<u>LETTERS</u>

1-Nap

(DHQD)₂PHAL

Catalytic Asymmetric Intermolecular Bromoesterification of Unfunctionalized Olefins

Lijun Li,[†] Cunxiang Su,[†] Xiaoqin Liu,[†] Hua Tian,[†] and Yian Shi^{*,†,‡,§}

[†]Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

[‡]State Key Laboratory of Coordination Chemistry, Center for Multimolecular Organic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

[§]Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States

Supporting Information

ABSTRACT: An asymmetric intermolecular bromoesterification of unfunctionalized olefins catalyzed by $(DHQD)_2PHAL$ is described. Optically active bromoesters can be obtained with up to 92% ee.

E lectrophilic addition to olefins via a halonium ion allows simultaneous introduction of two heteroatoms onto the C–C double bond and represents one of the most classic and important organic transformations.¹ An asymmetric version of such a transformation has great synthetic value and has been actively pursued. In recent years, significant progress has been made in asymmetric intramolecular halogenation of alkenes.^{2,3} For the intermolecular processes,⁴ a number of effective systems have also been developed including aminohalogenation of α,β -unsaturated carbonyl compounds by Feng;⁵ dihalogenation of allylic alcohols by Nicolaou⁶ and Burns;⁷ bromoamination of enecarbamates by Masson;⁸ oxyfluorination of enamides by Toste;⁹ bromoesterification of allylic sulfonamides by Tang;¹⁰ and bromohydroxylation of allylic alcohols by Ma.¹¹ However, catalytic asymmetric intermolecular halogenation of unfunctionalized olefins still presents a formidable challenge (Scheme 1).^{12–15,10}

Scheme 1. Catalytic Asymmetric Halogenation of Olefins

In our ongoing studies on asymmetric electrophilic addition to olefins,^{16,17} we have explored asymmetric halogenation of olefins containing no heteroatom directing groups with various catalytic systems (Figure 1) and found that up to 92% ee can be obtained with dimeric cinchona alkaloid (DHQD)₂PHAL^{18,19} as catalyst. Herein we wish to report our preliminary studies on this subject.

Our initial studies were carried out with 1,2-dihydronaphthalene (1a) as test substrate, benzoic acid (2a) as nucleophile, and NBS (4a) as bromine source using various catalytic systems in EtOAc at 0 °C. No desired product was formed when chiral phosphoric acid 3a was used as catalyst (Table 1, entry 1). A messy mixture was obtained with chiral phosphine–Sc(OTf)₃ complex 3b as catalyst (Table 1, entry 2).^{16b} Subsequently, chiral

Figure 1. Selected examples of catalyst examined.

Received: May 29, 2014 **Published:** July 8, 2014

OBz cat. (3) (10 mol %) B Br source (4) + BzOH solvent, t (°C) 2a 1a 5a yield (%) ee (%)^e entry cat. Br source solvent 1 NBS (4a) EtOAc 3a 2 NBS 3b **EtOAc** mixture 3 NBS **EtOAc** -4 3c 43 4 3d NBS EtOAc 46 -3 5 NBS **EtOAc** 68 56 3e 6 3f NBS EtOAc 47 -2 7 NBS EtOAc 46 1 3g 8 NBS 0 3h EtOAc 44 9 3i NBS **EtOAc** -48 63 10 EtOAc 3e **4**b mixture 11 **EtOAc** 72 42 3e 4c 12 4d EtOAc 77 54 3e Br 13 **EtOAc** 7165 3e 4e 14 3e THF mixture 4e 15 3e 4e CH_2Cl_2 49 17 16 CHCl₃ 60 26 3e 4e 17 3e 4e toluene 70 38 18^b 72 75 3e 4e **EtOAc** 19^c 3e 4e EtOAc 47 78

Table 1. Studies of the Reaction Conditions^a

^{*a*}Reactions were carried out with substrate 1a (0.30 mmol), nucleophile 2a (0.36 mmol), catalyst 3 (0.030 mmol), and Br source 4 (0.36 mmol) in solvent (3.0 mL) at 0 °C for 24 h unless otherwise noted. ^{*b*}At -30 °C for 48 h. ^{*c*}At -50 °C for 48 h. ^{*d*}Isolated yield. ^{*e*}Determined by chiral HPLC analysis.

