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ABSTRACT:  A series of novel pyrazolopyridine compounds have been designed and prepared 

by a general synthetic route. Their activities against the replication of poliovirus-1, EV-A71, and 

CV-B3 enteroviruses were evaluated. The comprehensive understanding of the Structure-

Activity Relationship was obtained by utilizing the variation of four positions, namely N1, C6, 

C4 and linker unit. From the screened analogues, the  inhibitors with the highest selectivity 

indices at 50% inhibition of viral replication (SI50) were those with isopropyl at the N1 position 

and thiophenyl-2-yl unit at C6 position. Furthermore, the C4 position offered the greatest 

potential for improvement because many different N-aryl groups had better antiviral activities 

and compatibilities than the lead compound JX001. For example, JX040 with a 2-pyridyl group 

was the  analogue with the most potent activity against non-polio enteroviruses and JX025, 

possessing a 3-sulfamoylphenyl moiety, had the best activity against polioviruses. In addition, 
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analogue JX037, possessing a novel pyrazolopyridine heterocycle, was also shown to have good 

anti-enteroviral activity, which further enlarges the compound space for anti-enteroviral drug 

design. 

■ INTRODUCTION 

The human enteroviruses (EVs) are a group of more than 110 distinct viruses, each composed of 

a single stranded RNA genome packaged within a protein capsid. Enteroviruses were originally 

classified into groups of polioviruses, coxsackieviruses, echoviruses, and later simply assigned 

consecutive numbers as they were discovered.1 Poliovirus circulation and poliomyelitis have 

been nearly eliminated by immunization but other EVs, now organized into alphabetically 

organized species1, remain clinically and economically significant pathogens with global impact. 

For example, enterovirus 71 (EV-A71) has been the cause of numerous epidemics of central 

nervous system infections in Europe and the Asia-Pacific Region over the last 15 years,2 causing 

an estimated 7 million cases in China between 2008 and 2012.3 Widespread reports of 

coxsackievirus B1 (CV-B1) myocarditis in the United States in 2007 highlighted the epidemic 

potential of enteroviruses and their danger to infants.4,5 Similarly, a nationwide outbreak of 

enterovirus D68 (EV-D68) occurred in the summer of 2014.  Beginning with reports in the 

midwest United States, EV-D68 was linked to severe respiratory illness, most often in young 

children. EV-D68 was also detected in respiratory specimens of some patients with polio-like 

paralysis, meningitis, and encephalitis.6-8 In addition, enteroviruses are perennial causes of 

encephalitis, acute heart failure, sepsis in newborns, and other serious and life-threatening 

illnesses.1 
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No antiviral agents are currently approved to treat enterovirus infections and supportive care is 

the mainstay of treatment.1,9  Extensive studies in pursuit of candidate antiviral agents have 

targeted the viral capsid, the virus-encoded RNA polymerase and proteases, and other viral 

proteins involved in replication.9,10 Candidates that have reached preclinical or early clinical 

phases of development have included the viral capsid binding agent BTA-798 (vapendavir), the 

viral protease inhibitor AG7088 (rupintrivir), and the viral 3D polymerase inhibitor DTriP-22.9-11 

Two drugs, enviroxime and pleconaril, were unable to move beyond initial clinical studies due to 

limited efficacy or safety concerns, respectively.10,12 Faced with this lack of progress, several 

recent studies have been performed in hopes of repurposing medications found to have in vitro 

antiviral activity against enteroviruses. For example, the selective serotonin reuptake inhibitor 

fluoxetine was found to have modest anti-enteroviral activity, likely reflecting its interference 

with the activity of the viral 2C protein.13,14,15 

We previously applied a rapid, live virus assay to identify enterovirus inhibitors from nearly 

86,000 compounds held by the Molecular Screening Shared Resource (MSSR) core facility of 

the CNSI (California NanoSystems Institute) at UCLA.13,15 Using a commonly encountered 

enterovirus, CV-B3), we identified a novel group of anti-enteroviral compounds: 1H-

pyrazolo[3,4-b]pyridine-4-carboxamide derivatives.15 These compounds are structurally unlike 

(distinct from) any previously described inhibitors of EV replication9,10 and also exhibit antiviral 

activity against an array of clinically relevant enterovirus types at micromolar concentrations.15 

To identify the target of these compounds, we selected for resistance by intentionally exposing 

the molecularly cloned CVB3-H3 virus to them at sub-inhibitory concentrations. This resistance 

was genetically mapped to the coding domain for the viral 2C protein. Based on these data, we 

constructed a missense mutant, CVB3-H3-C179F. This virus replicated normally and was not 
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inhibited by these compounds, indicating that they interfere with the activities of the viral 2C 

protein, which plays a role in viral RNA replication and other processes.13-15 

We herein describe an extensive structure-activity relationship (SAR) study of a series of 

pyrazolopyridine carboxamides and their structural analogues. We have developed a simple 

synthetic route to these compounds which allows one to prepare many analogues rapidly. All of 

these new compounds have been tested for their ability to inhibit the growth of 3 enteroviruses 

representing the major species of enteroviruses that infect humans. We have identified 

compounds with higher antiviral activity and lower cytotoxicity in vitro than the original lead 

compounds described previously.15 

■ RESULTS AND DISCUSSION 

Chemistry.  The synthesis of these molecules, which were labeled JX001 to JX076, was carried 

out as shown in the various schemes. The synthesis of the 1H-pyrazolo[3,4-b]pyridines are 

shown in Scheme 1. The key step was the condensation of the 1-alkyl-pyrazole-5-amine 2 with 

the 4-aryl-2,4-diketoester 3 to give the 1H-pyrazolo[3,4-b]pyridine-4-carboxylic ester 11. The 

components for this key coupling reaction were prepared as follows. Formation of the hydrazone 

6 was easily accomplished by mixing the desired ketone 4 with 3-hydrazino-propanitrile 5. 

Reaction of 6 with sodium butylate, prepared in situ, gave the desired 1-alkyl-pyrazole-5-amine 

2.16 This compound could also be prepared by another route, namely reaction of the alkyl 

hydrazine hydrochloride salt 7 with commercially available 2-cholorpropenenitrile 8 to give 2.17 

The second component 3 was synthesized by the condensation of an alkyl or aryl methyl ketone 

9 with diethyl oxalate 10 to give the product of the Claisen condensation, the salt 3.18 Addition of 

2 and 3 in acetic acid afforded good yields of the desired heterocycle 11.19 Basic hydrolysis of 
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the ester of 11 gave the acid 12. Formation of the acid chloride 13 with oxalyl chloride was 

followed by addition of the desired aniline 14 to give the amides. These were labeled as JX 

compounds starting with JX001. Overall a total of 76 analogues in all series were prepared and 

tested. 

  

Scheme 1. Synthesis of 1H-Pyrazolo[3,4-b]pyridine-4-carboxamides, e.g., JX001. 

In general, the yields of the synthesis were quite good and reasonable quantities of the materials 

were easily available. Although this general synthetic route was used for the synthesis of most of 
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the analogues, other methods could be used for specific substitution patterns and will be given in 

the experimental section. The compounds were purified by normal synthetic medicinal chemistry 

means, usually column chromatography and their structures were determined by high field NMR 

spectroscopy.  

In addition, we also prepared several ring systems different from but similar to the 1H-

pyrazolo[3,4-b]pyridine system by an analogous chemical synthesis, as shown in Scheme 2. 

Thus several 1H-pyrrolo[2,3-b]pyridine-4-carboxamides 22 were prepared by a route that 

involved a protected form of 2-aminopyrrole, namely the 2-(hydroxymethyl)benzamide 17. This 

compound was prepared from pyrrole itself in four steps, namely nitration and isopropylation of 

15 to give the 2-nitropyrrole 16 followed by tin reduction in the presence of phthalic anhydride 

and reduction of the imide to give 17. Condensation of 17 with the 4-(2-thiophenyl)-2,4- 

  

Scheme 2. Synthesis of 1H-Pyrrolo[2,3-b]pyridine-4-carboxamides, 22 (JX037, JX062-63, and 
JX072). 
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diketoester 18 (prepared as in Scheme 1) gave, via the free aminopyrrole formed in situ, the 1H-

pyrrolo[2,3-b]pyridine-4-carboxylic ester 19. The remainder of the synthesis follows that of 

Scheme 1, namely hydrolysis of the ethyl ester of 19 to give the acid 20 followed by activation to 

the acid chloride with oxalyl chloride and final coupling with one of several anilines 21 to 

affordthe analogues 22. In particular, we varied the aniline to give the following analogues: Ar = 

4-FC6H4: JX037; 2-pyridyl: JX072; 3-pyridyl: JX062; and 4-pyridyl: JX063. 

In addition, one analogue in each of three additional bi-heterocyclic ring systems were prepared 

and tested. Again, a very similar route was used for the preparation of each of these three new 

analogues (Scheme 3). Thus beginning with the 5-amino-1-isopropyl-imidazole 23, condensation 

with 18 gave the imidazopyridine 24, which, after hydrolysis to give 25 and amide formation 

with 4-fluoroaniline 26, afforded the desired 3H-imidazo[4,5-b]pyridine-7-carboxamide 27 

(JX034). 

  

Scheme 3. Synthesis of 3H-imidazo[4,5-b]pyridine-7-carboxamide, 27 (JX034). 
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Scheme 4. Synthesis of 1H-Triazolo[2,3-b]pyridine-4-carboxamide, 29 (JX035). 

18 to give, after hydrolysis and amide formation with 26, the desired 3H-[1,2,3]triazolo[4,5-

b]pyridine-7-carboxamide 29 (JX035). 

Finally the 1H-pyrazolo[3,4-d]pyrimidine-4-carboxamide analogue, 37 (JX036), was prepared 

by a completely different route (Scheme 5). Thus reaction of 2-(ethoxyvinylidene)malononitrile 

30 with isopropylhydrazine followed by treatment with basic hydrogen peroxide gave the known 

aminoamide 31.20 Condensation of this compound with methyl thiophene-2-carboxylate 32 

afforded the desired 1H-pyrazolo[4,5-d]pyrimidin-ol 33. Conversion of the hydroxyl to a 

bromide furnished 34 which was converted into the carboxamide 35 with copper cyanide and wet 
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Scheme 5. Synthesis of 1H-pyrazolo[3,4-d]pyrimidine-4-carboxamide, 37 (JX036) 
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(Figure 1, 1). Among the 22 active library compounds, the number of variations decreased at the 

order of C4 > C6 > N1. In particular, the compound N-(2-fluorophenyl)-1-(propan-2-yl)-6-

(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide (Figure 1, 1a) has shown to exhibit 

activity against 12 commonly encountered members of the enterovirus B species, as well as 

enterovirus A71 (EV species A) and two polioviruses (EV species C).15 

 

Figure 1. 1H-Pyrazolo[3,4-b]pyridine-4-carboxamides. 

Here we used the 1H-pyrazolo[3,4-b]pyridine-4-carboxamide 1a as a reference compound and 

designed new compounds in the 1H-pyrazolo[3,4-b]pyridine-4-carboxamide series 1 in order to 

vary the four most easily altered positions, namely: 1) the alkyl group at N1 (R1); 2) the usually 

aryl or heteroaryl ring at C6 (R6); 3) the aniline unit on the carboxamide at C4, varying the 

substituents at essentially every available carbon and introducing heterocyclic amines; and 4) a 

few changes in the amide linking unit between the two rings. Our goal was to identify candidate 

compounds for the development of anti-enteroviral drugs with significant improvements in 

potency and exhibiting reduced cytotoxicity. Specifically, we sought compounds that would 

inhibit the replication of enteroviruses in the EV-A, EV-B, and EV-C species at concentrations at 

less than 1 µM, yet with relatively low cytotoxicity.  
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group since it was the substituent in the lead compound 1a. (henceforth referred to as JX001). 

We changed the substituent and examined aryl, secondary cycloalkyl, substituted methyl units, 

and even H. The compounds prepared with this variation were: R1 = phenyl: JX012; t-butyl: 

JX013; cyclobutyl: JX014; 2,2,2-trifluoroethyl: JX022; cyclopentyl: JX027; cyclohexyl: 

JX028; cycloheptyl: JX029; 4-methoxybenzyl: JX031; and hydrogen: JX032. In general, those 

substituents were not as favorable for activity as the isopropyl group since none of the above 

analogs demonstrated antiviral activities against EV-A71, coxsackievirus B3(CV-B3), or 

poliovirus-1 (PV-1). This result is consistent with the SAR analysis of the initial 144 library 

compounds, in which the isopropyl group at the N1 position seemed crucial for the antiviral 

activity (Supplementary Table S1). The only two exceptions were those with an ethyl group 

replacing the isopropyl group, namely: N-(4-cyanophenyl)-1-ethyl-6-(thiophen-2-yl)-1H-

pyrazolo[3,4-b]pyridine-4-carboxamide and 1-ethyl-N-(4-methyl-3-sulfamoylphenyl)-6-

(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide (highlighted groups in 

Supplementary Table S1). Therefore, we retained the isopropyl group at the N1 position in the 

other analogues in this study. 

Analogues at the 6-position (R6). The group attached at the 6-position in 1a (JX001) is a 

thiophen-2-yl group; this was also present in 11 other active compounds of our primary screen 

(Supplementary Table S1). Besides, cyclopropyl, phenyl and isopropyl groups were also found at 

the 6-positions of active compounds.  We tested the effect of variation at this position by 

changing R6 to cycloalkyl, aryl, and heteroaryl units. New compounds prepared with this 

variation were: R6 = cyclopropyl, JX038, JX055, JX071; phenyl, JX002, JX070; and heteroaryl, 

e.g., 2-pyridyl: JX004; 3-pyridyl: JX005; 4-pyridyl: JX003; 2-thiazolyl: JX007; 5-thiazolyl: 

JX010; 5-oxazolyl: JX011; 2-furyl: JX026; and thiophen-3-yl: JX030, JX057-JX061. Several 
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of these compounds also had different aniline units, namely: 4-fluorophenyl in JX026, JX030 

and JX038; 3-sulfamoylphenyl in JX055; 2-pyridyl in JX070 and JX071. Those changes in the 

aniline units were generally associated with increased antiviral activities as discussed below. The 

highest activity was seen with thiophen-2-yl unit at the 6-position although the thiophen-3-yl unit 

was also associated with antiviral activity in low micromolar concentrations (Table 1). By 

contrast, the presence of azole groups - 2-thiazolyl (JX007), thiazolyl (JX010), and 5-oxazolyl 

(JX011) at R6 clearly reduced antiviral activity. Other groups phenyl (JX002 and JX070) and 

cyclopropyl (JX038 and JX055) were also associated with decreases in antiviral activities. It 

seemed that cytotoxicity decreased significantly with 2-furyl (JX026) at the 6-position. 

Furthermore, we found that many derivatives with a thiophen-3-yl unit replacing the thiophen-2-

yl unit: JX030, JX057, JX058, JX059, and JX060 retained antiviral activity. The direct 

comparison of the effects of thiophen-2-yl and thiophen-3-yl units on antiviral activity was 

manifested in the following pairs: JX017 vs. JX030, JX040 vs. JX057, JX041 vs. JX058, 

JX042 vs. JX061, JX043 vs. JX059, and JX056 vs. JX060, where the thiophen-2-yl group was 

generally associated with higher antiviral activities (Table 1 and Table 2). 

Table 1. Antiviral activities of analogues with various substituents at the 6-position.  

