Pages: 5

DOI: 10.1002/ejoc.201402847

Copper-Catalyzed Synthesis of Thiosulfonates by Oxidative Coupling of Thiols with Sodium Sulfinates

Nobukazu Taniguchi*^[a]

Keywords: Synthetic methods / Oxidative coupling / Sulfur / Thiols / Sulfinates / Copper

The copper-catalyzed sulfonylation of thiols was performed by using sodium sulfinates under an oxygen atmosphere. The procedure afforded thiosulfonates in good yields by using a CuI–Phen·H₂O (Phen = 1,10-phenanthroline) catalyst and tolerated numerous combinations of arene- and alkanethiols with sodium sulfinates. Furthermore, it was found that the coupling of diaryl disulfides with sodium arylsulfinates proceeded in air and both sulfide groups on the disulfide were available.

Introduction

The development of organosulfur synthetic methodology is an important field in organic chemistry, and various reactions have been reported to date.^[1] In particular, the transition-metal-catalyzed formation of carbon-sulfur bonds has been well investigated.^[2] The obtained compounds have found widespread utilization as useful intermediates and reagents.^[3] In contrast, research on the useful construction of sulfur-heteroatom bonds has been very restricted to date. Similarly, the transition-metal-catalyzed synthesis of thiosulfonates with sulfur-sulfone bonds has been scarcely investigated, and these compounds have been prepared by traditional methods. However, they are convenient derivatives that can be used in sulfenylation reactions that have been employed for the formation of unsymmetrical disulfides, including the immobilization of enzymes.^[4,5a] Regrettably, an efficient synthetic procedure has not been exploited yet.

As shown in Figure 1, thiosulfonates have been generally prepared by oxidation of disulfides^[5] or through sulfenylation of sulfinic acid salts by using sulfenyl halides.^[6] The reaction of disulfides with sodium sulfinates has also been performed in the presence of Lewis acids.^[7,8] These reactions often require the use of excess amounts of oxidants. Unfortunately, the coupling of thiols with sulfonyl chlorides has not yet been reported owing to the rapid formation of disulfides from thiols with thiosulfonates.

Figure 1. A general preparation of thiosulfonates.

In general, reaction performed with the use of thiols cannot be controlled completely. Exploitation of a simple method with the use of thiols is accordingly desired. To achieve this, suppression or treatment of the disulfides produced from thiosulfinates with thiols becomes the important process.

As an approach to solve this problem, it is considered that the employment of transition-metal catalysts is appropriate, because transition metals have the ability to cleave disulfide bonds.^[9] For instance, it is well known that the copper-catalyzed sulfenylation of various compounds can be performed under oxidative conditions.^[10,11] This shows that the copper-catalyzed procedure is never affected by the generation of disulfides, and therefore, disulfides can be utilized (Figure 2).

 [[]a] Department of Chemistry, Fukushima Medical University, Fukushima 960-1295, Japan E-mail: taniguti@fmu.ac.jp

http://www.fmu.ac.jp/

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201402847.

SHORT COMMUNICATION

Figure 2. Strategy for the synthesis of thiosulfonate from thiols with sodium sulfinates.

Therefore, the copper-catalyzed oxidative coupling of thiols with sodium sulfinates was investigated. It was found that the procedure could produce the desired thiosulfonates in excellent yields. In this paper, the methodology will be described.

Results and Discussion

The evaluation of copper catalysts and ligands was commenced by using 4-toluenethiol (1a) and sodium 4-tolylsulfinate (2a) as starting materials (Table 1). Upon performing the reaction in the absence of the CuI catalyst at 30 °C in air, corresponding thiosulfonate 3aa was not obtained at all and the disulfide was produced in 81% yield (Table 1, entry 1). Similarly, the CuI catalyst itself could not promote the reaction (Table 1, entry 2). By examining the amine ligands, reactions performed by using N,N,N'',N''-tetramethyl-1,2-ethylenediamine (TMEDA), bpy (bipyridyl), and Phen \cdot H₂O (1,10-phenanthroline \cdot H₂O) provided the product in about 10% yield (Table 1, entries 3-5). However, upon adding water and NH₄BF₄ to improve the cationic nature of the copper catalyst, the yield of 3aa increased to 43 and 59% yield, respectively (Table 1, entries 6 and 7). Fortunately, the reaction that was performed under an oxygen atmosphere proceeded satisfactorily and gave 3aa in

96% yield (Table 1, entry 8). Regrettably, other additives (NH_4PF_6 and Cs_2CO_3), solvents, and copper catalysts did not adequately promote the reaction (Table 1, entries 9–15). Thus, it became apparent that the copper-catalyzed coupling of thiols with sodium sulfinates gave excellent results under an oxygen atmosphere.