cinchona alkaloid derivatives were investigated for the reaction. While bromoester 5a was isolated in 43% and 46% yield with quinine (3c) and quinidine (3d), only 3-4% ee was obtained (Table 1, entries 3 and 4). Bromoester 5a was formed in 68% yield and 56% ee with dimeric cinchona alkaloid $(DHQD)_2PHAL(3e)$ (Table 1, entry 5). Other dimeric cinchona alkaloid catalysts 3f-h gave 5a essentially as a racemate (Table 1, entries 6–8). The opposite enantiomer was obtained in 63% yield and 48% ee with (DHQ)₂PHAL (3i) (Table 1, entry 9). Among the bromine sources examined (Table 1, entries 5, 10-13), N-bromobenzamide (4e) gave the highest enantioselectivity (65% ee) (Table 1, entry 13). EtOAc was found to be the solvent of choice (Table 1, entries 13-17). The ee increased to 75% as the reaction temperature was lowered to $-30 \degree C$ (Table 1, entry 18). However, the yield was substantially reduced when the reaction was carried out at -50 °C (Table 1, entry 19). Other nucleophiles

^aReactions were carried out with substrate 1a (0.30 mmol), nucleophile 2 (0.36 mmol), catalyst 3e (0.030 mmol), and bromine source 4e (0.36 mmol) in EtOAc (3.0 mL) at -30 °C for 48 h unless otherwise noted. ^bIsolated yield. ^cDetermined by chiral HPLC analysis. Mes = 2,4,6-trimethylphenyl; Nap = naphthyl.

were subsequently investigated with 1,2-dihydronaphthalene (1a), catalyst 3e (10 mol %), and N-bromobenzamide (4e) (1.2 equiv) in EtOAc at -30 °C (Table 2). The best ee was achieved with 1-naphthoic acid (2d), giving bromoester 8a in 73% yield and 83% ee (Table 2, entry 4) (for the X-ray structure of 8a, see Figure 2).

With the optimized reaction conditions in hand, the substrate scope was subsequently investigated. As shown in Table 3, the bromoesterification can be extended to 1,2-dihydronaphthalenes containing various substituents such as F, Cl, Br, CO₂Me, CHO, NO₂, Ph, OMe, and Me, giving the corresponding bromoesters in 47-81% yield with 74-92% ee (Table 3, entries 1-12). The enantioselectivity was influenced by the electronic property of the substituents. Generally, electron-withdrawing groups provided higher enantioselectivity (89-92%) (Table 3, entries 2-7, 11, and 12), while electron-donating groups gave lower ee's (Table 2, entries 9 and 10). 6,7-Dihydro-5H-benzocycloheptene (1m) and 1H-indene (1n) were also found to be suitable substrates for the reaction, producing the corresponding bromoesters in up to 82% ee (Table 3, entries 13 and 14). When terminal olefin 10 was subjected to the reaction condition, bromoester 80 was obtained in 69% ee (Table 3,

Table 3. Asymmetric Bromoesterification of Olefins^a

^{*a*}Reactions were carried out with substrate 1 (0.50 mmol), 2d (0.60 mmol), 3e (0.050 mmol), and 4e (0.60 mmol) in EtOAc (5.0 mL) at -30 °C for 72 h unless otherwise noted. ^{*b*}With 4e (1.00 mmol) for 5 days. ^{*c*}For entries 1 and 15, the absolute configurations were determined by comparing the optical rotations of the corresponding bromohydrins with the reported ones upon reduction with DIBAL-H. For entries 2–14, the absolute configurations were tentatively assigned by analogy. For entries 16 and 17, the stereochemistry indicated is relative stereochemistry. ^{*d*}Isolated yield. ^{*e*}Determined by chiral HPLC analysis.

Figure 2. X-ray structures of compounds 8a and 11a.