Compound 
No. (JX) 

R6 Anti-EV-A71 in 
LLC cells (µM)a 

Anti- CV-B3 in 
HeLa cells (µM)a 

Anti-PV-1 in HeLa 
cells (µM)a,b 

1a (or 001) 2-thiophenyl EC50: 2.3 ± 1.2 
CC50: 50.0 
SI50: 21.7 

EC50: 1.4 ± 0.6 
CC50: 12.5 
SI50: 8.9 

EC50: 7.0 ± 0.0 
CC50: 12.5 
SI50: 1.8 

002 phenyl EC50: 5.7 ± 1.5 
CC50: > 200.0 
SI50: > 35.1 

EC50: 4.5 ± 1.5 
CC50: 37.5 
SI50: 8.3 

EC50: > 25.0 
CC50: 37.5 
SI50: N/A 

003 4-pyridyl EC50: > 10.0 
CC50: 45.0 
SI50: N/A 

EC50: 5.1 ± 0.1 
CC50: 37.5 
SI50: 7.4 

EC50: > 25.0 
CC50: 37.5 
SI50: N/A 
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004 2-pyridyl EC50: > 10.0 
CC50: 100.0 
SI50: N/A 

EC50: 6.9 ± 0.7 
CC50: > 200.0 
SI50: > 29.0 

EC50: > 25.0 
CC50: > 200.0 
SI50: N/A 

005 3-pyridyl EC50: > 10.0 
CC50: 50.0 
SI50: N/A 

EC50: 7.0 ± 2.4 
CC50: 37.5 
SI50: 5.4 

EC50: > 25.0 
CC50: 37.5 
SI50: N/A 

007 2-thiazolyl EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

010 5-thiazolyl EC50: 3.7 ± 0.2 
CC50: 100.0 
SI50: 27.0 

EC50: 3.3 ± 1.4 
CC50: > 200.0 
SI50: > 60.6 

EC50: > 25.0 
CC50: > 200.0 
SI50: N/A 

011 5-oxazolyl EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

026 2-furyl EC50: 2.6 ± 0.3 
CC50: > 200.0 
SI50: > 76.9 

EC50: 2.4 ± 0.0 
 CC50: > 200.0 
SI50: > 83.0 

EC50: > 25.0 
CC50: > 200.0 
SI50: N/A 

030 3-thiophenyl EC50: 1.4 ± 0.2 
CC50: > 200.0 
SI50: > 142.9 

EC50: 1.3 ± 0.1 
CC50: 25.0 
SI50: 19.2 

EC50: > 25.0 
CC50: 25.0 
SI50: N/A 

038 cyclopropyl EC50: 3.2 ± 0.1 
CC50: 12.5 
SI50: 3.9 

EC50: 3.3 ± 0.1 
CC50: 10.0 
SI50: 3.0 

EC50: > 25.0 
CC50: 10.0 
SI50: N/A 

055 cyclopropyl EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

070 phenyl EC50: 0.7 
CC50: 12.5 
SI50: 17.9 

EC50: 1.6 ± 0.0 
CC50: 18.8 
SI50: 11.8 

EC50: > 25.0 
CC50: 18.8 
SI50: N/A 

071 cyclopropyl EC50: 4.7 
CC50: 25.0 
SI50: 5.3 

EC50: 4.7 
CC50: 25.0 
SI50: 5.3 

EC50: > 25.0 
CC50: 25.0 
SI50: N/A 

a. For compounds that were tested against certain viruses in 3 separate experiments, means ± s.d. 
are shown. Otherwise, a single value represents an average of triplicates in one experiment. b. 
Similar results were observed against anti-PV-1 and anti-PV-3 activities. 

comparison of the effects of thiophen-2-yl and thiophen-3-yl units on antiviral activity was 
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manifested in the following pairs: JX017 vs. JX030, JX040 vs. JX057, JX041 vs. JX058, 

JX042 vs. JX061, JX043 vs. JX059, and JX056 vs. JX060, where the thiophen-2-yl group was 

generally associated with higher antiviral activities (Table 1 and Table 2). 

Analogues at the aniline unit. In addition, we varied extensively the substitution pattern of the 

N-aryl group of the amide as shown in the Table 2. Many new compounds were prepared having 

halo substituted anilines (especially fluoro substituents), sulfamoyl and carbamoyl units, and 

especially heterocyclic amine units, pyridyl and pyrimidyl rings. We evaluated the effect of the 

position of a single fluorine atom on the phenyl ring in JX017 and JX021. We also prepared 

analogues in which the position and number of fluorine atoms were varied: JX008, JX009, 

JX015, JX016, JX018, JX019, JX020, and JX050. Although nearly all of the analogues had 

antiviral activity against the virus test strains, and JX017 with a 4-fluorophenyl unit had 

substantially lower cytotoxicity and lower EC50 concentrations against EV-A71 and CV-B3 

compared to original lead JX001 with a 2-fluorophenyl group. We also prepared and tested 

compounds with a sulfamoyl unit: JX006, JX025, JX033 and JX055. Of these, the 3-sulfamoyl 

analogue JX025 showed the best antiviral activity, with EC50 values for EV-A71 and CVB-B3 

that were similar to those for lead JX001, in addition to a lower EC50 value against poliovirus, 

and generally lower cytotoxicity. 

In light of this result, we synthesized other sulfamoyl analogues having also a fluorine atom, e.g., 

JX068 and JX069, the 4-methylsulfonyl analogue JX047, the monomethyl- and 

dimethylsulfamoyl analogues JX053 and JX052, and two carbamoyl analogues JX064 and 

JX073 to further explore the effect of such substituents on activity. All of these exhibited 

antiviral activity against EV-A71 and CV-B3 with the sulfone JX047 and the 4-fluoro-3-

sulfamoyl analogues, JX069, being the least cytotoxic of the compounds tested. They therefore 
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had the best selectivity indices against EV-A71 and CV-B3, but they were not active against 

polioviruses. The best antiviral activity (lowest EC50 values) against PV-1 was seen with the 

analogues JX025, JX064 and JX068, which had either sulfamoyl or carbamoyl moieties at the 3- 

position of the phenyl ring. 

In addition, we prepared many compounds with heterocyclic amines in the amides, some of 

which had excellent activity. The heterocyclic units prepared were: 2-pyridyl: JX040, JX057, 

JX070, JX071, JX072 and JX074; 3-pyridyl: JX056, JX060, JX062 and JX065; 4-pyridyl: 

JX042, JX061 and JX063; 2-pyrimidyl: JX041 and JX058; 4-pyrimidyl: JX043 and JX059; 

and 5-pyrimidyl: JX066. As mentioned earlier, the five analogues JX057, JX058, JX059, 

JX060 and JX061 all had a 3-thiophenyl group at the 6-position. In general, analogues with 

pyridyl amides showed significantly better activity than those with substituted phenyl amides. 

Among the isomeric pyridyl analogues, generally the 2-pyridyl unit was associated with 

excellent antiviral activity and 4-pyridyl was associated with poor activity. In particular, the 2-

pyridyl amide JX040 had substantially lower EC50 values for EV-A71 and CV-B3 and higher 

CC50 concentration than the lead 1a (JX001), resulting in a markedly higher SI50. Unfortunately, 

this substitution appeared to reduce activity against poliovirus. The effects of the pyrimidyl units 

were complicated as they were associated with excellent EC50 values and below average CC50 

values. In this group, JX059 was the best analogue as it had exceptional and excellent CC50 

values. 

Table 2. Antiviral activities of analogues with various substituents of the aniline units. 

Compd 
No. (JX) 

N-aryl group Anti-EV-A71 in 
LLC cells (µM)a 

Anti- CV-B3 in 
HeLa cells (µM)a 

Anti-PV-1 in 
HeLa cells 

(µM)a,b 
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006 4-sulfamoylphenyl EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0  
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

008 2,4-F2C6H3 EC50: 1.6 ± 0.4 
CC50: > 200.0 
SI50: > 125.0 

EC50: 1.4 ± 0.5  
CC50: > 200.0 
SI50: > 142.9 

EC50: > 25.0 
CC50: > 200.0 
SI50: N/A 

009 2,6-F2C6H3 EC50: 3.4 ± 0.7 
CC50: > 200.0 
SI50: > 58.8 

EC50: 3.2 ± 0.5 
CC50: > 200.0 
SI50: > 62.5 

EC50: > 25.0 
CC50: > 200.0 
SI50: N/A 

015 3,4-F2C6H3 EC50: > 25.0 
CC50: > 200.0 
SI50: N/A 

EC50: 1.3 ± 0.1 
CC50: > 200.0 
SI50: > 153.8 

EC50: > 10.0 
CC50: > 200.0 
SI50: N/A 

016 3,5-F2C6H3 EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

017 4-FC6H4 EC50: 0.9 ± 0.3 
CC50: > 200.0 
SI50: > 222.2 

EC50: 0.7 ± 0.2 
CC50: > 200.0 
SI50: > 285.7 

EC50: > 25.0 
CC50: > 200.0 
SI50: N/A 

018 2,5-F2C6H3 EC50: 3.5 
CC50: 100.0 
SI50: 28.6 

EC50: 2.7 ± 0.4 
CC50: > 200.0 
SI50: > 74.1 

EC50: > 25.0 
CC50: > 200.0 
SI50: N/A 

019 2,3-F2C6H3 EC50: 3.0 
CC50: 75.0 
SI50: 25.0 

EC50: 2.7 ± 0.4 
CC50: > 200.0 
SI50: > 74.1 

EC50: > 25.0 
CC50: > 200.0 
SI50: N/A 

020 2,4,6-F3C6H2 EC50: 3.0 
CC50: > 200.0 
SI50: > 66.7 

EC50: 1.8 ± 0.7 
CC50: > 200.0 
SI50: > 111.1 

EC50: > 25.0 
CC50: > 200.0 
SI50: N/A 

021 3-FC6H4 EC50: 2.4 ± 0.8 
CC50: > 200.0 
SI50: > 83.3 

EC50: 0.8 ± 0.3 
CC50: > 200.0 
SI50: > 250.0  

EC50: > 25 
CC50: > 200.0 
SI50: N/A 

023 2-CF3C6H4 EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

024 4-CF3C6H4 EC50: > 25.0 
CC50: N/A 
SI50: N/A 

EC50: > 25.0 
CC50: N/A 
SI50: N/A 

EC50: > 25.0 
CC50: N/A 
SI50: N/A 

025 3-sulfamoylphenyl EC50: 1.3 ± 0.1 EC50: 1.3 ± 0.2 EC50: 5 ± 0.0 
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CC50: 25.0 
SI50: 19.2 

CC50: > 200.0 
SI50: 166.7 

CC50: 50.0 
SI50: 10.0 

033 2-sulfamoylphenyl EC50: 2.5 ± 0.7 
CC50: 25.0 
SI50: 10.0 

EC50: 2.6 ± 0.4 
CC50: 10.0 
SI50: 3.8 

EC50: > 25.0 
CC50: 10.0 
SI50: N/A 

040 2-pyridyl EC50: 0.5 ± 0.1 
CC50: > 200.0 
SI50: > 400.0 

EC50: 0.8 ± 0.3 
CC50: > 200.0 
SI50: > 250.0 

EC50: > 10.0 
CC50: > 200.0 
SI50: N/A 

041 2-pyrimidyl EC50: 0.5 ± 0.1 
CC50: 75.0 
SI50: 150.0 

EC50: 0.6 ± 0.1 
CC50: 37.5 
SI50: 62.5 

EC50: > 10.0 
CC50: 37.5 
SI50: N/A 

042 4-pyridyl EC50: 0.4 ± 0.0 
CC50: 6.3 
SI50: 15.8 

EC50: 0.6 ± 0.1 
CC50: 6.0 
SI50: 10.0 

EC50: > 10.0 
CC50: 6.0 
SI50: N/A 

043 4-pyrimidyl EC50: 0.5 ± 0.1 
CC50: 50.0 
SI50: 100.0 

EC50: 0.6 ± 0.1 
CC50: 20.0 
SI50: 33.3 

EC50: > 10.0 
CC50: 20.0 
SI50: N/A 

045 1-isopropyl-6-(2-
thiophenyl)-1H-
pyrazolo[3,4-
b]pyridin-4-yl 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

047 4-methyl-
sulfonylphenyl 

EC50: 0.5 ± 0.1 
CC50: 50.0 
SI50: 100.0 

EC50: 1.0 ± 0.4 
CC50: 200.0 
SI50: 200.0 

EC50: > 10.0 
CC50: 200.0 
SI50: N/A 

050 2-Br-4-FC6H3 EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

052 3-N,N-
dimethylsulf-
amoylphenyl 

EC50: 0.8 ± 0.1 
CC50: > 200.0 
SI50: > 250.0 

EC50: 1.0 ± 0.4 
CC50: 12.0 
SI50: 12.0 

EC50: > 10.0 
CC50: 12.0 
SI50: N/A 

053 3-N-methylsulf-
oylphenyl 

EC50: 0.7 ± 0.1 
CC50: 25.0 
SI50: 35.7 

EC50: 0.5 ± 0.1 
CC50: 12.0 
SI50: 24.0 

EC50: > 10.0 
CC50: 12.0 
SI50: N/A 

056 3-pyridyl EC50: 0.5 ± 0.1 
CC50: > 200.0 
SI50: > 400.0 

EC50: 0.4 ± 0.3 
CC50: 25.0 
SI50: 62.5 

EC50: 10.0 
CC50: 25.0 
SI50: 2.5 

057 2-pyridyl EC50: 0.8 
CC50: 25.0 

EC50: 1.2 
CC50: 18.0 

EC50: > 10.0 
CC50: 18.0 
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SI50: 31.3 SI50: 15.0 SI50: N/A 

058 2-pyrimidyl EC50: 1.2 
CC50: 50.0 
SI50: 41.7 

EC50: 1.2 
CC50: 40.0 
SI50: 33.3 

EC50: > 10.0 
CC50: 40.0 
SI50: N/A 

059 4-pyrimidyl EC50: 0.8 
CC50: > 200.0 
SI50: > 250.0 

EC50: 1.2 ± 0.0 
CC50: > 200.0 
SI50: > 166.7 

EC50: > 10.0 
CC50: > 200.0 
SI50: N/A 

060 3-pyridyl EC50: 2.4 
CC50: 37.0 
SI50: 15.4 

EC50: 0.6  
CC50: 18.0 
SI50: 30.0 

EC50: > 10.0 
CC50: 18.0 
SI50: N/A 

061 4-pyridyl EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

064 3-carbamoylphenyl EC50: 0.8 
CC50: 25.0 
SI50: 31.3 

EC50: 0.7 ± 0.1 
CC50: 18.0 
SI50: 25.7 

EC50: 6.3 
CC50: 18.0 
SI50: 2.9 

066 5-pyrimidyl EC50: 0.4 
CC50: 20.0 
SI50: 50.0 

EC50: 0.7 ± 0.2 
CC50: 18.0 
SI50: 25.7 

EC50: 10.0 
CC50: 18.0 
SI50: 1.8 

068 2-fluoro-5-
sulfamoylphenyl 

EC50: 0.5 
CC50: 25.0 
SI50: 50.0 

EC50: 0.7 ± 0.1 
CC50: 18.0 
SI50: 25.7 

EC50: 6.3 
CC50: 18.0 
SI50: 2.9 

069 4-fluoro-3-
sulfamoylphenyl 

EC50: 0.8 
CC50: 50.0 
SI50: 62.5 

EC50: 1.1 ± 0.3 
CC50: > 200.0 
SI50: > 181.8 

EC50: > 10.0 
CC50: > 200.0 
SI50: N/A 

073 2-fluoro-5-
carbamoylphenyl 

EC50: 0.5 
CC50: 25.0 
SI50: 50.0 

EC50: 0.8 
CC50: 18.8 
SI50: 23.5 

EC50: 5.0 
CC50: 18.8 
SI50: 3.8 

075 4-fluoro-2-pyridyl EC50: 1.2 
CC50: > 200.0 
SI50: > 166.7 

EC50: 0.7 ± 0.1 
CC50: 37.5 
SI50: 53.6 

EC50: > 10.0 
CC50: 37.5 
SI50: N/A 

a. For compounds that were tested against certain viruses in 3 separate experiments, means ± s.d. 
are shown. Otherwise, a single value represents an average of triplicates in one experiment. b. 
Similar results were observed against anti-PV-1 and anti-PV-3 activities. 

Analogues at the linker unit. We also synthesized analogues with linker units other than the 

original carboxamide, e.g., reverse amide: JX054; N-Me amide: JX074; imide: JX039; 
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thioamide: JX046; sulfonamide: JX049; reverse sulfonamide: JX044; and amidines: JX065, 

JX067. In addition two unusual linkers were made and tested, e.g., the benzoxazole: JX051; and 

the indoline amide: JX048. Testing of these analogues indicated that the normal amide linker 

was crucial for the antiviral activity since many new linker units failed in the tests of antiviral 

activity even though we put the most favorable groups at the N1, the R6 and the N-aryl positions. 

JX054 demonstrated modest antiviral activity, while JX048 had comparable activity to the 

original compound 1a (JX001) (Table 3). The indoline amide may be a promising alternative 

linker unit if the issue of compound stability might not allow a carboxamide in the antiviral drug 

design. 

Table 3. Antiviral activities of analogues with different linker units. 

