead 

of interest 18 (Scheme 1). The synthesis of these compounds followed the route described in Scheme 2, from common intermediate 

19, which has previously been described for the synthesis of osimertinib.38 The synthesis of all three compounds began with an SNAr 

reaction followed by reduction of the nitro group to furnish an aniline intermediate (21 or 22). Treatment of 21 with acryloyl chloride 

or 2-butynoic acid and DCC gave the desired reference compounds 16 and 17. Addition of methyl Grignard to 22 afforded a tertiary 

alcohol intermediate 23, which subsequently underwent amide coupling with 2-butynoic acid, followed by dehydrative cyclization 

under acidic conditions to give target compound 18 in just 5 steps and 24% overall yield from intermediate 19.

Scheme 1. Scaffold modifications leading to compound 18
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Upon biochemical testing we saw a large drop off in potency against EGFR T790M for 18, in comparison to the reference compounds 

16 and 17. However, upon testing against a wider kinase panel at ThermoFisher it was found that 18 was instead highly potent against 

Janus kinase 3 (JAK3) with an IC50 of 0.06 µM. Although Ki and Kinact data would ideally be derived, IC50 values can be used to make 

useful inferences about the potency of compounds provided they have consistent assay timescales and the reactivities have been 

quantified and shown to be in a similar range, as is the case for these studies.  JAK3 forms part of the Janus kinase family, which also 

includes JAK1, JAK2 and TYK2. These kinases work together to drive signalling in both type I and II cytokine receptors.39 Moreover, 

18 had a much more selective profile across the panel than either of the reference compounds, inhibiting only 7 kinases >60% (Figure 

6). In particular, 18 shows much greater selectivity over other kinases containing a known reactive cysteine in the same active site 

position, as well as against the JAK1 and JAK2 isoforms (Table 5). Unlike JAK3, JAK1 and JAK2 do not contain a reactive cysteine 

in the active site40 and so the observed selectivity strongly suggested a covalent mode of action.

Scheme 2. Synthesis of kinase drug analogues 16, 17 and 18

(c) or (d)

16 R = 

17 R =

(a) (b)

(e), (f)

(g) (h), (i)

19 20 21

22 23 18

NO2
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H
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NN

OH

NH2N
H
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O

O

NH2
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H

N

NN NH2N
H

N

NNN N

N

NH2
N
H

N

NN N
H

O

R

N
H

N

NN

O

N

Reaction conditions: (a) m-nitroaniline, pTSA, EtOH, 150ºC, MW; (b) NH4Cl, Fe, EtOH/H2O, 80ºC, 68% (2 steps); (c) acryloyl 

chloride, Et3N, DCM, 19% of 16; (d) 2-butynoic acid, DCC, DCM, 54% of 17; (e) ethyl 4-amino-2-nitrobenzoate, pTSA, EtOH, 

150ºC, MW; (f) NH4Cl, Fe, EtOH/H2O, 80ºC, 62% (2 steps); (g) MeMgBr, THF; (h) 2-butynoic acid, DCC, DCM; (i) MsOH, DCM, 

45ºC, 38% (3 steps).
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Table 5. Enzyme IC50 data for selected cysteine containing kinases and JAK family members.

16 17 18

JAK3 0.01 0.39 0.06

JAK2 0.14 0.23 3.11

JAK1 1.01 1.98 >10

EGFR T790M 0.18 0.22 2.80

BMX 0.13 1.05 0.67

BLK 0.57 4.76 >10

BTK 0.28 3.32 1.77

IC50 data were obtained at ThermoFisher Scientific.