Figure 3. Proposed transition-state model for bromoesterification.

entry 15). Lower ee's were obtained for *trans-\beta*-methylstyrene and 1-phenylcyclohexhene (Table 3, entries 16 and 17). The absolute configurations of **8a** (Figure 2) and **80** were determined by comparing the optical rotations of the corresponding bromo-hydrins²⁰ with the reported ones upon reduction with DIBAL-H (Scheme 2).

While a precise understanding of the origin of the enantioselectivity awaits further study, a plausible transition state model is proposed in Figure 3.^{3b,r,w,x,6,10} The tertiary amines of the catalyst are likely to be protonated by acid nucleophile under the reaction conditions. The proton of the quaternary ammonium salt could form a hydrogen-bond with *N*-bromobenzamide (**4e**) to activate and direct it toward the double bond of the substrate, which is located in the chiral pocket via π,π -stack with the quinoline of the catalyst. The phthalazine nitrogen could also form a hydrogen bond with the acid to increase its nucleophilicity and direct its attack to the reacting site.

In summary, we have developed an efficient enantioselective intermolecular bromoesterification of unfunctionalized olefins with dimeric cinchona alkaloid $(DHQD)_2PHAL$ as catalyst, *N*-bromobenzamide as bromine source, and 1-naphthoic acid as nucleophile, giving the corresponding bromoesters in up to 92% ee. The current reaction process demonstrates the feasibility of achieving high enantioselectivity for intermolecular halogenation of unfunctionalized olefins, which has been extremely challenging. Further efforts will be devoted to understanding the mechanism, expanding the substrate scope, as well as developing more effective catalytic systems.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures, characterizations, X-ray structures, data for determination of enantiomeric excess, and NMR spectra. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: yian@lamar.colostate.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the National Basic Research Program of China (973 program, 2011CB808600), the National Natural Science Foundation of China (21172221), and the Chinese Academy of Sciences for the financial support.

REFERENCES

(1) For leading reviews on halogenation of olefins, see: (a) Li, G.; Kotti, S. R. S. S.; Timmons, C. *Eur. J. Org. Chem.* **2007**, 2745. (b) Rodríguez, F.; Fañanás, F. J. In *Handbook of Cyclization Reactions*; Ma, S., Ed; Wiley-VCH: New York, 2010; Vol. 4, pp 951–990.

(2) For leading reviews of asymmetric halogenation of olefins, see:
(a) Chen, G.; Ma, S. Angew. Chem., Int. Ed. 2010, 49, 8306.
(b) Castellanos, A.; Fletcher, S. P. Chem.—Eur. J. 2011, 17, 5766.
(c) Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Synlett 2011, 1335. (d) Hennecke, U. Chem.—Asian J. 2012, 7, 456. (e) Denmark, S. E.; Kuester, W. E.; Burk, M. T. Angew. Chem., Int. Ed. 2012, 51, 10938. (f) Murai, K.; Fujioka, H. Heterocycles 2013, 87, 763. (g) Tan, C. K.; Yeung, Y.-Y. Chem. Commum. 2013, 49, 7985. (h) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076. (i) Cheng, Y. A.; Yu, W. Z.; Yeung, Y.-Y. Org. Biomol. Chem. 2014, 12, 2333.