Compound 
No. (JX) 

Structure Anti-EV-A71in 
LLC cells (µM)a 

Anti- CV-B3 in 
HeLa cells (µM)a 

Anti-PV-1* in 
HeLa cells (µM)a,b 

044 reverse 
sulfonamide 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

046 thioamide EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

048 indolineamide EC50: 1.3 ± 0.2 
CC50: > 200.0 
SI50: > 153.4 

EC50: 1.9 ± 0.6 
CC50: 18.8 
SI50: 9.9 

EC50: 10.0 
CC50: 18.8 
SI50: 1.9 

049 sulfonamide EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

051 benzoxazole EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

054 reverse amide EC50: 4.0 
CC50: 50.0 
SI50: 12.5 

EC50: 4.7 ± 0.0 
CC50: 12.0 
SI50: 2.6 

EC50: > 10.0 
CC50: 12.0 
SI50: N/A 

Page 19 of 59

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



	 20	

065 amidine EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50:  > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

067 amidine EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

074 N-
methylamide 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50:  > 25.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

076 7-azaindoline-
amide 

EC50: 12.5 
CC50: 50.0 
SI50: 4.0 

EC50: 9.4 ± 0.0 
CC50: 37.5 
SI50: 4.0 

EC50: > 10.0 
CC50: 37.5 
SI50: N/A 

a. For compounds that were tested against certain viruses in 3 separate experiments, means ± s.d. 
are shown. Otherwise, a single value represents an average of triplicates in one experiment. b. 
Similar results were observed against anti-PV-1 and anti-PV-3 activities. 

New Heterocyclic Ring Systems. Finally, we also prepared several new heterocyclic ring 

systems other than the 1H-pyrazolo[3,4-b]pyridine system shown in compound 1. In particular, 

we developed syntheses of the 1H-pyrrolo[2,3-b]pyridine-4-carboxamides, 22 (JX037, JX062, 

JX063 and JX072), as shown in Scheme 2. We also prepared the 3H-imidazo[4,5-b]pyridine-7-

carboxamide, 27 (JX034), depicted in Scheme 3 and the 1H-1,2,3-triazolo[4,5-b]pyridine-4-

carboxamide, 29 (JX035), as shown in Scheme 4, changing the pyrazole unit for an imidazole 

and a 1,2,3-triazole, respectively. Finally a different synthetic route was used to make the 1H-

pyrazolo[3,4-d]pyrimidine-4-carboxamide, 37 (JX036), depicted in Scheme 5, in which the 

pyrimidine unit was substituted for the pyridine. These changes also had profound impact on the 

activity. The first three heterocyclic ring systems - the imidazopyridine, the triazolopyridine, and 

the pyrazolopyrimidine abrogated antiviral activity in our test system. By contrast, 

pyrrolopyridine analogues were active with the best analogue, JX062, having EC50 

concentrations for EV-A71 and CV-B3 that were similar to the original lead 1a (Table 4).  

Table 4. Antiviral activities of analogues with new heterocyclic ring systems.  
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Compound 
No. (JX) 

Structure Anti-EV-
A71in LLC 
cells (µM)a 

Anti- CV-B3 in 
HeLa cells 
(µM)a 

Anti-PV-1 in 
HeLa cells 
(µM)a,b 

034 3H-imidazo[4,5-
b]pyridine-7-
carboxamide 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

035 1H-triazolo[4,5-
b]pyridine-4-
carboxamide 

EC50: > 10.0 
CC50:  N/A 
SI50: N/A 

EC50 > 10.0 
CC50:  N/A 
SI50: N/A 

EC50: > 10.0 
CC50:  N/A 
SI50: N/A 

036 1H-pyrazolo[3,4-
d]pyrimidine-4-
carboxamide 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

037 1H-pyrrolo[2,3-
b]pyridine-4-
carboxamide 

EC50: > 25.0 
CC50: > 200.0 
SI50: N/A 

EC50: 3.1 ± 0.1 
CC50: > 200.0 
SI50: 64.5 

EC50: > 25.0 
CC50: > 200.0 
SI50: N/A 

062 1H-pyrrolo[2,3-
b]pyridine-4-
carboxamide 

EC50: 0.8 
CC50: 25.0 
SI50: 31.3 

EC50: 1.3 ± 0.1 
CC50: 18.0 
SI50: 13.8 

EC50: > 10.0 
CC50: 18.0 
SI50: N/A 

063 1H-pyrrolo[2,3-
b]pyridine-4-
carboxamide 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

EC50: > 10.0 
CC50: N/A 
SI50: N/A 

072 1H-pyrrolo[2,3-
b]pyridine-4-
carboxamide 

EC50: 1.2 
CC50: > 200.0 
SI50: > 166.7 

EC50: 2.2 ± 0.4 
CC50: 18.8 
SI50: 8.5 

EC50: > 10.0 
CC50: 18.8 
SI50: N/A 

a. For compounds that were tested against certain viruses in 3 separate experiments, means ± s.d. 
are shown. Otherwise, a single value represents an average of triplicates in one experiment. b. 
Similar results were observed against anti-PV-1 and anti-PV-3 activities. 

The direct of	comparison of pyrazolopyridine and pyrrolopyridine was shown in the following 

pairs: JX017 vs. JX037, JX040 vs. JX072, JX042 vs. JX063 and JX056 vs. JX062 (Tables 2 

and 4). The pyrrolopyridine analogues with either 4-fluorophenyl (JX037) or 3-pyridyl (JX062) 

had good antiviral activity against CV-B3, a commonly encountered representative of the EV-B 

species. 1 Thus, this new heterocyclic ring system represents a new class of antiviral compounds 

with a different heterocyclic core than the original lead 1a. 
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■ CONCLUSIONS 

In this report, we reported the synthesis and in vitro testing of novel pyrazolopyridine analogues 

for possible development into antiviral drugs for the treatment or prevention of enterovirus 

infections. We modified four sites around the core structure and carried out antiviral testing to 

establish a structure-activity relationship for this system. The best analogues with the highest SI50 

values were those with isopropyl group at the 1-position and a thiophen-2-yl unit at the 6-

position. The 4-position allowed the most variation since many different N-aryl groups had equal 

or better antiviral activity than 2-fluorophenyl unit in the lead compound 1a (JX001). The 4-

fluorophenyl group (JX017) had the best antiviral activity in its class while the 3-

sulfamoylphenyl moiety (JX025) also exhibited antiviral activity against polioviruses, albeit 

with an EC50 of 5 µM, which fell short of our target (1µM). Furthermore, several heterocyclic 

amines as the N-aryl group also had very favorable antiviral activities. Of all the pyridine and 

pyrimidine analogues, those with the 2-pyridyl group had perhaps the best overall activity, e.g., 

JX040 had the greatest antiviral activity against non-polio enteroviruses, although it had weak 

antiviral activity against polioviruses. Given the fact that enteroviruses have more than 110 types 

and that many important pathogenic viruses may belong to different species (A-D), the diversity 

at the N-aryl position may provide options against different enteroviruses.  The antiviral breadth 

of these variations at the N-aryl position will be studied in further research. We also screened 

different linker units and, while most of those had reduced activity compared to carboxamides, 

the indolineamide, reverse amide, and imide showed some activity. Finally, we changed the core 

structure from pyrazolopyridine to pyrrolopyridine with minimal loss in activity, thus further 

expanded the compound space for anti-enteroviral drugs. We infected cells with CVB3-H3 or 

CVB3-H3-C179F, which has a missense mutation in the 2C coding domain. As previously 
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described15, CVB3-H3-C179F was resistant to JX001, which inhibited the wildtype virus. 

Similarly, CVB3-H3-C179F was not inhibited by JX017, JX034, and JX048 (data not shown), 

indicating that these compounds also target activities of the 2C protein. 

We acknowledge that in vitro studies of the biological activity of antiviral compounds may not 

predict in vivo efficacy or toxicity; additional in vitro characterization and animal model studies 

are key to the pre-clinical development of antiviral agents. 10 In addition, we focused in this study 

on examining one representative each of the EV-A, EV-B, and EV-C species of enteroviruses, 

which are the most commonly encountered types in most of the world.1 The recent outbreak of 

EV-D68 in the US re-emphasizes the need for anti-enteroviral drugs and several studies have 

looked at existing candidates such as fluoxetine.10 Pyrazolopyridine analogues, which also target 

the viral 2C protein,15 represent a novel class of antiviral candidates and their activity against 

EV-D68 warrants additional studies. 

■ EXPERIMENTAL SECTION 

General: Toluene was distilled from sodium under an argon atmosphere. Dichloromethane was 

distilled from calcium hydride under an argon atmosphere. All other solvents or reagents were 

purified according to literature procedures. 1H NMR spectra were recorded on Bruker 

spectrometers at 400 MHz and are reported relative to deuterated solvent signals. Data for 1H 

NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant 

(Hz) and integration. Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; 

q, quartet; m, multiplet; and br, broad. 13C NMR spectra were recorded on Bruker Spectrometers 

at 100 MHz. Data for 13C NMR spectra are reported as follows: chemical shift (δ ppm), 

multiplicity and coupling constant (Hz). Splitting patterns are designated as the same in 1H 
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NMR. High resolution mass spectrometry was taken on a Thermo Fisher Scientific Exactive Plus 

mass spectrometer equipped with an IonSense ID-CUBE DART ion source. The purity of all 

final compounds was determined to be >95% by analytical HPLC analysis. For most final 

compounds, purity was determined using a Shimadzu LC-20 HPLC with a Nova-Pak Silica 60Å 

4µm HPLC Column (3.9 x 150 mm, Waters) and UV 254 nm detection. Elution at 0.5 mL/min 

with a mixture of CH2Cl2 (A) and EtOAc (B) isocratic at 90% A and 10% B, or CH2Cl2 (A) and 

MeOH (B) isocratic at 90% A and 10% B. The purity of compounds JX042, JX056, JX060-063, 

and JX066-067 was determined using a Waters Acquity UPLC connected to a Waters LCT-

Premier XE Time of Flight Instrument with an Acquity BEH C18 1.7µm UPLC Column (2.1 x 

50 mm, Waters). Elution with a gradient of 0.4 mL/min H2O/MeCN/0.3% Formic acid with a 

gradient of 3 to 90% MeCN between 0 and 5 min. Mass spectra were recorded from 70 to 2000 

Daltons. All solvents were LC-MS/MS Grade and purchased from Fisher Scientific. 

 

General procedure for the preparation of 2:  

Method A: To a solution of compound 5 (10.0 mmol) in ethanol (10.0 mL) cooled to 0 °C , was 

added dropwise compound 4 (10.0 mmol) with stirring. The mixture was stirred overnight at 21 

°C, then the solvent was evaporated in vacuo to give product 6 in almost quantitative yield. The 

product 6 was added to a solution of sodium (12.0 mmol) in n-butanol (20.0 ml), and the 

resulting mixture was refluxed for 12 h under an argon atmosphere, then cooled and the solvent 

evaporated in vacuo. The resulting residue was purified by flash column chromatography on 

silica gel (hexanes/ethyl acetate) to give the desired product 2. 

Method B: To 20.0 ml of ethanol were added successively 10.0 mmol of compound 7, 20.0 

mmol of sodium acetate, and 10.0 mmol of compound 8 at 21 °C, followed by stirring the 
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reaction mixture at 80 °C for 12 h under an argon atmosphere. After removing the solvent in 

vacuo, water was added to the residue. The mixture was neutralized with sodium bicarbonate, 

and extracted with ethyl acetate. The combined ethyl acetate solution was washed with brine, 

dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo. The 

resulting residue was purified by flash column chromatography on silica gel (hexanes/ethyl 

acetate) to give the desired product 2. 

General procedure for the preparation of 3: Potassium tert-butoxide (24.0 mmol) was added 

to a solution of the substrate 9 (20.0 mmol) in anhydrous toluene (100 ml) at 0 °C under an argon 

atmosphere in one portion. The mixture was stirred at 0 °C for 15 min. Then diethyl oxalate 10 

(4.0 ml) was added via syringe, and the resulting mixture was stirred at 21 °C for 12 h. The 

precipitated product was collected by filtration, washed with toluene and dried in vacuo to give 

the desired product 3. 

General procedure for the preparation of 11: To 25.0 ml of acetic acid were added 

successively 5.0 mmol of compound 2 and 5.0 mmol of compound 3 at 21 °C. The resulting 

mixture was stirred at 21 °C for 15 min, then refluxed for 4 h under an argon atmosphere. After 

removing the solvent in vacuo, the resulting residue was purified by flash column 

chromatography on silica gel (hexanes/ethyl acetate) to give the desired product 11. 

General procedure for the preparation of 12: To a solution of compound 11 (3.0 mmol) in 2-

propanol (15.0 ml), was added potassium hydroxide (6.0 mmol) in one portion. The resulting 

mixture was stirred at 21 °C for 2 h. After removing the solvent in vacuo, the resulting residue 

was dissolved in water (100 ml) and neutralized with acetic acid. The precipitated product was 
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collected by filtration and dried in vacuo over phosphorus pentoxide to give the desired product 

12. 

General procedure for the preparation of JX001 to JX076: To a solution of the substrate 12 

(0.5 mmol) in anhydrous dichloromethane (5.0 ml) cooled to 0 °C was added dropwise oxalyl 

chloride (1.0 ml, 2.0 M in dichloromethane) with stirring under an argon atmosphere. Then a 

catalytic amount of DMF was added. The resulting mixture was stirred at 21 °C for 2 h. After 

removing the solvent in vacuo, product 13 was obtained in almost quantitative yield. The product 

13 was dissolved in anhydrous toluene (15.0 ml) and compound 14 (2.5 mmol) was added at 21 

°C. The resulting mixture was refluxed for 12 h under an argon atmosphere, then cooled to 21 

°C, diluted with ethyl acetate, washed successively with 2 M hydrochloric acid and brine, dried 

over anhydrous sodium sulfate and the solvent was evaporated in vacuo. The resulting residue 

was purified by flash column chromatography on silica gel (hexanes/ethyl acetate) to give the 

desired JX compounds (JX001 to JX076). The yields are generally quite good: for example, the 

yield of JX001 in this coupling of 13 and 14 was 82%. 

Characterization data for JX001 to JX076: 

N-(2-Fluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX001. 1H NMR (400 MHz, CDCl3) δ 8.49 (t, J = 7.8 Hz, 1H), 8.34 (br s, 1H), 8.30 (s, 

1H), 7.91 (s, 1H), 7.76 (d, J = 2.8 Hz, 1H), 7.46 (d, J = 4.8 Hz, 1H), 7.25-7.12 (m, 4H), 5.41-

5.34 (m, 1H), 1.64 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 163.3, 152.8 (d, J = 242.4 

Hz), 151.6, 150.2, 144.3, 135.9, 130.5, 128.9, 128.2, 126.6, 125.8 (d, J = 10.3 Hz), 125.3 (d, J = 

7.6 Hz), 124.8 (d, J = 3.8 Hz), 122.0, 115.0 (d, J = 18.8 Hz), 111.7, 110.7, 49.2, 22.0; HRMS 

(ESI, m/z): calcd for C20H16FN4OS ([M-H]-): 379.1029, Found: 379.1031. mp 171-172 °C. 
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N-(2-Fluorophenyl)-1-isopropyl-6-phenyl-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, 

JX002. 1H NMR (400 MHz, CDCl3) δ 8.51 (td, J = 8.0, 1.2 Hz, 1H), 8.37 (m, 2H), 8.19-8.16 (m, 

2H), 8.03 (s, 1H), 7.54-7.45 (m, 3H), 7.25-7.14 (m, 3H), 5.52-5.45 (m, 1H), 1.67 (d, J = 6.8 Hz, 

6H); 13C NMR (100 MHz, CDCl3) δ 163.5, 156.6, 152.8 (d, J = 242.5 Hz), 150.7, 138.5, 136.0, 

130.4, 129.8, 128.9, 127.5, 125.9 (d, J = 10.0 Hz), 125.3 (d, J = 7.7 Hz), 124.8 (d, J = 3.4 Hz), 

122.0, 115.0 (d, J = 18.8 Hz), 112.9, 110.9, 49.0, 22.1 ; HRMS (ESI, m/z): calcd for C22H18FN4O 

([M-H]-): 373.1465, Found: 373.1465. 