To probe our hypothesis and confirm that covalent binding to JAK3 was occurring, we tested compounds 16, 17 and 18 against the 

JAK kinases at high ATP concentration (1 mM). As expected, a large drop off in potency was observed for JAK1 and JAK2 whilst 

potency was retained in JAK3 for both 16 and 18, consistent with irreversible binding (Table 6). Interestingly, the methylacetylene 

amide 17 was also subject to a large drop in potency for JAK3 at 1 mM ATP concentration, indicating that this compound may not 

be binding covalently. Covalent binding of 18 to JAK3 was confirmed using mass spec analysis (Figure S12). Docking of 18 within 

the JAK3 active site, anchoring through the covalent bond to Cys909, suggests that the central aminopyrimidine ring forms hydrogen 

bonds with Leu905 in the hinge region (Figure 7). The predicted binding mode of 18 is consistent with a covalent literature compound 

with a shared hinge binding motif, complexed to JAK3 (PDB 4Z16, supporting information). In order to assess whether 18 maintained 

selectivity against wider cysteine-containing proteins within a cellular environment, the specificity of both 16 and 18 by global 

cysteine reactivity profiling was examined (Figure 8). NCI-H358 cells were treated with 10 M of compound 16 or 18, or vehicle for 

2 hours. Any remaining unreacted, solvent exposed cysteine residues were then reacted with iodoacetamide desthiobiotin and proteins 

subsequently digested with trypsin. The resulting biotinylated peptides were enriched with streptavidin and analyzed by MS to 

determine which targets each compound was capable of binding to. It should be noted that this lung adenocarcinoma cell line 

unfortunately does not express JAK3 protein, which we assessed by use of two different JAK3 antibodies. This observation is 

consistent with literature reports that JAK3 protein was undetectable in this cell line, and that siRNA against JAK3 had no effect on 

levels of phospho-STAT, a downstream marker, suggesting that JAK3 signalling may not be important in NCI-H358 cells.50 Despite 

this, the assay is a useful assessment of cellular cysteine promiscuity and has recently been used by us to probe the selectivity of a 

covalent acrylamide based inhibitor of the mutant GTPase KRASG12C.51 Both compounds were found to be selective across the soluble 

cysteinome, although acrylamide 16 was found to bind to Cys36 of the RNA polymerase II-associated factor 1 homolog (PAF1) and 

Cys1101 of Reticulon-4 (RTN4) (supporting information). In contrast these cysteine residues were not impacted in cells treated with 

compound 18, and indeed no other proteins were found to significantly bind to benzoxazine 18, which is noteworthy given the analysis 

encompassed 3687 different proteins.
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4

Figure 6. Comparative selectivity of inhibitors 16-18 in a panel of 140 human kinases run in the SelectScreen kinase panel at 

ThermoFisher Scientific at a single concentration of 1 μM

Table 6. IC50 data at varying ATP concentration for JAK family members compared with literature Km.41

Kinase [ATP] µM 18 16 17 Km ATP (µM)

10 0.06 0.01 0.23
JAK3

1000 0.09 0.02 6.43
2.9

25 3.11 0.14 0.23
JAK2

1000 >10 3.19 6.74
8.5

75 >10 1.01 1.98
JAK1

10000 >10 6.43 >10
31.8

IC50 data were obtained at ThermoFisher Scientific.

As well as having an improved selectivity profile across the kinome, compound 18 containing the novel warhead also showed 

improved in vitro pharmacokinetic properties, making it arguably superior to its acrylamide counterpart (Table 7). Clearance in human 

liver microsomes and both human and rat hepatocytes were drastically improved, with a ~9-fold difference in microsomal clearance 

observed between 16 and 18. Improvements in hERG IC50 were also observed. Interestingly, addition of the lipophilic geminal 

dimethyl group is also logD neutral across the scaffolds. Despite the improvements brought about from our novel warhead, all 

compounds unsurprisingly suffered from high plasma protein binding and low solubility due to their high lipophilicity. It is also 

interesting to note that although reactivity towards glutathione is increased for the new warhead 18 it is still within an acceptable 

range for a drug substance and is in a comparable reactivity range to osimertinib (GSH t1/2 = 121 min under this same protocol).
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5

Figure 7. Docking of 18 bound in JAK3. The aminopyrimidine forms the expected donor-acceptor hinge interaction, with covalent 

capture of Cys909.

Figure 8. Free cysteine profiling of compound 16 and 18. A log2 fold change of >-2 and a p-value of <0.01 from control are indicated 

in red.