(3) For recent examples of intramolecular asymmetric halogenation of olefins, see: (a) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900. (b) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. J. Am. Chem. Soc. 2010, 132, 3298. (c) Zhang, W.; Zheng, S.; Liu, N.; Werness, J. B.; Guzei, I. A.; Tang, W. J. Am. Chem. Soc. 2010, 132, 3664. (d) Veitch, G. E.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2010, 49, 7332. (e) Murai, K.; Matsushita, T.; Nakamura, A.; Fukushima, S.; Shimura, M.; Fujioka, H. Angew. Chem., Int. Ed. 2010, 49, 9174. (f) Hennecke, U.; Müller, C. H.; Fröhlich, R. Org. Lett. 2011, 13, 860. (g) Chen, Z.-M.; Zhang, Q.-W.; Chen, Z.-H.; Li, H.; Tu, Y.-Q.; Zhang, F.-M.; Tian, J.-M. J. Am. Chem. Soc. 2011, 133, 8818. (h) Zhou, L.; Chen, J.; Tan, C. K.; Yeung, Y.-Y. J. Am. Chem. Soc. 2011, 133, 9164. (i) Lozano, O.; Blessley, G.; Campo, T. M. d.; Thompson, A. L.; Giuffredi, G. T.; Bettati, M.; Walker, M.; Borman, R.; Gouverneur, V. Angew. Chem., Int. Ed. 2011, 50, 8105. (j) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681. (k) Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 6068. (1) Paull, D. H.; Fang, C.; Donald, J. R.; Pansick, A. D.; Martin, S. F. J. Am. Chem. Soc. 2012, 134, 11128. (m) Wang, Y.-M.; Wu, J.; Hoong, C.; Rauniyar, V.; Toste, F. D. J. Am. Chem. Soc. 2012, 134, 12928. (n) Ikeuchi, K.; Ido, S.; Yoshimura, S.; Asakawa, T.; Inai, M.; Hamashima, Y.; Kan, T. Org. Lett. 2012, 14, 6016. (o) Tungen, J. E.; Nolsøe, J. M. J.; Hansen, T. V. Org. Lett. 2012, 14, 5884. (p) Denmark, S. E.; Burk, M. T. Org. Lett. 2012, 14, 256. (q) Chen, F.; Tan, C. K.; Yeung, Y.-Y. J. Am. Chem. Soc. 2013, 135, 1232. (r) Wilking, M.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Hennecke, U. J. Am. Chem. Soc. 2013, 135, 8133. (s) Tripathi, C. B.; Mukherjee, S. Angew. Chem., Int. Ed. 2013, 52, 8450. (t) Zhao, Y.; Jiang, X.; Yeung, Y.-Y. Angew. Chem., Int. Ed. 2013, 52, 8597. (u) Romanov-Michailidis, F.; Guénée, L.; Alexakis, A. Angew. Chem., Int. Ed. 2013, 52, 9266. (v) Sawamura, Y.; Nakatsuji, H.; Sakakura, A.; Ishihara, K. Chem. Sci. 2013, 4, 4181. (w) Yin, Q.; You, S.-L. Org. Lett. 2013, 15, 4266. (x) Yousefi, R.; Ashtekar, K. D.; Whitehead, D. C.; Jackson, J. E.; Borhan, B. J. Am. Chem. Soc. 2013, 135, 14524. (y) Jaganathan, A.; Staples, R. J.; Borhan, B. J. Am. Chem. Soc. 2013, 135, 14806. (z) Xie, W.; Jiang, G.; Liu, H.; Hu, J.; Pan, X.; Zhang, H.; Wan, X.; Lai, Y.; Ma, D. Angew. Chem., Int. Ed. 2013, 52, 12924. (aa) Zeng, X.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Chem. Commun. 2013, 49, 2418. (ab) Liu, H.; Jiang, G.; Pan, X.; Wan, X.; Lai, Y.; Ma, D.; Xie, W. Org. Lett. 2014, 16, 1908. (ac) Yin, Q.; You, S.-L. Org. Lett. 2014, 16, 1810.

- (ad) Ke, Z.; Tan, C. K.; Chen, F.; Yeung, Y.-Y. J. Am. Chem. Soc. 2014, 136, 5627.
- (4) For a leading review of asymmetric intermolecular halogenation of olefins, see: Chen, J.; Zhou, L. *Synthesis* **2014**, 586.

(5) (a) Cai, Y.; Liu, X.; Hui, Y.; Jiang, J.; Wang, W.; Chen, W.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2010, 49, 6160. (b) Cai, Y.; Liu, X.; Jiang, J.; Chen, W.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2011, 133, 5636. (c) Cai, Y.; Liu, X.; Li, J.; Chen, W.; Wang, W.; Lin, L.; Feng, X. Chem.—Eur. J. 2011, 17, 14916. (d) Cai, Y.; Liu, X.; Zhou, P.; Kuang, Y.; Lin, L.; Feng, X. Chem. Commun. 2013, 49, 8054.

(6) Nicolaou, K. C.; Simmons, N. L.; Ying, Y.; Heretsch, P. M.; Chen, J. S. J. Am. Chem. Soc. **2011**, 133, 8134.