N-(2-Fluorophenyl)-1-isopropyl-6-(pyridin-4-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX003. 1H NMR (400 MHz, CDCl3) δ 8.71 (d, J = 4.4 Hz, 2H), 8.62 (br s, 1H), 8.43-

8.39 (m, 2H), 8.06 (s, 1H), 8.01 (d, J = 5.6 Hz, 2H), 7.22-7.13 (m, 3H), 5.48-5.41 (m, 1H), 1.65 

(d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 163.2, 153.4, 153.0 (d, J = 242.9 Hz), 150.5, 

150.4, 145.6, 136.5, 130.6, 125.65 (d, J = 10.3 Hz), 125.59 (d, J = 7.7 Hz), 124.8 (d, J = 3.5 Hz), 

122.4, 121.4, 115.1 (d, J = 19.1 Hz), 112.7, 112.1, 49.3, 22.0; HRMS (ESI, m/z): calcd for 

C21H17FN5O ([M-H]-): 374.1417, Found: 374.1414. 

N-(2-Fluorophenyl)-1-isopropyl-6-(pyridin-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX004. 1H NMR (400 MHz, CDCl3) δ 8.71-8.70 (m, 2H), 8.58 (d, J = 8.0 Hz, 1H), 8.48-

8.44 (m, 3H), 7.86 (td, J = 7.8, 1.6 Hz, 1H), 7.38-7.34 (m, 1H), 7.24-7.13 (m, 3H), 5.48-5.42 (m, 

1H), 1.67 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 163.6, 155.3, 155.1, 153.0 (d, J = 

242.5 Hz), 150.4, 149.2, 137.0, 136.0, 131.8, 125.8 (d, J = 10.3 Hz), 125.3 (d, J = 7.7 Hz), 124.7 

(d, J = 3.8 Hz), 124.4, 122.4, 121.5, 115.1 (d, J = 18.8 Hz), 112.9, 111.9, 49.0, 22.1; HRMS 

(ESI, m/z): calcd for C21H17FN5O ([M-H]-): 374.1417, Found: 374.1419. 
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N-(2-Fluorophenyl)-1-isopropyl-6-(pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX005. 1H NMR (400 MHz, CDCl3) δ 9.37 (s, 1H), 8.67 (d, J = 4.0 Hz, 1H), 8.54 (d, J = 

1.6 Hz, 1H), 8.48-8.42 (m, 2H), 8.38 (s, 1H), 8.03 (s, 1H), 7.44-7.41 (m, 1H), 7.24-7.14 (m, 3H), 

5.48-5.41 (m, 1H), 1.65 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 163.3, 153.8, 152.9 

(d, J = 242.4 Hz), 150.6, 150.5, 148.8, 136.5, 134.7, 134.1, 130.5, 125.8 (d, J = 9.9 Hz), 125.5 

(d, J = 7.6 Hz), 124.8 (d, J = 3.5 Hz), 123.6, 122.2, 115.1 (d, J = 19.2 Hz), 112.5, 111.4, 49.3, 

22.0; HRMS (ESI, m/z): calcd for C21H17FN5O ([M-H]-): 374.1417, Found: 374.1417. 

1-Isopropyl-N-(4-sulfamoylphenyl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-

carboxamide, JX006. 1H NMR (400 MHz, DMSO-d6) δ 10.96 (s, 1H), 8.30 (s, 1H), 8.25 (s, 

1H), 8.05 (d, J = 3.2 Hz, 1H), 7.98 (d, J = 8.8 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 4.8 

Hz, 1H), 7.29 (s, 2H), 7.23 (t, J = 4.2 Hz, 1H), 5.24-5.18 (m, 1H), 1.52 (d, J = 6.8 Hz, 6H); 13C 

NMR (100 MHz, DMSO-d6) δ 164.4, 151.6, 150.0, 144.3, 141.9, 139.9, 137.1, 132.4, 130.3, 

129.1, 128.3, 127.1, 120.7, 112.1, 111.8, 49.0, 22.4; HRMS (ESI, m/z): calcd for C20H18N5O3S2 

([M-H]-): 440.0851, Found: 440.0849. 

N-(2-Fluorophenyl)-1-isopropyl-6-(thiazol-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX007. 1H NMR (400 MHz, CDCl3) δ 8.48-8.44 (m, 3H), 8.37 (br s, 1H), 7.98 (d, J = 3.2 

Hz, 1H), 7.53 (d, J = 3.2 Hz, 1H), 7.25-7.15 (m, 3H), 5.43-5.36 (m, 1H), 1.67 (d, J = 6.8 Hz, 

6H); 13C NMR (100 MHz, CDCl3) δ 168.6, 163.0, 153.0 (d, J = 242.8 Hz), 150.1, 150.0, 144.2, 

136.4, 132.0, 125.7 (d, J = 9.9 Hz), 125.5 (d, J = 7.6 Hz), 124.8 (d, J = 3.8 Hz), 122.4, 122.3, 

115.1 (d, J = 19.1 Hz), 113.5, 110.8, 49.4, 22.1; HRMS (ESI, m/z): calcd for C19H15FN5OS ([M-

H]-): 380.0981, Found: 380.0984. 
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N-(2,4-Difluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX008. 1H NMR (400 MHz, CDCl3) δ 8.46-8.40 (m, 1H), 8.28 (s, 1H), 8.21 (br s, 1H), 

7.90 (s, 1H), 7.76 (dd, J = 3.6,1.2 Hz, 1H), 7.47 (dd, J = 5.2 Hz, 1.2 Hz, 1H), 7.15-7.13 (m, 1H), 

6.99-6.93 (m, 2H), 5.41-5.34 (m, 1H), 1.65 (d, J = 6.4 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 

163.4, 159.2 (dd, J = 246.3, 11.5 Hz), 153.0 (dd, J = 245.1, 11.9 Hz), 151.7, 150.2, 144.2, 135.7, 

130.4, 129.0, 128.3, 126.6, 123.2 (dd, J = 9.2, 2.0 Hz), 122.1 (dd, J = 10.3,  3.8 Hz), 111.7, 111.5 

(dd, J = 21.5, 3.5 Hz), 110.7, 104.0 (dd, J = 26.5, 23.0 Hz), 49.3, 22.0; HRMS (ESI, m/z): calcd 

for C20H15F2N4OS ([M-H]-): 397.0935, Found: 397.0936. 

N-(2,6-Difluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX009. 1H NMR (400 MHz, CDCl3) δ 8.31 (s, 1H), 7.92 (s, 1H), 7.76 (dd, J = 3.6, 0.8 

Hz, 1H), 7.73 (br, 1H), 7.47 (dd, J = 5.2, 1.2 Hz, 1H), 7.32-7.27 (m, 1H), 7.15-7.13 (m, 1H), 

7.05-7.00 (m, 2H), 5.41-5.34 (m, 1H), 1.64 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 

163.9, 157.8 (dd, J = 250.1, 4.6 Hz), 151.6, 150.2, 144.3, 134.9, 131.1, 128.9, 128.3 (t, J = 9.8 

Hz), 126.5, 113.3 (t, J = 16.1 Hz), 112.0, 111.9 (d, J = 18.4 Hz), 111.8, 111.2, 49.2, 22.1; HRMS 

(ESI, m/z): calcd for C20H15F2N4OS ([M-H]-): 397.0935, Found: 397.0936. 

N-(2-Fluorophenyl)-1-isopropyl-6-(thiazol-5-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX010. 1H NMR (400 MHz, CDCl3) δ 8.87 (s, 1H), 8.50 (s, 1H), 8.46 (t, J = 8.2 Hz, 1H), 

8.42 (s, 1H), 8.33 (s, 1H), 7.93 (s, 1H), 7.25-7.14 (m, 3H), 5.39-5.32 (m, 1H), 1.64 (d, J = 6.8 

Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 163.0, 155.4, 152.9 (d, J = 242.4 Hz), 150.1, 149.3, 

142.0, 140.1, 136.4, 130.6, 125.7 (d, J = 9.9 Hz), 125.5 (d, J = 8.1 Hz), 124.8 (d, J = 3.9 Hz), 

122.2, 115.1 (d, J = 19.2 Hz), 112.3, 111.3, 49.4, 22.0; HRMS (ESI, m/z): calcd for C19H15FN5OS 

([M-H]-): 380.0981, Found: 380.0986. 
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N-(2-Fluorophenyl)-1-isopropyl-6-(oxazol-5-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, 

JX011. 1H NMR (400 MHz, CDCl3) δ 8.47 (t, J = 7.6 Hz, 1H), 8.39 (m, 2H), 8.03 (s, 1H), 7.91 

(s, 1H), 7.85 (s, 1H), 7.24-7.14 (m, 3H), 5.43-5.36 (m, 1H), 1.63 (d, J = 6.8 Hz, 6H); 13C NMR 

(100 MHz, CDCl3) δ 162.9, 152.8 (d, J = 242.5 Hz), 151.7, 150.8, 150.2, 145.7, 136.4, 131.0, 

126.4, 125.7 (d, J = 10.0 Hz), 125.5 (d, J = 7.7 Hz), 124.8 (d, J = 3.9 Hz), 122.1, 115.1 (d, J = 

18.8 Hz), 111.7, 111.3, 49.1, 22.1; HRMS (ESI, m/z): calcd for C19H15FN5O2 ([M-H]-): 364.1210, 

Found: 364.1214. 

N-(2-Fluorophenyl)-1-phenyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, 

JX012. 1H NMR (400 MHz, CDCl3) δ 8.51-8.47 (m, 2H), 8.38-8.36 (m, 2H), 8.33 (br s, 1H), 

7.90 (s, 1H), 7.77 (dd, J = 4.0, 1.2 Hz, 1H), 7.57-7.52 (m, 2H), 7.49 (dd, J = 4.8, 1.2 Hz, 1H), 

7.36-7.32 (m, 1H), 7.27-7.17 (m, 3H), 7.16-7.14 (m, 1H); 13C NMR (100 MHz, CDCl3) δ  163.0, 

152.9 (d, J = 242.5 Hz), 152.5, 150.7, 144.1, 139.3, 136.5, 133.0, 129.5, 129.1, 128.4, 126.9, 

126.3, 125.8 (d, J = 9.9 Hz), 125.6 (d, J = 7.7 Hz), 124.9 (d, J = 3.8 Hz), 122.2, 121.1, 115.1 (d, 

J = 19.2 Hz), 112.5, 111.8; HRMS (ESI, m/z): calcd for C23H14FN4OS ([M-H]-): 413.0872, 

Found: 413.0874. 

1-(tert-Butyl)-N-(2-fluorophenyl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX013. 1H NMR (400 MHz, CDCl3) δ 8.52 (td, J = 8.0, 1.2 Hz, 1H), 8.31 (br s, 1H), 8.26 

(s, 1H), 7.92 (s, 1H), 7.76 (dd, J = 3.6, 1.2 Hz, 1H), 7.46 (dd, J = 4.8, 1.2 Hz, 1H), 7.25-7.14 (m, 

4H), 1.91 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 163.4, 152.7 (d, J = 242.4 Hz), 150.8, 150.7, 

144.8, 135.8, 129.1, 128.9, 128.3, 126.2, 125.9 (d, J = 10.0 Hz), 125.3 (d, J = 7.7 Hz), 124.8 (d, J 

= 3.8 Hz), 122.0, 115.0 (d, J = 18.7 Hz), 111.8, 111.0, 60.7, 29.2; HRMS (ESI, m/z): calcd for 

C21H18FN4OS ([M-H]-): 393.1185, Found: 393.1190. 
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1-Cyclobutyl-N-(2-fluorophenyl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbo-

xamide, JX014. 1H NMR (400 MHz, CDCl3) δ 8.50 (t, J = 7.6 Hz, 1H), 8.33 (s, 1H), 8.31 (br s, 

1H), 7.90 (s, 1H), 7.77 (d, J = 3.2 Hz, 1H), 7.48 (d, J = 4.8 Hz, 1H), 7.25-7.14 (m, 4H), 5.65-

5.56 (m, 1H), 2.95-2.85 (m, 2H), 2.61-2.53 (m, 2H), 2.05-1.94 (m, 2H); 13C NMR (100 MHz, 

CDCl3) δ 163.3, 152.8 (d, J = 242.5 Hz), 151.8, 150.5, 144.2, 136.0, 130.8, 129.0, 128.3, 126.6, 

125.9 (d, J = 10.0 Hz), 125.4 (d, J = 7.7 Hz), 124.8 (d, J = 3.5 Hz), 122.0, 115.0 (d, J = 19.2 Hz), 

111.8, 110.8, 51.0, 30.1, 15.1; HRMS (ESI, m/z): calcd for C21H16FN4OS ([M-H]-): 391.1029, 

Found: 391.1031. 

N-(3,4-Difluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX015. 1H NMR (400 MHz, DMSO-d6) δ 10.84 (s, 1H), 8.29 (s, 1H), 8.19 (s, 1H), 8.02 

(dd, J = 4.0, 1.2 Hz, 1H), 7.98-7.92 (m, 1H), 7.74 (dd, J = 4.8, 1.2 Hz, 1H), 7.58-7.54 (m, 1H), 

7.50-7.42 (m, 1H), 7.23 (dd, J = 4.8, 3.6 Hz, 1H), 5.24-5.17 (m, 1H), 1.52 (d, J = 6.8 Hz, 6H) 

ppm; 13C NMR (100 MHz, DMSO-d6) δ 164.2, 151.5, 150.1, 149.5 (dd, J = 242.1, 13.0 Hz), 

146.5 (dd, J = 241.3, 12.6 Hz), 144.4, 137.1, 136.0 (dd, J = 9.1, 3.0 Hz), 132.4, 130.3, 129.1, 

128.1, 118.0 (d, J = 17.6 Hz), 117.4 (dd, J = 6.2, 3.5 Hz), 111.9, 111.8, 110.1 (d, J = 21.4 Hz), 

49.0, 22.4 ppm; HRMS (ESI, m/z): calcd for C20H15F2N4OS ([M-H]-): 397.0935, Found: 

397.0935. 

N-(3,5-Difluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX016. 1H NMR (400 MHz, DMSO-d6) δ 10.93 (s, 1H), 8.29 (s, 1H), 8.18 (s, 1H), 8.01 

(dd, J = 3.6, 1.2 Hz, 1H), 7.72 (dd, J = 5.2, 1.2 Hz, 1H), 7.55 (dd, J = 9.6, 2.4 Hz, 2H), 7.22 (dd, 

J = 5.2, 4.0 Hz, 1H), 6.97 (tt, J = 8.0, 2.4 Hz, 1H), 5.23-5.17 (m, 1H), 1.51 (d, J = 6.8 Hz, 6H); 

13C NMR (100 MHz, DMSO-d6) δ 164.5, 163.0 (dd, J = 241.7, 15.0 Hz), 151.5, 150.1, 144.3, 

141.5 (t, J = 13.8 Hz), 136.8, 132.3, 130.3, 129.1, 128.1, 112.0, 111.7, 103.8 (dd, J = 20.7, 8.5 
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Hz), 100.0 (t, J = 26.1 Hz), 49.0, 22.4; HRMS (ESI, m/z): calcd for C20H15F2N4OS ([M-H]-): 

397.0935, Found: 397.0932. 

N-(4-Fluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX017. 1H NMR (400 MHz, DMSO-d6) δ 10.67 (s, 1H), 8.28 (s, 1H), 8.19 (s, 1H), 8.00 

(dd, J = 4.0, 1.2 Hz, 1H), 7.82-7.79 (m, 2H), 7.69 (dd, J = 5.2, 0.8 Hz, 1H), 7.21-7.16 (m, 3H), 

5.25-5.18 (m, 1H), 1.52 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, DMSO-d6) δ 163.8, 159.1 (d, J 

= 240.2 Hz), 151.4, 150.1, 144.4, 137.4, 135.2 (d, J = 2.7 Hz), 132.4, 130.0, 128.9, 127.8, 122.9 

(d, J = 8.0 Hz), 115.7 (d, J = 22.2 Hz), 111.9, 111.7, 48.9, 22.3; HRMS (ESI, m/z): calcd for 

C20H16FN4OS ([M-H]-): 379.1029, Found: 379.1023. 

N-(2,5-Difluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX018. 1H NMR (400 MHz, CDCl3) δ 8.38 (br, 1H), 8.36-8.31 (m, 1H), 8.25 (s, 1H), 

7.86 (s, 1H), 7.72 (dd, J = 4.0, 1.2 Hz, 1H), 7.44 (dd, J = 5.2, 1.2 Hz, 1H), 7.14-7.08 (m, 2H), 

6.85-6.80 (m, 1H), 5.38-5.32 (m, 1H), 1.64 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 

163.3, 158.6 (dd, J = 240.9, 2.3 Hz), 151.6, 150.1, 148.8 (dd, J = 237.9, 3.1 Hz), 144.1, 135.3, 

130.3, 129.0, 128.2, 126.7 (t, J = 11.9 Hz), 126.6, 115.5 (dd, J = 21.8, 9.5 Hz), 111.7, 111.2 (dd, 

J = 24.1, 7.6 Hz), 110.5, 109.1 (d, J = 29.9 Hz), 49.2, 22.0; HRMS (ESI, m/z): calcd for 

C20H15F2N4OS ([M-H]-): 397.0935, Found: 397.0934. 