Table 7. Comparison of in vitro pharmacokinetic properties of compounds 16-18

18 16 17

GSH t1/2 (min)a 100 310 978

hERG IC50 (µM) >40 29 18

PPB (% free)b <0.3 0.1 <3.0
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6

Rat Heps (μL/min)c,d 74 136 163

Hu Mics (μL/min/mg)c,e 13 103 39

Hu Heps (μL/min)c,d 19 43 97

LogD 4.3 4.3 4.2

Solubility (μM)f 0.9 3.0 0.5

aDetermined by rate of disappearance of parent using LCMS. bDetermined by rapid equilibrium dialysis at 5 µM compound 

concentration using 100% plasma at 37ºC. c Intrinsic clearances are obtained from the first order rate constant of loss of parent 

compound at 37ºC dCompound concentration 1 µM, hepatocyte concentration 106 cells/mL. eCompound concentration 1 µM, 

microsomal protein 1 mg/mL, 1 mM NADPH. fSolubility from dried DMSO solution in PBS (phosphate buffer solution) pH 7.4.

Having established the differentiated pharmacokinetic properties of the benzoxazine warhead against the acrylamide, we sought to 

explore its use in a system where acrylamide was previously unsuccessful. Part of our original hypothesis was that rigidification of 

the Michael acceptor system within the heteroaromatic ring would provide a specific vector for attack, holding the drug in a reactive 

conformation. A previous in-house project had sought to target c-KIT, a receptor tyrosine kinase involved in intracellular signalling, 

mutated forms of which play a key role in the occurrence of gastrointestinal stromal tumors (GIST).42 c-KIT and the related KDR 

kinase, both bear a cysteine in the same active site position (Cys788 in c-KIT and Cys1024 in KDR) and analysis of PDB structures 

showed that in the majority of cases the cysteine in c-KIT pointed into the active site (towards the ligand); whilst in KDR, the cysteine 

was found to point away from the pocket in ca. 80% of the structures analysed (Figure S2). There are two basic residues adjacent to 

the cysteine in KDR, which have the potential to modulate the pKa of Cys1024 and cause the thiol to face away from the pocket. In 

c-KIT there is instead an asparagine residue (Asn787) which would be unable to modulate the orientation of the cysteine to the same 

extent. The C-helices of the two kinases also have different residues at their termini, altering the size and shape of the pockets; with 

resultant variation in the affinity of ligands.43 Compound 24 was a compound originally synthesized in an in-house project to target 

the kinase PDGFR, shown to have affinity for c-KIT and whose binding mode was later solved in both c-KIT and KDR crystal 

structures.44 From these it was evident that the basic side chain pointed towards Cys788 in c-KIT and thus could act as a handle for 

addition of a cysteine reactive warhead. These presumptions led to the synthesis of acrylamide 25 which was designed to place the 

Michael acceptor in position for covalent reaction with the thiol (Table 8). In the event, addition of the Michael acceptor to the 

scaffold was not found to substantially improve potency towards c-KIT, although it did reduce potency towards KDR by ca. 10-fold. 

Upon solving the X-ray crystal structure of 25 bound to c-KIT it became apparent that the compound was binding reversibly (Figure 

S1 and 8C). The flexible acrylamide was found to ‘bend backwards’ in the active site, away from Cys788, to form interactions with 

the water network. Rowley and Williams recently reported calculated pKa’s for a number of druggable cysteines in selected protein 

kinases, which included c-KIT Cys788 in both the DFG-in and DFG-out conformations.45 In both cases, the thiol pKa was computed 

to be >21, suggesting a significant barrier to deprotonation for formation of the reactive anionic thiolate and, thus, a more reactive 

warhead may be required for covalent bond formation.

