JIAIC[S

COMMUNICATIONS

Published on Web 08/09/2005

An Air-Stable P-Chiral Phosphine Ligand for Highly Enantioselective
Transition-Metal-Catalyzed Reactions

Tsuneo Imamoto,* Keitaro Sugita, and Kazuhiro Yoshida
Department of Chemistry, Faculty of Science, ChibaJdrsity, Chiba 263-8522, Japan

Received May 27, 2005; E-mail: imamoto@faculty.chiba-u.jp

Optically active phosphine ligands have played a significant role Scheme 1. Preparation of Ligand 1
in transition-metal-catalyzed asymmetric reactibnalthough - 1. BzCl, pyridine BH
numerous chiral phosphine ligands have been reported so far, the T 8 oH 0°Ctort ) s 0Bz 1. KOH/aq. EtOH
design and synthesis of novel and highly efficient ligands are still *BU" 4 ~"""" 5 (oo ctallization t'B""M‘e\/ 2. RuClg (5 mol%),
an important research subject in the field of asymmetric catalysis. 92% ce 62% 599% ee K2820g 2 h
We have previously synthesized a new class of P-chiral phosphine 80%

) . ) . : 2 3

ligands, 1,2-bis(alkylmethylphosphino)ethanes (abbreviated as BisP*)

and bis(alkylmethylphosphino)methanes (MiniPHOS), and dem-

onstrated their excellent enantioinduction ability in Rh-catalyzed tBu, Me
asymmetric hydrogenatiods$ as well as their utility in the EH3 1. n-BuLi, THF, —78 °C N\:[P
mechanistic study c_)f_ the hydroggnati%owgver, these Iiganc_is t-BU‘h‘/'I,e\H 2. 2,3-dichloroquinoxaline N R
are extremely sensitive to air owing to the high electron density at THF, —78 °C to rt VS \Bu_t
the phosphorus atoms, and this drawback has prevented their >99%ee 3. TMEDA tt, 2 h

widespread application in asymmetric catalyses. Herein, we report 4 80% 1

a new air-stable P-chiral phosphine ligand that exhibits excellent
to almost perfect enantioselectivity in not only Rh-catalyzed
hydrogenation but also Rh- or Pd-catalyzed carbocarbon bond-

Table 1. Asymmetric Hydrogenations of Dehydroamino Acid
Esters and a-Enamides?

forming reactions. _ _ _ NHAC [Rn(bd)IBFy1 (1 motee) NHAc
The newly designed liganti(abbreviated as QuinoxP*) contains RH\/R P R? R

a quinoxaline backbone whose strong electron-withdrawing ability R3 2 (8 atm), MeOH, R3

decreases the electron density at the phosphorus atoms, rendering -

the phosphine moieties less susceptible to air oxidation. Although , . ) . ee (%)
L L D e entry R R R (config)

this ligand is similar td-Bu-BisP* in the structural motif, it forms .

more rigid chelate rings owing to the quinoxaline backbone. I COMe Ph H 99.9R)

. . ; ) . 2 COMe 4-AcO-3-MeOGH;  H 99.6 R

Ligand 1 was readily prepared from enantiomerically enriched 3 Me H COMe 99.7R)

(R)-tert-butyl(hydroxymethyl)methylphosphiréborane 2)” (Scheme 4 Me COMe H 2.2 R

1). Compound2 was converted into benzoyl derivatide which 5 Ph H H 99.9R)

was recrystallized from ethyl acetate two times to give the © l-adamantyl  H H 96.39

enantiomerically _pure form. Thls. su_bstrate, after hydrolysr_s, a All hydrogenation reactions were performed with 0.5 mmol of substrate
underwent ruthenium-catalyzed oxidative one-carbon degradationang 0.005 mmol in situ-prepared [Rh(nB@F4/1 in methanol at room

in the presence of potassium persulfate and potassium hydroxidetemperature® All reactions were completed under the conditiohhe
to form secondary phosphinéorane4 with >99% ee. Deproto- ~ reaction was completed within 1 h.

nation withn-butyllithium and subsequent nucleophilic substitution
reaction with 2,3-dichloroquinoxaline, followed by treatment with
TMEDA, provided the desired ligandl as an orange powder in
80% vyield. Notable is that the ligand was neither oxidized nor