N-(2,3-Difluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX019. 1H NMR (400 MHz, CDCl3) δ 8.33 (br, 1H), 8.27 (s, 1H), 8.26-8.22 (m, 1H), 

7.89 (s, 1H), 7.75 (dd, J = 3.6, 1.2 Hz, 1H), 7.46 (dd, J = 4.8, 1.2 Hz, 1H), 7.18-7.12 (m, 2H), 

7.03-6.97 (m, 1H), 5.40-5.33 (m, 1H), 1.64 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 

163.4, 151.6, 150.3 (dd, J = 246.3, 10.8 Hz), 150.2, 144.2, 141.7 (dd, J = 244.0, 15.0 Hz), 135.5, 
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130.4, 129.0, 128.3, 127.5 (dd, J = 7.3, 2.0 Hz), 126.6, 124.4 (dd, J = 7.3, 4.6 Hz), 117.1 (d, J = 

3.5 Hz), 113.0 (d, J = 16.8 Hz), 111.7, 110.6, 49.3, 22.0; HRMS (ESI, m/z): calcd for 

C20H15F2N4OS ([M-H]-): 397.0935, Found: 397.0936. 

1-Isopropyl-6-(thiophen-2-yl)-N-(2,4,6-trifluorophenyl)-1H-pyrazolo[3,4-b]pyridine-4-carb-

oxamide, JX020. 1H NMR (400 MHz, DMSO-d6) δ 10.61 (s, 1H), 8.30 (s, 1H), 8.29 (s, 1H), 

7.99 (dd, J = 3.6, 1.2 Hz, 1H), 7.73 (dd, J = 4.8, 1.2 Hz, 1H), 7.39-7.34 (m, 2H), 7.23 (dd, J = 

5.2, 3.6 Hz, 1H), 5.25-5.18 (m, 1H), 1.52 (d, J = 6.4 Hz, 6H); 13C NMR (100 MHz, DMSO-d6) δ 

164.2, 161.0 (dt, J = 245.5, 15.0 Hz), 158.8 (ddd, J = 248.2, 15.7, 7.7 Hz), 151.7, 150.2, 144.3, 

135.4, 132.5, 130.4, 129.1, 128.1, 112.2, 111.9, 111.5 (td, J = 17.2, 5.0 Hz), 101.7 (td, J = 26.4, 

2.6 Hz), 49.0, 22.4; HRMS (ESI, m/z): calcd for C20H14F3N4OS ([M-H]-): 415.0840, Found: 

415.0842. 

N-(3-Fluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX021. 1H NMR (400 MHz, CDCl3) δ 8.23 (s, 1H), 8.20 (br, 1H), 7.80 (s, 1H), 7.71 (d, J 

= 3.2 Hz, 1H), 7.69-7.66 (m, 1H), 7.46 (d, J = 5.2 Hz, 1H), 7.38-7.34 (m, 2H), 7.12 (dd, J = 4.8, 

3.6 Hz, 1H), 6.94-6.89 (m, 1H), 5.38-5.31 (m, 1H), 1.63 (d, J = 6.8 Hz, 6H); 13C NMR (100 

MHz, CDCl3) δ 163.8, 163.0 (d, J = 244.4 Hz), 151.5, 150.1, 144.3, 138.9 (d, J = 10.7 Hz), 

136.2, 130.9, 130.3 (d, J = 9.2 Hz), 128.9, 128.2, 126.5, 115.6 (d, J = 3.1 Hz), 112.0 (d, J = 21.4 

Hz), 111.2, 111.0, 107.9 (d, J = 26.4 Hz), 49.2, 22.0; HRMS (ESI, m/z): calcd for C20H16FN4OS 

([M-H]-): 379.1029, Found: 379.1029. 

N-(2-Fluorophenyl)-6-(thiophen-2-yl)-1-(2,2,2-trifluoroethyl)-1H-pyrazolo[3,4-b]pyridine-4-

carboxamide, JX022. 1H NMR (400 MHz, CDCl3) δ 8.49 (t, J = 7.6 Hz, 1H), 8.44 (s, 1H), 8.25 

(br s, 1H), 7.95 (s, 1H), 7.82 (d, J = 3.2 Hz, 1H), 7.52 (d, J = 4.4 Hz, 1H), 7.24-7.16 (m, 4H), 
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5.17 (q, J = 8.3 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 162.8, 152.8 (d, J = 242.5 Hz), 153.1, 

152.0, 143.5, 136.7, 133.7, 129.7, 128.4, 127.3, 125.7 (d, J = 10.0 Hz), 125.6 (d, J = 7.6 Hz), 

124.9 (d, J = 3.5 Hz), 123.2 (q, J = 278.4 Hz), 122.1, 115.1 (d, J = 19.2 Hz), 112.3, 111.0, 47.9 

(q, J = 35.6 Hz); HRMS (ESI, m/z): calcd for C19H11F4N4OS ([M-H]-): 419.0590, Found: 

419.0589. 

1-Isopropyl-6-(thiophen-2-yl)-N-(2-(trifluoromethyl)phenyl)-1H-pyrazolo[3,4-b]pyridine-4-

carboxamide, JX023. 1H NMR (400 MHz, CDCl3) δ 8.45 (d, J = 8.4 Hz, 1H), 8.42 (br s, 1H), 

8.32 (s, 1H), 7.89 (s, 1H), 7.76 (dd, J = 3.2, 0.8 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.66 (t, J = 8.0 

Hz, 1H), 7.47 (dd, J = 4.8, 0.8 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.15 (dd, J = 4.8, 3.6 Hz, 1H), 

5.42-5.35 (m, 1H), 1.66 (d, J = 6.4 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 163.6, 151.6, 150.3, 

144.2, 135.8, 134.7 (d, J = 1.5 Hz), 133.1, 130.6, 128.9, 128.3, 126.5, 126.3 (q, J = 5.2 Hz), 

125.3, 124.5, 124.1 (q, J = 271.3 Hz), 120.5 (q, J = 29.5 Hz), 111.4, 110.7, 49.2, 22.0; HRMS 

(ESI, m/z): calcd for C21H16F3N4OS ([M-H]-): 429.0997, Found: 429.0996. 

1-Isopropyl-6-(thiophen-2-yl)-N-(4-(trifluoromethyl)phenyl)-1H-pyrazolo[3,4-b]pyridine-4-

carboxamide, JX024. 1H NMR (400 MHz, DMSO-d6) δ 10.96 (s, 1H), 8.30 (s, 1H), 8.23 (s, 

1H), 8.04-8.02 (m, 3H), 7.76-7.73 (m, 3H), 7.23 (dd, J = 4.8, 3.6 Hz, 1H), 5.24-5.17 (m, 1H), 

1.52 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, DMSO-d6) δ 164.5, 151.6, 150.1, 144.4, 142.7, 

137.2, 132.4, 130.4, 129.1, 128.2, 126.6 (q, J = 3.8 Hz), 124.82 (q, J = 270.0 Hz), 124.77 (q, J = 

32.2 Hz), 120.9, 112.1, 111.8, 49.0, 22.4; HRMS (ESI, m/z): calcd for C21H16F3N4OS ([M-H]-): 

429.0997, Found: 429.0993. 

1-Isopropyl-N-(3-sulfamoylphenyl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX025. 1H NMR (400 MHz, DMSO-d6) δ 10.92 (s, 1H), 8.39 (s, 1H), 8.32 (s, 1H), 8.25 
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(s, 1H), 8.03 (dd, J = 3.6, 0.8 Hz, 1H), 7.98 (dt, J = 7.2, 2.2 Hz, 1H), 7.74 (dd, J = 5.2, 0.8 Hz, 

1H), 7.62-7.56 (m, 2H), 7.41 (s, 2H), 7.23 (dd, J = 5.2, 3.6 Hz, 1H), 5.24-5.18 (m, 1H), 1.52 (d, J 

= 6.4 Hz, 6H); 13C NMR (100 MHz, DMSO-d6) δ 164.3, 151.6, 150.1, 145.2, 144.4, 139.4, 

137.1, 132.4, 130.4, 130.0, 129.1, 128.2, 123.9, 121.9, 118.0, 112.0, 111.9, 49.0, 22.4; HRMS 

(ESI, m/z): calcd for C20H18N5O3S2 ([M-H]-): 440.0851, Found: 440.0844. 

N-(4-Fluorophenyl)-6-(furan-2-yl)-1-isopropyl-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, 

JX026. 1H NMR (400 MHz, CDCl3) δ 8.33 (br s, 1H), 8.27 (s, 1H), 7.78 (s, 1H), 7.67-7.63 (m, 

2H), 7.52 (d, J = 0.8 Hz, 1H), 7.17 (d, J = 3.2 Hz, 1H), 7.06 (t, J = 8.6 Hz, 2H), 6.56-6.55 (m, 

1H), 5.37-5.30 (m, 1H), 1.59 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 163.7, 159.9 (d, 

J = 243.6 Hz), 153.2, 150.2, 147.9, 144.1, 136.3, 133.3 (d, J = 2.7 Hz), 131.3, 122.3 (d, J = 7.6 

Hz), 115.9 (d, J = 22.6 Hz), 112.5, 111.2, 110.4, 110.3, 48.7, 22.1; HRMS (ESI, m/z): calcd for 

C20H16FN4O2 ([M-H]-): 363.1257, Found: 363.1258. 

1-Cyclopentyl-N-(4-fluorophenyl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX027. 1H NMR (400 MHz, DMSO-d6) δ 10.70 (s, 1H), 8.28 (s, 1H), 8.20 (s, 1H), 8.02 

(dd, J = 3.6, 1.2 Hz, 1H), 7.83-7.78 (m, 2H), 7.73 (dd, J = 5.2, 1.2 Hz, 1H), 7.25-7.19 (m, 3H), 

5.40-5.33 (m, 1H), 2.17-2.13 (m, 2H), 2.08-2.00 (m, 2H), 1.95-1.88 (m, 2H), 1.73-1.68 (m, 2H); 

13C NMR (100 MHz, DMSO-d6) δ 163.9, 159.2 (d, J = 239.4 Hz), 151.6, 150.5, 144.4, 137.5, 

135.3 (d, J = 2.7 Hz), 132.5, 130.3, 129.1, 128.2, 123.0 (d, J = 7.6 Hz), 115.9 (d, J = 22.2 Hz), 

112.0, 111.9, 57.9, 32.5, 24.9; HRMS (ESI, m/z): calcd for C22H18FN4OS ([M-H]-): 405.1185, 

Found: 405.1184. 

1-Cyclohexyl-N-(4-fluorophenyl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX028. 1H NMR (400 MHz, DMSO-d6) δ 10.72 (s, 1H), 8.27 (s, 1H), 8.20 (s, 1H), 8.03 
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(dd, J = 3.6, 0.8 Hz, 1H), 7.83-7.80 (m, 2H), 7.73 (dd, J = 5.2, 0.8 Hz, 1H), 7.25-7.20 (m, 3H), 

4.82-4.75 (m, 1H), 2.04-1.95 (m, 4H), 1.88-1.84 (m, 2H), 1.72-1.69 (m, 1H), 1.52-1.43 (m, 2H), 

1.31-1.24 (m, 1H); 13C NMR (100 MHz, DMSO-d6) δ 163.9, 159.1 (d, J = 239.8 Hz), 151.5, 

150.1, 144.4, 137.6, 135.4 (d, J = 2.7 Hz), 132.3, 130.3, 129.1, 128.2, 123.0 (d, J = 7.7 Hz), 

115.9 (d, J = 22.2 Hz), 111.91, 111.86, 56.4, 32.5, 25.6, 25.5; HRMS (ESI, m/z): calcd for 

C23H20FN4OS ([M-H]-): 419.1342, Found: 419.1339. 

1-Cycloheptyl-N-(4-fluorophenyl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX029. 1H NMR (400 MHz, DMSO-d6) δ 10.69 (s, 1H), 8.26 (s, 1H), 8.18 (s, 1H), 8.02 

(dd, J = 3.6, 1.2 Hz, 1H), 7.82-7.78 (m, 2H), 7.73 (dd, J = 5.2, 1.2 Hz, 1H), 7.25-7.19 (m, 3H), 

5.07-4.99 (m, 1H), 2.18-2.13 (m, 2H), 2.04-1.99 (m, 2H), 1.86-1.81 (m, 2H), 1.67-1.57 (m, 6H); 

13C NMR (100 MHz, DMSO-d6) δ 163.9, 159.1 (d, J = 239.8 Hz), 151.5, 149.8, 144.4, 137.5, 

135.4 (d, J = 2.7 Hz), 132.3, 130.3, 129.1, 128.1, 123.0 (d, J = 7.7 Hz), 115.9 (d, J = 22.2 Hz), 

111.8 (2C), 58.3, 34.5, 28.5, 24.6; HRMS (ESI, m/z): calcd for C24H22FN4OS ([M-H]-): 433.1498, 

Found: 433.1495. 

N-(4-Fluorophenyl)-1-isopropyl-6-(thiophen-3-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX030. 1H NMR (400 MHz, CDCl3) δ 8.29 (br s, 1H), 8.24 (s, 1H), 7.98 (d, J = 1.6 Hz, 

1H), 7.77-7.76 (m, 2H), 7.65-7.61 (m, 2H), 7.39 (dd, J = 4.8, 3.2 Hz, 1H), 7.06 (t, J = 8.6 Hz, 

2H), 5.40-5.33 (m, 1H), 1.61 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 164.0, 159.9 (d, 

J = 243.6 Hz), 152.3, 150.4, 141.6, 136.3, 133.2 (d, J = 2.7 Hz), 130.7, 126.59, 126.55, 125.1, 

122.3 (d, J = 8.1 Hz), 115.9 (d, J = 22.6 Hz), 112.5, 110.8, 49.0, 22.1; HRMS (ESI, m/z): calcd 

for C20H16FN4OS ([M-H]-): 379.1029, Found: 379.1027. 
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N-(4-Fluorophenyl)-1-(4-methoxybenzyl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-

carboxamide, JX031. 1H NMR (400 MHz, DMSO-d6) δ 10.70 (s, 1H), 8.29 (s, 1H), 8.22 (s, 

1H), 8.05 (d, J = 2.8 Hz, 1H), 7.82-7.79 (m, 2H), 7.75 (d, J = 4.8 Hz, 1H), 7.30 (d, J = 8.4 Hz, 

2H), 7.24-7.20 (m, 3H), 6.84 (d, J = 8.4 Hz, 2H), 5.59 (s, 2H), 3.65 (s, 3H); 13C NMR (100 MHz, 

DMSO-d6) δ 163.8, 159.3, 159.2 (d, J = 239.7 Hz), 152.0, 150.7, 144.4, 137.7, 135.3 (d, J = 2.3 

Hz), 133.0, 130.5, 129.9, 129.6, 129.2, 128.2, 123.0 (d, J = 8.1 Hz), 115.9 (d, J = 22.2 Hz), 

114.4, 112.0, 111.8, 55.5, 50.4; HRMS (ESI, m/z): calcd for C25H18FN4O2S ([M-H]-): 457.1135, 

Found: 457.1122. 

N-(4-Fluorophenyl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, JX032. 

1H NMR (400 MHz, DMSO-d6) δ 13.87 (s, 1H), 10.70 (s, 1H), 8.31 (s, 1H), 8.22 (s, 1H), 8.02 

(dd, J = 3.6, 1.2 Hz, 1H), 7.84-7.80 (m, 2H), 7.72 (dd, J = 5.2, 1.2 Hz, 1H), 7.24-7.20 (m, 3H); 

13C NMR (100 MHz, DMSO-d6) δ 164.1, 159.2 (d, J = 239.8 Hz), 153.0, 151.9, 144.6, 137.3, 

135.4 (d, J = 2.7 Hz), 134.0, 130.1, 129.1, 128.0, 123.0 (d, J = 8.0 Hz), 115.9 (d, J = 22.2 Hz), 

111.7, 111.3; HRMS (ESI, m/z): calcd for C17H10FN4OS ([M-H]-): 337.0559, Found: 337.0563. 