Table 8. Enzyme (IC50) and cell (GI50) potency data in a series of KIT / PDGFR inhibitors. Data is the mean of at least two 

determinations.
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Format Kinase [ATP] M 24 25 26

c-KIT 300 0.581 0.240 2.08

KDR 75 0.050 0.403 0.538

KDR 1000 - 1.380 >9.71

PDGFRα 10 - 0.004 0.022

PDGFRα 100 - 0.003 0.031

PDGFRα 1000 - - 0.107

PDGFRβ 100 - 0.008 0.033

PDGFRβ 1000 - - 0.113

PDGFRα V561D 50 - 0.001 0.004

PDGFRα V561D 100 - 0.001 0.004

Enzyme

PDGFRα V561D 1000 - - 0.005

Ba/F3 KIT Exon9 Insertion - 0.021 0.006 0.067

Ba/F3 Tel- PDGFRα - 0.002 0.001 0.011

Ba/F3 Tel- PDGFRb - 0.002 0.008 0.036
Cell

Ba/F3 parental - >10 7.241 >10

We hypothesized that the lack of covalent reactivity observed for the acrylamide could be attributed to a combination of the flexibility 

of the molecule, placing the acrylamide in a hydrophilic area of the binding pocket, and the low nucleophilicity of the targeted 

cysteine. As our new benzoxazine warheads have a rigid conformation we proposed that covalent binding could be achieved in this 

context, as the molecule would maintain the reaction vector needed within the binding site. Molecular docking therefore led to the 

proposal that compound 26 (Table 8) would be optimally orientated to facilitate covalent reaction (supporting information, Figure 

S13). Upon synthesis, potency data revealed 26 to be 10-fold less active than the acrylamide 25 against c-KIT. However, the same 

trend in pharmacokinetic properties, switching from the acrylamide 25 to the benzoxazine 26, was observed for the c-KIT analogues 

as had previously been seen in the JAK3 series (Table S1). Again, it is interesting to note that despite a 2-fold increase in glutathione 

reactivity relative to 25, that clearance in human liver microsomes and rat hepatocytes were improved, whilst minimal change in logD 

was observed.
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Inhibitor 25 and 26 retain potent PDGFR activity and the potency of new warhead 26 against several PDGFR isoforms at varying 

concentrations of ATP is, as in the JAK example before, strongly suggestive of a covalent mode of action in this kinase. For technical 

reasons, we were unable to run the c-KIT assay across similar ATP concentration ranges. However, we were able to obtain an X-ray 

crystal structure of 26 in both c-KIT and KDR which showed the novel warhead to bind covalently to Cys788 in c-KIT as hypothesized 

(Figure 9), whilst binding reversibly in KDR. The relatively reactive nature of 26, demonstrated by a glutathione half-life of 65 

minutes, may partially explain why covalent binding in c-KIT is observed despite the predicted high pKa of the thiol in Cys788. 

Although we recognise that the unusually high concentrations of both protein and compound in co-crystallization may drive covalent 

bond formation that will not be seen in the in vitro activity assay, we believe the combination of PDGFR activity data at varying ATP 

concentrations and lack of covalent binding in KDR crystal structure support the clear differentiation of this new warhead from a 

standard acrylamide in the context of this ligand-protein pairing. A similar binding mode was retained switching from the acrylamide 

25 to benzoxazine 26 warhead. Acrylamide 25 forms a hydrogen bonding interaction between the amide NH and Asp810 in the 

conserved DFG motif as well as an interaction with Pro573 through hydrogen bonding of the carbonyl to the water network. Despite 

forming a covalent interaction with Cys788, 26 does not form further interactions to the backbone in this region. Interestingly, when 

bound in KDR the benzoxazine warhead 26 is observed to have flipped 180° relative to the c-KIT structure, despite similar binding 

interactions being formed with the quinoline and pyridine rings. This ring flip places the methyl acetylene into a hydrophobic pocket 

of the enzyme which is not accessed in c-KIT. Covalent selectivity was therefore realised for different reasons than originally 

hypothesized.
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Figure 9. Crystal structures of compound 26 bound in c-KIT and KDR. A) Crystal structure of 26 covalently bound in c-KIT (6XVB). 

B) Crystal structure of 26 bound in KDR (6XVK). C) View of compound 25 warhead bound in c-KIT (6XVA). D) View of compound 

26 warhead bound in c-KIT (6XVB). E) View of compound 26 warhead bound in KDR (6XVK).