11,12
epimerized at the P-stereogenic phosphorus atoms on standing irPh_?ﬁ' fioinduct bility of th licand ined
air at room temperature for more than 8 months. € enantioinduction ability of the new figand was examine

The utility of the ligand in asymmetric catalysis was examined also in transition-metal-catalyzed carberarbon bond-forming

in the Rh-catalyzed asymmetric hydrogenation of several repre- '€actions. We first applied to the Rh-catalyzed asymmetric 1,4-
sentative prochiral amino acid and amine derivatives. All reactions addition of arylboronic acids te.-unsaturated carbonyl com-
were carried out in methanol at room temperature at an initial POUNds® As shown in Table 2, the reactions proceeded at30
hydrogen pressure of 3 atm, and the results are summarized in TableC to give the corresponding addition products in high yields with

1. In all cases, excellent to almost perfect enantioselectivities were €xcellent enantiomeric excesses. These results compare favorably

chemical reversal is consistent with the results obtained by the use
of (S9-t-Bu-BisP*210 (R R)-t-Bu-MiniPhos!® and §S)-Me-Du-

observed. One notable feature is that boEj_ (and z)-ﬁ_ with those obtained by the use of BINAP as the chiral |Ig&ﬁ(§
(acetylamino)acrylates could be reduced>i89.0% enantioselec- The high utility of this ligand was demonstrated also in the Pd-
tivity (entries 3 and 4.1t is also worthy to mention that the  catalyzed asymmetric ring-opening reactiéur cursory experi-
reduction of 1-acetylamino-1-phenylethene affordedRtenfig- ments that used a premixing catalyst with Pg&id) andl provided
uration product with 99.9% ee (entry 5), and in sharp contrast, high yields of the products with excellent enantiomeric excesses
1l-acetylamino-1-adamantylethene was converted intoStken- of up to 97.6% (Table 3). These enantioselectivities bear comparison

figuration product with 96.3% ee (entry 6). This dramatic stereo- with the highest reported hitherto for this transformation.
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Table 2. Asymmetric 1,4-Addition of Arylboronic Acids to
o,-Unsaturated Carbonyl Compounds Catalyzed by Rh(l)/12

Rl_~__R? Rh/A (3 mol% Rl R?
ST weom, - Em R

0 KOH, dioxane/H,O Ar O

enone: 2-cyclohexenone (5), 2-cycloheptenone (6), (E)-5-methyl-3-hexen-
2-one (7)

ee (%)

entry  enone Ar temp (°C)  time (h)  vyield (%)° (config)
1 5 Ph 40 1 93 98.2R)
2 5 4-MeOGH4 40 1 97 93.9R)
3 5 4-CRCgH4 50 12 92 99.4R)
4 6 Ph 50 12 90 96.2R)
5 7 Ph 40 1 97 99.19

a All reactions were performed with 0.3 mma|3-unsaturated carbonyl
compound, 0.6 mmol arylboronic acid, and 0.009 mmol rhodium catalyst
generated in situ from [RhCI{El4)2]2 (0.0045 mmol) and (0.099 mmol).
blsolated yield.

Table 3. Asymmetric Alkylative Ring Opening Catalyzed by
PdCl(cod)/12

R%,Zn

1 OH
R PdCly(cod) / 1 (5 mol%) R! R2
R CHClp, t o O‘

ee (%)

entry Rt R? time (h) yield (%)° (config)
1 H Me 2 90 95.6 ($29
2 H Et 15 88 97.6 (329
3 F Me 2 90 93.8 (829

a All reactions were performed with 0.5 mmol of substrate and 0.025
mmol of in situ-prepared Pdgtod)/L. ° Isolated yield.

In conclusion, we have prepared a new P-chiral phosphine ligand

1 by reacting enantiomerically putert-butylmethylphosphine
borane with commercially available 2,3-dichloroquinoxaline. This
ligand, in contrast to most of the previously reported P-chiral

ligands, is an air-stable solid and exhibits excellent enantioselec-
tivities in both Rh-catalyzed asymmetric hydrogenations and Rh-

or Pd-catalyzed carbefrcarbon bond-forming reactions. These
findings indicate its versatile utility in a wide variety of transition-
metal-catalyzed asymmetric reactions.
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