(7) Hu, D. X.; Shibuya, G. M.; Burns, N. Z. J. Am. Chem. Soc. 2013, 135, 12960.

(8) Alix, A.; Lalli, C.; Retailleau, P.; Masson, G. J. Am. Chem. Soc. 2012, 134, 10389.

(9) Honjo, T.; Phipps, R. J.; Rauniyar, V.; Toste, F. D. Angew. Chem., Int. Ed. 2012, 51, 9684.

(10) Zhang, W.; Liu, N.; Schienebeck, C. M.; Zhou, X.; Izhar, I. I.; Guzei, I. A.; Tang, W. Chem. Sci. 2013, 4, 2652.

(11) Zhang, Y.; Xing, H.; Xie, W.; Wan, X.; Lai, Y.; Ma, D. Adv. Synth. Catal. 2013, 355, 68.

(12) For PdX₂-catalyzed asymmetric halogenation of terminal olefins via a Wacker-type process, see: (a) El-Qisairi, A.; Hamed, O.; Henry, P. M. J. Org. Chem. **1998**, 63, 2790. (b) El-Qisairi, A. K.; Qaseer, H. A.; Katsigras, G.; Lorenzi, P.; Trivedi, U.; Tracz, S.; Hartman, A.; Miller, J. A.; Henry, P. M. Org. Lett. **2003**, 5, 439.

(13) For SnCl₄-1-DIPT-catalyzed asymmetric chlorohydrin of unfunctionalized olefins, see: Sakurada, I.; Yamasaki, S.; Göttlich, R.; Iida, T.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. **2000**, 122, 1245.

(14) For Mn(Salen)-catalyzed asymmetric chlorination of unfunctionalized olefins, see: Adam, W.; Mock-Knoblauch, C.; Saha-Möller, C. R.; Herderich, M. J. Am. Chem. Soc. **2000**, *122*, 9685.

(15) Li, G.-X.; Fu, Q.-Q.; Zhang, X.-M.; Jiang, J.; Tang, Z. Tetrahedron: Asymmetry **2012**, 23, 245.

(16) (a) Huang, D.; Wang, H.; Xue, F.; Guan, H.; Li, L.; Peng, X.; Shi, Y. Org. Lett. **2011**, *13*, 6350. (b) Huang, D.; Liu, X.; Li, L.; Cai, Y.; Liu, W.; Shi, Y. J. Am. Chem. Soc. **2013**, *135*, 8101.

(17) (a) Guan, H.; Wang, H.; Huang, D.; Shi, Y. *Tetrahedron* **2012**, *68*, 2728. (b) Li, L.; Li, Z.; Huang, D.; Wang, H.; Shi, Y. *RSC Adv.* **2013**, *3*, 4523.

(18) For leading references on chiral dimeric cinchona alkaloid catalyzed halogenation, see: (a) Ishimaru, T.; Shibata, N.; Horikawa, T.; Yasuda, N.; Nakamura, S.; Toru, T.; Shiro, M. *Angew. Chem., Int. Ed.* **2008**, *47*, 4157. (b) Jaganathan, A.; Garzan, A.; Whitehead, D. C.; Staples, R. J.; Borhan, B. *Angew. Chem., Int. Ed.* **2011**, *50*, 2593. (c) Yousefi, R.; Whitehead, D. C.; Mueller, J. M.; Staples, R. J.; Borhan, B. *Org. Lett.* **2011**, *13*, 608. (d) Li, H.; Zhang, F.-M.; Tu, Y.-Q.; Zhang, Q.-W.; Chen, Z.-M.; Chen, Z.-H.; Li, J. *Chem. Sci.* **2011**, *2*, 1839. (e) Müller, C. H.; Wilking, M.; Rühlmann, A.; Wibbeling, B.; Hennecke, U. Synlett **2011**, 2043. (f) Also see ref 3b,g,i,n,r,w–y,ac.

(19) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem. **1992**, *57*, 2768.

(20) (a) Kasai, M.; Kawai, K.-i.; Imuta, M.; Ziffer, H. J. Org. Chem. 1984, 49, 675. (b) Wei, S.; Messerer, R.; Tsogoeva, S. B. Chem.—Eur. J. 2011, 17, 14380.