To our knowledge only one covalent binder of c-KIT (Cys788) has been previously described. Winssinger et al. reported the use of 

a modified version of the imatinib scaffold bearing a reactive α-chloro amide in place of piperazine.46 Binding to Cys788 was proven 

by MS-MS although no crystal structure was solved. Acrylamide versions of the modified scaffold were also tested but not reported 

to be covalent. Benzoxazine 26 is therefore the first example of a Michael acceptor system successfully binding to Cys788 and also 

represents the first crystal structure of c-KIT bearing a covalently modified ligand. To further assess the specificity of the ligand 26, 

profiling against a panel of 403 kinases was carried out. There is a high level of homology associated with c-KIT, PDGFR and CSF-

1R47, 48 and ligands, such as imatinib, are known to inhibit both c-KIT and PDGFR.49 More interestingly, PDGFR and c-KIT both 

contain a cysteine in the same position of the DFG region, and Winssinger et al. were able to demonstrate covalent binding to Cys814 

in PDGFRα as well as Cys788 in c-KIT.4, 46 Indeed, ligand 26 was found to be highly selective when tested at a single 1 M 

concentration, inhibiting only 8 kinases at >60% inhibition, which included both PDGFRα and PDGFRβ. In order to assess the 
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potential of 26 to inhibit c-KIT and PDGFR in a cellular environment, and in particular to check how the new warhead performed 

relative to the acrylamide analogue in this context, compounds 24-26 were tested in a panel of Ba/F3 cell lines transfected with 

PDGFR, PDGFR and an Exon9 insertion mutant of c-KIT (Table 8). Proliferation of these cell lines is dependent upon the 

introduced construct for growth, and to monitor for non-specific effects on viability in these cells, a parental Ba/F3 line (no introduced 

construct) is run in parallel. Engineered cell lines including Ba/F3 have been shown previously to faithfully mimic clinical efficacy 

of various agents in GIST.43 Importantly, 26 showed potent growth inhibitory activity in these cell lines with no activity in the parental 

cell, demonstrating an ability to penetrate cells and inhibit the targets of interest. The relative potency in cells in the order PDGFR 

> PDGFR > c-KIT mirrors the ranking from enzyme assays and in comparison to acrylamide 25, 26 does not show any activity in 

the parental line, suggestive of fewer off target effects for the new warhead when compared to acrylamide.

CONCLUSION

Acrylamides are the backbone of approaches to target nucleophilic cysteines in both chemical biology and drug discovery. Recently 

reported alternatives such allenes or haloacylamides generally suffer from high reactivity, instability and incompatibility with 

biological systems. Exploration of reactive heterocycles has identified alkynyl benzoxazine and dihydroquinazoline motifs capable 

of electrophilic cysteine capture, which hold potential application as chemical biological probes and as warheads in drug molecules. 

We have successfully demonstrated the utility of these new moieties through site-selective protein modification of both C2Am and a 

HER-2 nanobody as well as their application in kinase drug scaffolds. Although iterative optimization against a particular target was 

not the focus of this work, alteration of the osimertinib scaffold led to the identification of a potent JAK3 inhibitor with enhanced 

selectivity across the kinome, high cellular selectivity across the cysteinome and improved in vitro pharmacokinetic profile relative 

to the related acrylamide-based covalent inhibitor. Covalent bond formation was demonstrated through kinase inhibition at high 

concentrations of ATP and confirmed by MS analysis following incubation with protein. Moreover, incorporation of a novel warhead 

into a c-KIT scaffold promoted formation of a covalent interaction with the target where acrylamide had previously failed, confirmed 

by X-ray structure determination. This scaffold was also found to be highly potent against PDGFR with a suggested covalent mode 

of action and demonstrated potent cell activity with fewer off target effects than the corresponding acrylamide. Overall, the novel 

warheads have a desirable reactivity and stability profile, are easily accessed synthetically and have the ability to reach vectors that 

acrylamides cannot. We therefore anticipate that these new moieties will be complimentary to acrylamides and have the potential for 

widespread use in future cysteine targeting covalent inhibitors.
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