1-Isopropyl-N-(2-sulfamoylphenyl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX033. 1H NMR (400 MHz, DMSO-d6) δ 10.54 (s, 1H), 8.38-8.36 (m, 2H), 8.14 (s, 1H), 

7.95-7.92 (m, 2H), 7.76-7.74 (m, 3H), 7.68 (td, J = 7.8, 1.6 Hz, 1H), 7.40 (td, J = 7.8, 1.2 Hz, 

1H), 7.24 (dd, J = 5.2, 4.0 Hz, 1H), 5.26-5.19 (m, 1H), 1.53 (d, J = 6.8 Hz, 6H); 13C NMR (100 

MHz, DMSO-d6) δ 163.6, 151.6, 150.2, 144.2, 137.1, 134.9, 133.7, 133.6, 132.2, 130.5, 129.3, 

128.7, 127.9, 125.6, 124.1, 111.64, 111.59, 49.1, 22.4; HRMS (ESI, m/z): calcd for C20H18N5O3S2 

([M-H]-): 440.0851, Found: 440.0851. 
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N-(4-Fluorophenyl)-3-isopropyl-5-(thiophen-2-yl)-3H-imidazo[4,5-b]pyridine-7-carbox-

amide, JX034. 1H NMR (400 MHz, DMSO-d6)  δ 10.98 (s, 1H), 8.73 (s, 1H), 8.01 (s, 1H), 7.88 

(d, J = 2.8 Hz, 1H), 7.78-7.74 (m, 2H), 7.59 (d, J = 4.8 Hz, 1H), 7.22 (t, J = 8.8 Hz, 2H), 7.13 

(dd, J = 4.8, 3.6 Hz, 1H), 4.78-4.72 (m, 1H), 1.46 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, 

DMSO-d6) δ 164.5, 159.2 (d, J = 239.8 Hz), 157.2, 147.5, 145.9, 145.2, 135.3 (d, J = 2.7 Hz), 

130.7, 128.9, 128.5, 125.8, 122.5 (d, J = 8.0 Hz), 120.7, 116.1 (d, J = 22.2 Hz), 112.7, 49.1, 23.0; 

HRMS (ESI, m/z): calcd for C20H16FN4OS ([M-H]-): 379.1029, Found:379.1036. 

N-(4-Fluorophenyl)-3-isopropyl-5-(thiophen-2-yl)-3H-[1,2,3]triazolo[4,5-b]pyridine-7-carb-

oxamide, JX035. 1H NMR (400 MHz, CDCl3) δ 10.97 (s, 1H), 8.48 (s, 1H), 7.87 (dd, J = 3.6, 

1.2 Hz, 1H), 7.86-7.83 (m, 2H), 7.52 (dd, J = 5.2, 1.2 Hz, 1H), 7.18 (dd, J = 4.8, 3.6 Hz, 1H), 

7.13-7.09 (m, 2H), 5.46-5.39 (m, 1H), 1.84 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 

160.2, 159.7 (d, J = 243.2 Hz), 154.1, 146.0, 143.5, 134.0 (d, J = 2.6 Hz), 132.8, 131.9, 130.1, 

128.6, 128.0, 122.0 (d, J = 8.0 Hz), 116.7, 115.8 (d, J = 22.2 Hz), 51.5, 22.1; HRMS (ESI, m/z): 

calcd for C19H15FN5OS ([M-H]-): 380.0981, Found: 380.0972. 

N-(4-Fluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-d]pyrimidine-4-carbox-

amide, JX036. 1H NMR (400 MHz, CDCl3) δ 9.91 (s, 1H), 8.70 (s, 1H), 8.12 (dd, J = 3.6, 1.2 

Hz, 1H), 7.79-7.76 (m, 2H), 7.53 (dd, J = 4.8, 1.2 Hz, 1H), 7.18 (dd, J = 5.2, 3.6 Hz, 1H), 7.12-

7.08 (m, 2H), 5.33-5.26 (m, 1H), 1.65 (d, J = 6.4 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 160.5, 

159.7 (d, J = 243.2 Hz), 156.5, 154.3, 150.9, 142.6, 134.4, 133.0 (d, J = 3.1 Hz), 130.3, 129.5, 

128.4, 121.5 (d, J = 8.1 Hz), 115.9 (d, J = 22.2 Hz), 109.9, 49.4, 21.9; HRMS (ESI, m/z): calcd 

for C19H15FN5OS ([M-H]-): 380.0981, Found: 380.0991. 
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N-(4-Fluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrrolo[2,3-b]pyridine-4-carbox-

amide, JX037. 1H NMR (400 MHz, DMSO-d6) δ 10.53 (s, 1H), 8.00 (s, 1H), 7.84 (dd, J = 3.6, 

0.8 Hz, 1H), 7.82-7.78 (m, 2H), 7.74 (d, J = 3.6 Hz, 1H), 7.57 (dd, J = 5.2, 1.2 Hz, 1H), 7.22-

7.18 (m, 2H), 7.15 (dd, J = 4.8, 3.6 Hz, 1H), 6.73 (d, J = 3.6 Hz, 1H), 5.12-5.05 (m, 1H), 1.50 (d, 

J = 6.8 Hz, 6H); 13C NMR (100 MHz, DMSO-d6) δ 165.4, 158.9 (d, J = 239.4 Hz), 147.6, 145.8, 

145.6, 135.7 (d, J = 2.3 Hz), 135.6, 128.8, 128.5, 127.9, 125.4, 122.7 (d, J = 7.7 Hz), 117.4, 

115.8 (d, J = 21.9 Hz), 110.1, 100.5, 46.3, 22.8; HRMS (ESI, m/z): calcd for C21H17FN3OS ([M-

H]-): 378.1076, Found: 378.1078.  

6-Cyclopropyl-N-(4-fluorophenyl)-1-isopropyl-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, 

JX038. 1H NMR (400 MHz, CDCl3) δ 8.58 (br s, 1H), 8.16 (s, 1H), 7.57-7.53 (m, 2H), 7.25 (s, 

1H), 6.98-6.94 (m, 2H), 5.20-5.13 (m, 1H), 2.04-1.99 (m, 1H), 1.50 (d, J = 6.8 Hz, 6H), 1.12-

1.08 (m, 2H), 1.01-0.96 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 164.3, 163.1, 159.7 (d, J = 

243.7 Hz), 150.4, 135.2, 133.3 (d, J = 2.7 Hz), 130.7, 122.4 (d, J = 8.0 Hz), 115.7 (d, J = 22.2 

Hz), 113.6, 110.4, 48.7, 21.8, 17.6, 11.1; HRMS (ESI, m/z): calcd for C19H19FN4O ([M-H]-): 

337.1465, Found: 337.1464. 

4-Fluoro-N-(4-fluorobenzoyl)-N-(1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-

4-yl)benzamide, JX039. 1H NMR (400 MHz, CDCl3) δ 7.87-7.82 (m, 4H), 7.71 (s, 1H), 7.50 

(dd, J = 4.0, 1.2 Hz, 1H), 7.41 (dd, J = 5.2, 1.2 Hz, 1H), 7.13 (s, 1H), 7.09-7.03 (m, 5H), 5.34-

5.27 (m, 1H), 1.61 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 171.4, 165.6 (d, J = 254.7 

Hz), 152.1, 150.8, 144.1, 141.4, 131.8 (d, J = 9.2 Hz), 129.9 (d, J = 3.1 Hz), 129.2, 128.8, 128.1, 

126.2, 116.3 (d, J = 22.2 Hz), 111.3, 110.5, 49.3, 22.0; HRMS (ESI, m/z): calcd for 

C27H21F2N4O2S ([M+H]+): 503.1353, Found: 503.1317. 
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1-Isopropyl-N-(pyridin-2-yl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, 

JX040. 1H NMR (400 MHz, CDCl3) δ 9.25 (s, 1H), 8.45-8.43 (m, 1H), 8.37 (s, 1H), 8.23-8.21 

(m, 1H), 7.88 (s, 1H), 7.80-7.76 (m, 1H), 7.70 (dd, J = 3.6, 1.2 Hz, 1H), 7.45 (dd, J = 5.2, 1.2 

Hz, 1H), 7.12 (dd, J = 4.8, 3.6 Hz, 1H), 7.07 (ddd, J = 7.6, 5.2, 1.2 Hz, 1H), 5.39-5.33 (m, 1H), 

1.64 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 163.8, 151.5, 151.1, 150.2, 148.0, 

144.3, 138.6, 136.0, 131.3, 128.9, 128.2, 126.4, 120.5, 114.6, 111.2, 111.1, 49.1, 22.0; HRMS 

(ESI, m/z): calcd for C19H16N5OS ([M-H]-): 362.1076, Found: 362.1086. 

1-Isopropyl-N-(pyrimidin-2-yl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX041. 1H NMR (400 MHz, CDCl3) δ 9.39 (s, 1H), 8.63 (d, J = 4.8 Hz, 2H), 8.36 (s, 

1H), 7.88 (s, 1H), 7.71 (dd, J = 3.6, 0.8 Hz, 1H), 7.42 (dd, J = 5.2, 1.2 Hz, 1H), 7.09-7.05 (m, 

2H), 5.35-5.32 (m, 1H), 1.61 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 163.3, 158.5, 

157.4, 151.5, 150.2, 144.2, 135.7, 131.5, 128.8, 128.2, 126.5, 117.3, 111.2, 111.1, 49.1, 22.0; 

HRMS (ESI, m/z): calcd for C18H15N6OS ([M-H]-): 363.1028, Found: 363.1034. 

1-Isopropyl-N-(pyridin-4-yl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, 

JX042. 1H NMR (400 MHz, CDCl3) δ 9.46 (s, 1H), 8.45 (dd, J = 4.8, 1.6 Hz, 2H), 8.20 (s, 1H), 

7.73 (s, 1H), 7.66 (dd, J = 4.8, 1.6 Hz, 2H), 7.56 (dd, J = 3.6, 0.8 Hz, 1H), 7.41 (dd, J = 4.8, 0.8 

Hz, 1H), 7.05 (dd, J = 5.2, 3.6 Hz, 1H), 5.29-5.26 (m, 1H), 1.58 (d, J = 6.8 Hz, 6H); 13C NMR 

(100 MHz, CDCl3) δ 164.7, 151.3, 150.5, 150.0, 145.1, 144.0, 135.6, 131.0, 129.0, 128.2, 126.4, 

114.3, 111.2, 110.9, 49.1, 22.0; HRMS (ESI, m/z): calcd for C19H16N5OS ([M-H]-): 362.1076, 

Found: 362.1080. 

1-Isopropyl-N-(pyrimidin-4-yl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX043. 1H NMR (400 MHz, CDCl3) δ 9.27 (s, 1H), 8.86 (d, J = 1.2 Hz, 1H), 8.69 (d, J = 
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5.6 Hz, 1H), 8.36 (dd, J = 6.0, 1.6 Hz, 1H), 8.31 (s, 1H), 7.85 (s, 1H), 7.71 (dd, J = 4.0, 1.2 Hz, 

1H), 7.45 (dd, J = 4.8, 1.2 Hz, 1H), 7.11 (dd, J = 4.8, 3.6 Hz, 1H), 5.38-5.31 (m, 1H), 1.62 (d, J 

= 6.4 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 164.5, 158.8, 158.4, 156.9, 151.5, 150.2, 144.0, 

134.7, 131.0, 129.1, 128.3, 126.6, 111.2, 110.8, 110.7, 49.3, 22.0; HRMS (ESI, m/z): calcd for 

C18H15N6OS ([M-H]-): 363.1028, Found: 363.1034. 

4-Fluoro-N-(1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-4-yl)benzenesulfon-

amide, JX044. 1H NMR (400 MHz, CDCl3) δ 8.07 (m, 3H), 7.63 (dd, J = 4.0, 1.2 Hz, 1H), 7.46 

(s, 1H), 7.42 (dd, J = 4.8, 1.2 Hz, 1H), 7.18-7.11 (m, 3H), 5.27-5.20 (m, 1H), 1.55 (d, J = 6.4 Hz, 

6H), one low-field proton not observed; 13C NMR (100 MHz, CDCl3) δ 165.7 (d, J = 255.9 Hz), 

152.4, 150.6, 144.8, 138.3, 134.4 (d, J = 3.5 Hz), 130.2 (d, J = 9.5 Hz),128.7, 128.4, 128.1, 

126.0, 116.9 (d, J = 23.0 Hz), 106.0, 99.8, 48.9, 22.0; HRMS (ESI, m/z): calcd for 

C19H16FN4O2S2 ([M-H]-): 415.0699, Found: 415.0706.  

1-Isopropyl-N-(1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-4-yl)-6-(thiophen-

2-yl)-1H-pyra-zolo[3,4-b]pyridine-4-carboxamide, JX045. 1H NMR (400 MHz, CDCl3) δ 8.68 

(s, 1H), 8.32 (s, 1H), 8.24 (s, 1H), 8.09 (s, 1H), 7.87 (s, 1H), 7.70-7.68 (m, 2H), 7.44-7.41 (m, 

2H), 7.10-7.06 (m, 2H), 5.37-5.29 (m, 2H), 1.63 (d, J = 6.8 Hz, 6H), 1.62 (d, J = 6.8 Hz, 6H); 13C 

NMR (100 MHz, CDCl3) δ 164.2, 152.7, 151.6, 150.7, 150.1, 144.9, 144.0, 138.2, 135.3, 130.3, 

129.1, 128.6, 128.34, 128.26, 128.1, 126.6, 126.2, 111.7, 110.6, 106.2, 102.7, 49.3, 49.0, 22.0; 

HRMS (ESI, m/z): calcd for C27H24N7OS2 ([M-H]-): 526.1484, Found: 526.1488. 

N-(4-Fluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbothio-

amide, JX046. 1H NMR (400 MHz, CDCl3) δ 9.33 (s, 1H), 8.14 (s, 1H), 7.83-7.80 (m, 2H), 7.77 

(s, 1H), 7.72 (d, J = 2.8 Hz, 1H), 7.45 (dd, J = 4.8, 0.8 Hz, 1H), 7.19-7.11 (m, 3H), 5.36-5.30 (m, 
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1H), 1.61 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 194.3, 161.0 (d, J = 246.7 Hz), 

151.7, 150.1, 144.3, 143.8, 134.3 (d, J = 3.0 Hz), 130.6, 128.8, 128.2, 126.5, 125.6 (d, J = 8.0 

Hz), 116.1 (d, J = 22.6 Hz), 111.0, 110.2, 49.2, 22.0; HRMS (ESI, m/z): calcd for  C20H16FN4S2 

([M-H]-): 395.0800, Found: 395.0805. 

1-Isopropyl-N-(4-(methylsulfonyl)phenyl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-

carboxamide, JX047. 1H NMR (400 MHz, DMSO-d6) δ 11.04 (s, 1H), 8.30 (s, 1H), 8.24 (s, 

1H), 8.07 (dt, J = 8.8, 2.0 Hz, 2H), 8.03 (dd, J = 4.0, 1.2 Hz, 1H), 7.95 (dt, J = 8.8, 2.0 Hz, 2H), 

7.74 (dd, J = 5.2, 1.2 Hz, 1H), 7.23 (dd, J = 4.8, 3.6 Hz, 1H), 5.24-5.18 (m, 1H), 3.18 (s, 3H), 

1.52 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, DMSO-d6) δ 164.6, 151.6, 150.0, 144.3, 143.6, 

137.0, 136.2, 132.3, 130.4, 129.1, 128.6, 128.2, 120.8, 112.1, 117.8, 49.0, 44.3, 22.4; HRMS 

(ESI, m/z): calcd for  C21H19N4O3S2 ([M-H]-): 439.0899, Found: 439.0882. 

(5-Fluoroindolin-1-yl)(1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-4-yl)metha-

none, JX048. 1H NMR (400 MHz, CDCl3) δ 8.29 (br s, 1H), 8.00 (br s, 1H), 7.69 (d, J = 2.8 Hz, 

1H), 7.58 (s, 1H), 7.44 (dd, J = 5.2, 0.8 Hz, 1H), 7.11 (dd, J = 4.8, 4.0 Hz, 1H), 6.98-6.92 (m, 

2H), 5.39-5.32 (m, 1H), 4.01 (br s, 12H), 3.11 (t, J = 7.0 Hz, 2H), 1.63 (d, J = 6.8 Hz, 6H); 13C 

NMR (100 MHz, CDCl3) δ 165.0, 159.9 (d, J = 243.6 Hz), 151.5, 149.7, 144.4, 138.3 (d, J = 

10.7 Hz), 138.1, 134.2 (d, J = 3.5 Hz), 130.7, 128.7, 128.1, 126.3, 118.7 (d, J = 7.0 Hz), 113.9 

(d, J = 23.8 Hz), 112.1 (d, J = 24.2 Hz), 110.6, 110.4, 50.5, 49.0, 28.3, 22.0; HRMS (ESI, m/z): 

calcd for  C22H20FN4OS ([M+H]+): 407.1342, Found: 407.1306.  

N-(4-Fluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-sulfon-

amide, JX049. 1H NMR (400 MHz, CDCl3) δ 8.33 (s, 1H), 7.77 (s, 1H), 7.52 (s, 1H), 7.48 (d, J 

= 4.0 Hz, 1H), 7.26-7.22 (m, 2H), 7.03 (d, J = 4.0 Hz, 1H), 6.94-6.89 (m, 2H), 5.34-5.27 (m, 
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1H), 1.57 (d, J = 6.8 Hz, 6H), one low-field proton not observed; 13C NMR (100 MHz, CDCl3) δ 

160.7 (d, J = 244.4 Hz), 154.6, 148.9, 137.2, 136.9, 134.8, 132.2 (d, J = 3.1 Hz), 131.4, 128.0 (d, 

J = 25.2 Hz), 124.7 (d, J = 8.5 Hz), 116.2, 115.9, 113.7, 110.7, 49.5, 22.0; HRMS (ESI, m/z): 

calcd for C19H16FN4O2S2 ([M-H]-): 415.0699, Found: 415.0689. 

N-(2-Bromo-4-fluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-

carboxamide, JX050. 1H NMR (400 MHz, CDCl3) δ 8.57 (dd, J = 9.2, 5.6 Hz, 1H), 8.53 (br s, 

1H), 8.43 (s, 1H), 7.96 (s, 1H), 7.78 (dd, J = 3.6, 1.2 Hz, 1H), 7.48 (dd, J = 5.2, 1.2 Hz, 1H), 7.37 

(dd, J = 7.6, 3.2 Hz, 1H), 7.17-7.12 (m, 2H), 5.42-5.36 (m, 1H), 1.65 (d, J = 6.8 Hz, 6H); 13C 

NMR (100 MHz, CDCl3) δ 163.3, 158.9 (d, J = 248.2 Hz), 151.7, 150.3, 144.3, 135.8, 131.9 (d, 

J = 3.0 Hz), 130.6, 129.0, 128.3, 126.6, 123.1 (d, J = 7.6 Hz), 119.6 (d, J = 25.7 Hz), 115.5 (d, J 

= 21.4 Hz), 114.0 (d, J = 9.2 Hz), 111.9, 110.5, 49.3, 22.1; HRMS (ESI, m/z): calcd for 

C20H17BrFN4OS ([M+H]+): 459.0290, Found: 459.0251. 

6-Fluoro-2-(1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-4-yl)benzo[d]oxazole, 

JX051. 1H NMR (400 MHz, CDCl3) δ 8.59 (s, 1H), 8.22 (s, 1H), 7.83-7.78 (m, 2H), 7.46 (dd, J 

= 5.2, 1.2 Hz, 1H), 7.38 (dd, J = 8.0, 2.0 Hz, 1H), 7.19-7.14 (m, 2H), 5.41-5.34 (m, 1H), 1.67 (d, 

J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 161.4 (d, J = 244.8 Hz), 161.1 (d, J = 3.5 Hz), 

151.4, 150.7 (d, J = 15.0 Hz), 150.2, 144.6, 138.2 (d, J = 1.5 Hz), 132.4, 128.7, 128.2, 127.8, 

126.4, 121.3 (d, J = 10.4 Hz), 113.4 (d, J = 24.9 Hz), 111.2, 110.5, 98.9 (d, J = 27.9 Hz), 49.1, 

22.1; HRMS (ESI, m/z): calcd for C20H16FN4OS ([M+H]+): 379.1029, Found: 379.0998. 

N-(3-(N,N-Dimethylsulfamoyl)phenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-

b]pyridine-4-carboxamide, JX052. 1H NMR (400 MHz, CDCl3) δ 8.92 (br s, 1H), 8.29 (s, 1H), 

8.15 (dt, J = 8.0, 0.6 Hz, 1H), 7.96 (t, J = 1.8 Hz, 1H), 7.88 (s, 1H), 7.77 (dd, J = 3.6, 1.2 Hz, 
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1H), 7.54-7.46 (m, 2H), 7.44 (dd, J = 4.8, 1.2 Hz, 1H), 7.10 (dd, J = 5.2, 4.0 Hz, 1H), 5.35-5.28 

(m, 1H), 2.63 (s, 6H), 1.60 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 164.3, 151.5, 

150.1, 144.3, 138.4, 136.2, 136.0, 131.4, 129.9, 128.9, 128.2, 126.7, 124.9, 123.7, 119.5, 111.2, 

111.1, 49.1, 37.8, 22.0; HRMS (ESI, m/z): calcd for C22H22N5O3S2 ([M-H]-): 468.1164, Found: 

468.1146. 

1-Isopropyl-N-(3-(N-methylsulfamoyl)phenyl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyri-

dine-4-carboxamide, JX053. 1H NMR (400 MHz, DMSO-d6) δ 10.93 (s, 1H), 8.35 (t, J = 1.8 

Hz, 1H), 8.32 (s, 1H), 8.25 (s, 1H), 8.05 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 8.02 (dd, J = 3.6, 1.2 Hz, 

1H), 7.72 (dd, J = 5.2, 1.2 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 7.54 (ddd, J = 8.0, 1.6, 1.2 Hz, 1H), 

7.51-7.47 (m, 1H), 7.22 (dd, J = 4.8, 3.6 Hz, 1H), 5.25-5.18 (m, 1H), 2.44 (d, J = 4.8 Hz, 3H), 

1.53 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, DMSO-d6) δ 164.3, 151.5, 150.1, 144.4, 140.4, 

139.7, 137.0, 132.4, 130.3, 130.2, 129.0, 128.1, 124.4, 122.7, 119.0, 112.0, 111.9, 49.0, 29.2, 

22.4; HRMS (ESI, m/z): calcd for C21H20N5O3S2 ([M-H]-): 454.1008, Found: 454.0992. 

4-Fluoro-N-(1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-4-yl)benzamide, 

JX054. 1H NMR (400 MHz, CDCl3) δ 8.39 (br s, 1H), 8.24 (s, 1H), 8.05 (s, 1H), 7.95-7.91 (m, 

2H), 7.67 (dd, J = 3.6, 1.2 Hz, 1H), 7.40 (dd, J = 5.2, 0.8 Hz, 1H), 7.19-7.14 (m, 2H), 7.08 (dd, J 

= 5.2, 4.0 Hz, 1H), 5.34-5.28 (m, 1H), 1.60 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 

165.3 (d, J = 252.8 Hz), 165.0, 152.7, 150.7, 145.1, 138.9, 130.1 (d, J = 3.0 Hz), 129.8 (d, J = 

9.2 Hz), 128.7, 128.2, 128.0, 126.1, 116.1 (d, J = 21.9 Hz), 106.3, 102.5, 48.8, 22.0; HRMS 

(ESI, m/z): calcd for C20H16FN4OS ([M-H]-): 379.1029, Found: 379.1017. 

6-Cyclopropyl-1-isopropyl-N-(3-sulfamoylphenyl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX055. 1H NMR (400 MHz, DMSO-d6) δ 10.82 (s, 1H), 8.39 (s, 1H), 8.22 (s, 1H), 7.95 
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(d, J = 7.6 Hz, 1H), 7.60-7.54 (m, 3H), 7.39 (s, 2H), 5.16-5.09 (m, 1H), 2.33-2.30 (m, 1H), 1.45 

(d, J = 6.8 Hz, 6H), 1.16-1.09 (m, 4H); 13C NMR (100 MHz, DMSO-d6) δ 164.7, 163.3, 150.4, 

145.1, 139.5, 136.0, 131.9, 130.0, 123.8, 121.8, 117.9, 114.2, 111.2, 48.6, 22.3, 18.0, 11.5; 

HRMS (ESI, m/z): calcd for C19H20N5O3S ([M-H]-): 398.1287, Found: 398.1272. 

1-Isopropyl-N-(pyridin-3-yl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, 

JX056. 1H NMR (400 MHz, CDCl3) δ 9.01 (s, 1H), 8.71 (d, J = 2.0 Hz, 1H), 8.34-8.32 (m, 2H), 

8.23 (s, 1H), 7.79 (s, 1H), 7.61 (dd, J = 4.0, 1.2 Hz, 1H), 7.41 (dd, J = 5.2, 1.2 Hz, 1H), 7.32-

7.29 (m, 1H), 7.06 (dd, J = 4.8, 4.0 Hz, 1H), 5.34-5.27 (m, 1H), 1.60 (d, J = 6.4 Hz, 6H); 13C 

NMR (100 MHz, CDCl3) δ 164.4, 151.4, 150.1, 145.9, 144.1, 141.6, 135.8, 134.6, 131.1, 128.9, 

128.2, 128.1, 126.4, 123.9, 111.2, 111.0, 49.2, 22.0; HRMS (ESI, m/z): calcd for C19H16N5OS 

([M-H]-): 362.1076, Found: 362.1066. 

1-Isopropyl-N-(pyridin-2-yl)-6-(thiophen-3-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, 

JX057. 1H NMR (400 MHz, CDCl3) δ 9.18 (s, 1H), 8.45 (d, J = 6.8 Hz), 8.40 (s, 1H), 8.25 (s, 

1H), 8.04 (dd, J = 2.8, 1.2 Hz, 1H), 7.88 (s, 1H), 7.83-7.77 (m, 2H), 7.43 (dd, J = 5.2, 2.8 Hz, 

1H), 7.11-7.08 (m, 1H), 5.45-5.38 (m, 1H), 1.64 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, 

CDCl3) δ 164.0, 152.3, 151.1, 150.5, 148.0, 141.6, 138.7, 135.9, 131.2, 126.63, 126.59, 125.1, 

120.5, 114.6, 112.4, 111.0, 48.9, 22.1; HRMS (ESI, m/z): calcd for C19H16N5OS ([M-H]-): 

362.1076, Found: 362.1066. 

1-Isopropyl-N-(pyrimidin-2-yl)-6-(thiophen-3-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX058. 1H NMR (400 MHz, CDCl3) δ 9.31 (s, 1H), 8.65 (d, J = 4.8 Hz, 2H), 8.39 (s, 

1H), 8.05 (dd, J = 3.2, 1.2, 1H), 7.89 (s, 1H), 7.82 (dd, J = 5.2, 1.2 Hz, 1H), 7.40 (dd, J = 4.8, 2.8 

Hz, 1H), 7.08 (t, J = 4.8 Hz, 1H), 5.43-5.36 (m, 1H), 1.63 (d, J = 6.4 Hz, 6H); 13C NMR (100 
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MHz, CDCl3) δ 163.4, 158.5, 157.4, 152.3, 150.5, 141.6, 135.7, 131.4, 126.63, 126.56, 125.1, 

117.3, 112.4, 111.1, 48.9, 22.1; HRMS (ESI, m/z): calcd for C18H15N6OS ([M-H]-): 363.1028, 

Found: 363.1019. 

1-Isopropyl-N-(pyrimidin-4-yl)-6-(thiophen-3-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX059. 1H NMR (400 MHz, CDCl3) δ 9.08 (br s, 1H), 8.91 (d, J = 0.8 Hz, 1H), 8.73 (d, J 

= 5.6 Hz, 1H), 8.39 (dd, J = 6.0, 1.2 Hz, 1H), 8.36 (s, 1H), 80.8 (dd, J = 2.8, 1.2 Hz, 1H), 7.87 (s, 

1H), 7.84 (dd, J = 5.2, 1.2 Hz, 1H), 7.45 (dd, J = 5.2, 3.2 Hz, 1H), 5.45-5.38 (m, 1H), 1.64 (d, J 

= 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 164.6, 158.8, 158.5, 156.9, 152.4, 150.5, 141.4, 

134.7, 130.9, 126.8, 126.6, 125.3, 112.5, 110.70, 110.68, 49.1, 22.1; HRMS (ESI, m/z): calcd for 

C18H15N6OS ([M-H]-): 363.1028, Found: 363.1018. 

1-Isopropyl-N-(pyridin-3-yl)-6-(thiophen-3-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, 

JX060. 1H NMR (400 MHz, CDCl3) δ 8.90 (br s, 1H), 8.71 (d, J = 2.4 Hz, 1H), 8.35-8.32 (m, 

2H), 8.27 (s, 1H), 7.97 (dd, J = 3.2, 1.2 Hz, 1H), 7.81 (s, 1H), 7.76 (dd, J = 5.2, 1.2 Hz, 1H), 7.38 

(dd, J = 5.2, 1.2 Hz, 1H), 7.33-7.30 (m, 1H), 5.40-5.33 (m, 1H), 1.61 (d, J = 6.8 Hz, 6H); 13C 

NMR (100 MHz, CDCl3) δ 164.6, 152.3, 150.4, 145.9, 141.6, 141.5, 135.8, 134.6, 130.9, 128.0, 

126.61, 126.56, 125.1, 123.9, 112.5, 110.9, 48.9, 22.1; HRMS (ESI, m/z): calcd for C19H16N5OS 

([M-H]-): 362.1076, Found: 362.1064. 

1-Isopropyl-N-(pyridin-4-yl)-6-(thiophen-3-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, 

JX061. 1H NMR (400 MHz, CDCl3) δ 9.00 (br s, 1H), 8.51 (dd, J = 5.2, 1.2 Hz, 2H), 8.26 (s, 

1H), 7.96 (dd, J = 2.8, 1.2 Hz, 1H), 7.78 (s, 1H), 7.76 (dd, J = 4.8, 1.2 Hz, 1H), 7.66 (dd, J = 4.8, 

1.6 Hz, 2H), 7.40 (dd, J = 4.8, 2.8 Hz, 1H), 5.40-5.33 (m, 1H), 1.61 (d, J = 6.4 Hz, 6H); 13C 

NMR (100 MHz, CDCl3) δ 164.7, 152.3, 150.7, 150.4, 144.8, 141.5, 135.6, 130.7, 126.7, 126.6, 
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125.1, 114.2, 112.5, 110.7, 49.0, 22.1; HRMS (ESI, m/z): calcd for C19H16N5OS ([M-H]-): 

362.1076, Found: 362.1065. 

1-Isopropyl-N-(pyridin-3-yl)-6-(thiophen-2-yl)-1H-pyrrolo[2,3-b]pyridine-4-carboxamide, 

JX062. 1H NMR (400 MHz, CDCl3) δ 8.71 (br s, 1H), 8.52 (s, 1H), 8.37-8.34 (m, 2H), 7.83 (s, 

1H), 7.59 (dd, J = 4.0, 1.2 Hz, 1H), 7.42 (s, 1H), 7.33-7.30 (m, 2H), 7.06 (dd, J = 5.2, 4.0 Hz, 

1H), 6.71 (d, J = 3.6 Hz, 1H), 5.26-5.16 (m, 1H), 1.56 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, 

CDCl3) δ 165.7, 147.8, 146.1, 145.6, 145.5, 141.4, 134.7, 133.8, 128.0, 127.6, 127.2, 126.8, 

124.3, 123.8, 116.2, 110.3, 98.8, 46.2, 22.7; HRMS (ESI, m/z): calcd for C20H17N4OS ([M-H]-): 

361.1123, Found: 361.1112. 

1-Isopropyl-N-(pyridin-4-yl)-6-(thiophen-2-yl)-1H-pyrrolo[2,3-b]pyridine-4-carboxamide, 

JX063. 1H NMR (400 MHz, CDCl3) δ 8.80 (br s, 1H), 8.49 (d, J = 6.0 Hz, 2H), 7.77 (s, 1H), 

7.64 (dd, J = 4.8, 1.6 Hz, 2H), 7.55 (dd, J = 3.6, 1.2 Hz, 1H), 7.42 (d, J = 3.6 Hz, 1H), 7.33 (dd, J 

= 4.8, 1.2 Hz, 1H), 7.05 (dd, J = 4.8, 3.6 Hz, 1H), 6.69 (d, J = 3.2 Hz, 1H), 5.24-5.17 (m, 1H), 

1.55 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 165.6, 150.7, 147.8, 146.0, 145.4, 

145.0, 133.6, 128.0, 127.3, 126.8, 124.3, 116.1, 113.9, 110.2, 98.8, 46.2, 22.7; HRMS (ESI, m/z): 

calcd for C20H17N4OS ([M-H]-): 361.1123, Found: 361.1112. 

N-(3-Carbamoylphenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carb-

oxamide, JX064. 1H NMR (400 MHz, DMSO-d6) δ 10.76 (s, 1H), 8.32 (s, 1H), 8.27 (s, 1H), 

8.25 (s, 1H), 8.03 (d, J = 2.8 Hz, 1H), 7.99-7.97 (m, 2H), 7.74 (dd, J = 4.8, 0.4 Hz, 1H), 7.64 (d, 

J = 8.0 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.37 (s, 1H), 7.23 (dd, J = 4.8, 3.6 Hz, 1H), 5.24-5.17 

(m, 1H), 1.52 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, DMSO-d6) δ 168.2, 164.0, 151.6, 150.1, 
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144.4, 139.0, 137.3, 135.6, 132.5, 130.3, 129.1, 128.2, 123.8, 123.5, 120.8, 112.0, 111.9, 49.0, 

22.4; HRMS (ESI, m/z): calcd for C21H18N5O2S ([M-H]-): 404.1181, Found: 404.1166. 

(Z)-1-Isopropyl-N'-(pyridin-3-yl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

imidamide, JX065. 1H NMR (400 MHz, CDCl3) δ 8.38-8.34 (m, 2H), 8.31 (s, 1H), 7.89 (s, 1H), 

7.77 (d, J = 3.2 Hz, 1H), 7.45 (dd, J = 4.8, 0.8 Hz, 1H), 7.40-7.38 (m, 1H), 7.34-7.31 (m, 1H), 

7.14 (dd, J = 4.8, 4.0 Hz, 1H), 5.40-5.33 (m, 1H), 5.26 (s, 2H), 1.63 (d, J = 6.4 Hz, 6H); 13C 

NMR (100 MHz, CDCl3) δ 153.7, 151.4, 150.2, 145.1, 144.9, 144.6, 143.1, 137.5, 131.6, 128.9, 

128.6, 128.2, 126.3, 124.2, 111.6, 111.1, 49.0, 22.1; HRMS (ESI, m/z): calcd for C19H17N6S ([M-

H]-): 361.1235, Found: 361.1224. 

1-Isopropyl-N-(pyrimidin-5-yl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carbox-

amide, JX066. 1H NMR (400 MHz, CDCl3) δ 9.16 (s, 2H), 9.03 (s, 1H), 8.51 (br s, 1H), 8.23 (s, 

1H), 7.79 (s, 1H), 7.69 (dd, J = 3.6, 1.2 Hz, 1H), 7.46 (dd, J = 4.8, 1.2 Hz, 1H), 7.11 (dd, J = 5.2, 

3.6 Hz, 1H), 5.36-5.29 (m, 1H), 1.61 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 164.3, 

154.9, 151.5, 150.1, 148.4, 144.0, 134.9, 133.1, 130.8, 129.2, 128.3, 126.6, 111.3, 110.7, 49.3, 

22.0; HRMS (ESI, m/z): calcd for C18H15N6OS ([M-H]-): 363.1028, Found: 363.1019. 

(Z)-N'-(4-Fluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carb-

oximidamide, JX067. 1H NMR (400 MHz, CDCl3) δ 8.30 (s, 1H), 7.88 (s, 1H), 7.77 (d, J = 2.4 

Hz, 1H), 7.45 (dd, J = 5.2, 0.8 Hz, 1H), 7.15-7.08 (m, 3H), 7.03-6.99 (m, 2H), 5.39-5.33 (m, 

1H), 5.10 (br s, 2H), 1.63 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 159.3 (d, J = 240.2 

Hz), 153.3, 153.1, 151.3, 150.1, 144.6, 137.8, 131.6, 128.5, 128.1, 126.2, 122.5 (d, J = 8.1 Hz), 

116.3 (d, J = 22.2 Hz), 111.6, 111.0, 48.9, 22.0; HRMS (ESI, m/z): calcd for C20H17FN5S ([M-H]-

): 378.1189, Found: 378.1176.  
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N-(2-Fluoro-5-sulfamoylphenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-

4-carboxamide, JX068. 1H NMR (400 MHz, DMSO-d6) δ 10.79 (s, 1H), 8.32-8.26 (m, 3H), 

8.02 (dd, J = 3.6, 1.2 Hz, 1H), 7.77-7.73 (m, 2H), 7.58-7.53 (m, 1H), 7.49 (br s, 2H), 7.23 (dd, J 

= 4.8, 3.6 Hz, 1H), 5.25-5.18 (m, 1H), 1.52 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, DMSO-d6) 

δ 164.3, 157.3 (d, J = 252.0 Hz), 151.6, 150.1, 144.3, 141.0 (d, J = 3.5 Hz), 136.2, 132.3, 130.4, 

129.2, 128.2, 126.1 (d, J = 13.0 Hz), 125.4 (d, J = 8.8 Hz), 124.6 (d, J = 2.3 Hz), 117.2 (d, J = 

21.5 Hz), 112.3, 111.9, 49.0, 22.4; HRMS (ESI, m/z): calcd for C20H17FN5O3S2 ([M-H]-): 

458.0757, Found: 458.0761. 

N-(4-Fluoro-3-sulfamoylphenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-

4-carboxamide, JX069. 1H NMR (400 MHz, DMSO-d6) δ 10.92 (s, 1H), 8.35 (dd, J = 6.4, 2.8 

Hz, 1H), 8.31 (s, 1H), 8.23 (s, 1H), 8.07-8.02 (m, 2H), 7.74 (dd, J = 4.8, 0.8 Hz, 1H), 7.71 (br s, 

2H), 7.46 (t, J = 9.2 Hz, 1H), 7.23 (dd, J = 4.8, 3.6 Hz, 1H), 5.24-5.17 (m, 1H), 1.52 (d, J = 6.8 

Hz, 6H); 13C NMR (100 MHz, DMSO-d6) δ 164.2, 154.8 (d, J = 249.0 Hz), 151.5, 150.1, 144.4, 

137.0, 135.2 (d, J = 3.0 Hz), 132.4, 132.0 (d, J = 15.3 Hz), 130.4, 129.1, 128.2, 126.3 (d, J = 7.7 

Hz), 120.7, 117.9 (d, J = 22.2 Hz), 112.0, 111.9 (d, J = 12.3 Hz), 49.0, 22.4; HRMS (ESI, m/z): 

calcd for C20H17FN5O3S2 ([M-H]-): 458.0757, Found: 458.0741. 

1-Isopropyl-6-phenyl-N-(pyridin-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, JX070. 

1H NMR (400 MHz, CDCl3) δ 9.21 (br s, 1H), 8.46-8.44 (m, 2H), 8.25-8.23 (m, 1H), 8.15-8.11 

(m, 2H), 7.99 (s, 1H), 7.81-7.76 (m, 1H), 7.53-7.44 (m, 3H), 7.09-7.06 (m, 1H), 5.50-5.43 (m, 

1H), 1.66 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 164.0, 156.5, 151.1, 150.7, 148.0, 

138.6, 138.5, 136.0, 131.2, 129.8, 128.9, 127.5, 120.5, 114.5, 112.3, 111.3, 49.0, 22.1; HRMS 

(ESI, m/z): calcd for C21H18N5O ([M-H]-): 356.1511, Found: 356.1503. 
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6-Cyclopropyl-1-isopropyl-N-(pyridin-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carboxamide, 

JX071. 1H NMR (400 MHz, CDCl3) δ 9.37 (br s, 1H), 8.41 (d, J = 8.4 Hz, 1H), 8.30 (s, 1H), 

8.11 (d, J = 3.6 Hz, 1H), 7.77-7.72 (m, 1H), 7.35 (s, 1H), 7.04-7.01 (m, 1H), 5.26-5.19 (m, 1H), 

2.14-2.09 (m, 1H), 1.55 (d, J = 6.8 Hz, 6H), 1.16-1.12 (m, 2H), 1.07-1.02 (m, 2H); 13C NMR 

(100 MHz, CDCl3) δ 164.3, 163.1, 151.2, 150.6, 147.8, 138.5, 134.9, 131.0, 120.3, 114.5, 113.6, 

110.6, 48.7, 21.9, 17.7, 11.1; HRMS (ESI, m/z): calcd for C18H18N5O ([M-H]-): 320.1511, Found: 

320.1503. 

1-Isopropyl-N-(pyridin-2-yl)-6-(thiophen-2-yl)-1H-pyrrolo[2,3-b]pyridine-4-carboxamide, 

JX072. 1H NMR (400 MHz, CDCl3) δ 9.09 (br s, 1H), 8.46 (dt, J = 8.4, 1.0 Hz, 1H), 8.23 (ddd, J 

= 5.2, 1.6, 0.8 Hz, 1H), 7.93 (s, 1H), 7.79-7.75 (m, 1H), 7.65 (dd, J = 4.0, 0.8 Hz, 1H), 7.44 (d, J 

= 3.6 Hz, 1H), 7.36 (dd, J = 4.8, 0.8 Hz, 1H), 7.11 (dd, J = 4.8, 3.6 Hz, 1H), 7.05 (ddd, J = 7.2, 

4.8, 0.8 Hz, 1H), 6.86 (d, J = 3.6 Hz, 1H), 5.29-5.23 (m, 1H), 1.58 (d, J = 6.8 Hz, 6H); 13C NMR 

(100 MHz, CDCl3) δ 165.3, 151.4, 148.1, 147.9, 146.1, 145.6, 138.5, 133.9, 128.0, 127.1, 126.7, 

124.3, 120.1, 116.3, 114.3, 110.3, 99.1, 46.2, 22.7; HRMS (ESI, m/z): calcd for C20H17N4OS ([M-

H]-): 361.1123, Found: 361.1110. 

N-(5-Carbamoyl-2-fluorophenyl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-

4-carboxamide, JX073. 1H NMR (400 MHz, DMSO-d6) δ 10.67 (s, 1H), 8.31 (s, 1H), 8.29 (s, 

1H), 8.22 (dd, J = 7.6, 2.0 Hz, 1H), 8.03-8.01 (m, 2H), 7.85-7.81 (m, 1H), 7.74 (dd, J = 4.8, 0.8 

Hz, 1H), 7.44-7.40 (m, 2H), 7.23 (dd, J = 4.8, 3.6 Hz, 1H), 5.24-5.18 (m, 1H), 1.52 (d, J = 6.4 

Hz, 6H); 13C NMR (100 MHz, DMSO-d6) δ 170.8, 167.0, 164.1, 157.9 (d, J = 250.9 Hz), 151.6, 

150.1, 144.3, 136.3, 132.4, 131.3 (d, J = 3.4 Hz), 130.3, 129.2, 128.1, 127.32, 127.28 (d, J = 12.3 

Hz), 125.3 (d, J = 13.1 Hz), 116.3 (d, J = 20.3 Hz), 112.0 (d, J = 13.8 Hz), 49.0, 22.4; HRMS 

(ESI, m/z): calcd for C21H17FN5O2S ([M-H]-): 422.1087, Found: 422.1094. 
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1-Isopropyl-N-methyl-N-(pyridin-2-yl)-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-

carboxamide,  JX074. 1H NMR (400 MHz, CDCl3) δ 8.42 (ddd, J = 4.8, 2.0, 0.8 Hz, 1H), 7.91 

(s, 1H), 7.52 (dd, J = 3.6, 1.2 Hz, 1H), 7.42 (td, J = 7.6, 2.0 Hz, 1H), 7.40 (dd, J = 4.8, 1.2 Hz, 

1H), 7.36 (s, 1H), 7.08 (dd, J = 5.2, 4.0 Hz, 1H), 7.02 (ddd, J = 7.6, 5.2, 1.2 Hz, 1H), 6.97 (d, J = 

8.0 Hz, 1H), 5.28-5.22 (m, 1H), 3.66 (s, 3H), 1.56 (d, J = 6.4 Hz, 6H); 13C NMR (100 MHz, 

CDCl3) δ 167.6, 155.6, 151.0, 149.6, 149.0, 144.5, 137.8, 131.2, 128.5, 128.1, 126.1, 121.7, 

120.5, 112.4, 111.4, 48.9, 35.8, 22.0; HRMS (ESI, m/z): calcd for C20H20N5OS ([M+H]+): 

378.1389, Found: 378.1387.  

N-(5-Fluoropyridin-2-yl)-1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridine-4-carb-

oxamide, JX075. 1H NMR (400 MHz, CDCl3) δ 8.99 (br s, 1H), 8.45 (dd, J = 9.2, 4.0 Hz, 1H), 

8.33 (s, 1H), 8.14 (d, J = 2.8 Hz, 1H), 7.86 (s, 1H), 7.74 (dd, J = 3.6, 0.8 Hz, 1H), 7.52 (ddd, J = 

9.2, 7.6, 3.2 Hz, 1H), 7.46 (dd, J = 5.2, 1.2 Hz, 1H), 7.13 (dd, J = 4.8, 3.6 Hz, 1H), 5.39-5.33 (m, 

1H), 1.64 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 163.5, 156.7 (d, J = 251.2 Hz), 

151.5, 150.2, 147.1 (d, J = 2.3 Hz), 144.2, 135.6, 135.4 (d, J = 30.2 Hz), 131.1, 128.9, 128.3, 

126.5, 125.7 (d, J = 19.1 Hz), 115.4 (d, J = 4.2 Hz), 111.1, 111.0, 49.2, 22.0; HRMS (ESI, m/z): 

calcd for C19H17FN5OS ([M+H]+): 382.1138, Found: 382.1128.  

(2,3-Dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)(1-isopropyl-6-(thiophen-2-yl)-1H-pyrazolo[3,4-

b]pyridin-4-yl)methanone, JX076. 1H NMR (400 MHz, CDCl3) δ 7.80 (s, 1H), 7.71 (d, J = 4.8 

Hz, 1H), 7.65-7.64 (m, 2H), 7.49 (dd, J = 7.2, 1.6 Hz, 1H), 7.41 (dd, J = 5.2, 1.2 Hz, 1H), 7.09 

(dd, J = 4.8, 3.6 Hz, 1H), 6.81 (dd, J = 7.6, 5.2 Hz, 1H), 5.38-5.31 (m, 1H), 4.34 (t, J = 8.4 Hz, 

2H), 3.21 (t, J = 8.2 Hz, 2H), 1.62 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 165.6, 

154.9, 151.0, 149.8, 146.1, 145.0, 137.9, 133.7, 131.0, 128.2, 128.1, 126.0, 125.8, 119.1, 112.1, 
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111.6, 48.8, 47.3, 25.0, 22.0; HRMS (ESI, m/z): calcd for C21H20N5OS ([M+H]+): 390.1389, 

Found: 390.1386. 

Cells and viruses. HeLa-RW cells or LLC-MK2 cells were used as the host cells for the 

enteroviruses as described previously.15 The cells were grown in DMEM supplemented with 

penicillin, streptomycin, glutamine, and 10% fetal bovine serum. . The strains and sources of 

CVB3-H3, EV-A71, and poliovirus-1 types used and the conditions for their propagation  and 

quantification were described previously.15   

In vitro evaluation of antiviral activities of the new compounds. Each compound was 

dissolved in DMSO and tested at concentration of 10 µM in two separate experiments. The 

compounds that protected the cells from cytopathic effects (CPE) were further evaluated for their 

in vitro efficacies against the representative viruses EV-A71, CV-B3, and poliovirus-1. Serial 2-

fold dilutions of each compound were prepared. Cells growing in 96 well plates were infected 

with enteroviruses at low multiplicities of infection pre-determined to result in 100% cytopathic 

effects (CPE) in the cultures after 3-4 days incubation. Each dilution of compound was tested in 

triplicate. Cultures were monitored daily for microscopic signs of typical CPE: rounding of cells 

and detachment. When CPE appeared maximal in the control wells without the antiviral 

compounds, the cells were fixed with 4% formaldehyde before staining with 0.25% crystal violet 

solution. Dead cells and debris were washed out and the remaining blue stain intensity in each 

well was quantified by spectrophotometry at a wavelength of 590nm (OD590) as a measurement 

of viability. A 7-point dose-response curve was constructed and the EC50 value was estimated 

using four parameter model or sigmoidal model. For CC50 value determination, cells were 

incubated with serial 2-fold dilutions of a compound for the same period as the virus CPE assay, 

and then cells were fixed, stained and the plate was read; CC50 was not always quantified for a 
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compound if no antiviral activity was demonstrated. We report the EC50, CC50, and the calculated 

selectivity index (SI50 = CC50/EC50).  
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