On the basis of the established results, various combinations of thiols with sodium sulfinates were surveyed. A mixture of thiol 1 (0.3 mmol), sodium sulfinate 2 (0.36 mmol), NH_4BF_4 (0.15 mmol), and CuI–Phen·H₂O (1:1, 5 mmol) in DMA (0.3 mL) and water (0.1 mL) was stirred at 30 °C under an oxygen atmosphere. As shown in Table 2, this procedure afforded the expected thiosulfonates in 41-96% yields (Table 2, entries 1–17), and it also tolerated numerous combinations of arenethiols with sodium sulfinates. However, the reaction performed with the use of 2-pyridinethiol (2-PySH) did not proceed well (Table 2, entry 18). In the sulfonylation reaction, not only arenethiols but also alkanethiols could be used. However, it was necessary to use 10 mol-% of the CuI-Phen·H₂O catalyst and to prolong the reaction time owing to the stability of alkanethiolate-copper complexes (Table 2, entries 19 and 20).

To determine the reaction mechanism, some experiments were next screened. Upon performing the reaction in the absence of oxygen, the expected thiosulfonate was produced in 2% yield (Scheme 1). This result supports the fact that the coupling of thiols with sodium sulfinates requires the presence of oxygen.

The reactivity of the phenylthiolate(I)–copper complex,^[12] which was considered to be the intermediate, was also researched (Scheme 2). This reaction gave the corresponding product in 49% yield. It is clear that oxidation of thiolate–copper complexes promotes the synthesis of thiosulfonates.

Table 1. Investigation of suitable conditions.

		SH+SO ₂ Na			
		1a 2a (0.3 mmol) (0.36 mmol)	30 C, 1811 2 C C2 3aa		
Entry	[Cu]	Solvent [mL] ^[a]	Additive	Conditions	Yield 3aa [%] ^[b]
1	none	DMA (0.3)	none	air	0
2	CuI	DMA (0.3)	none	air	0
3	CuI–TMEDA	DMA (0.3)	none	air	9
4	CuI-bpy	DMA (0.3)	none	air	12
5	CuI–Phen•H ₂ O	DMA (0.3)	none	air	10
6	$CuI-Phen \cdot H_2O$	$DMA/H_2O(0.3:0.1)$	none	air	43
7	$CuI-Phen \cdot H_2O$	DMA/H ₂ O (0.3:0.1)	NH_4BF_4	air	59
8	$CuI-Phen \cdot H_2O$	DMA/H ₂ O (0.3:0.1)	NH_4BF_4	O_2	96
9	CuI–Phen•H ₂ O	$DMF/H_{2}O(0.3:0.1)$	NH_4PF_6	$\tilde{O_2}$	71
10	$CuI-Phen \cdot H_2O$	DMSO/H ₂ O (0.3:0.1)	NH_4BF_4	$\overline{O_2}$	65
11	CuCl–Phen $\cdot H_2O$	DMA/H ₂ O (0.3:0.1)	NH_4BF_4	$\tilde{O_2}$	43
12	CuBr–Phen•H ₂ O	DMA/H ₂ O (0.3:0.1)	NH_4BF_4	$\overline{O_2}$	43
13	CuCl ₂ -Phen·H ₂ O	DMA/H ₂ O (0.3:0.1)	NH_4BF_4	$\overline{O_2}$	49
14	$CuBr_2$ -Phen·H ₂ O	$DMA/H_2O(0.3:0.1)$	NH_4BF_4	$\tilde{O_2}$	54
15	Cu(OAc) ₂ -Phen·H ₂ O	$DMA/H_2O(0.3:0.1)$	NH_4BF_4	O_2	69

[Cu]-L (5 mol-%) additive (0 15 mmol)

[a] DMA = dimethylacetamide.[a] Yield of isolated product after silica gel chromatography.

Date: 04-08-14 12:10:36

Pages: 5

Table 2. Copper-catalyzed sulfonylation of thiols.^[a]

		Cul–Phen∙H ₂ O	
		(1:1, 5 mol-%)	
		NH ₄ BF ₄ (0.15 mmol)
R ¹ SH +	R ² SO ₂ Na		► R ¹ S-SO ₂ R ²
1	2	DMA, H ₂ O	3
		O ₂ 30 °C 18 h	

		- 2, ,	
Entry	R ¹	R ²	3 [%] ^[b]
1	C ₆ H ₅ SH	4-MeC ₆ H ₄ SO ₂ Na	85
2	4-MeC ₆ H ₄ SH	$C_6H_5SO_2Na$	85
3	4-MeC ₆ H ₄ SH	4-MeC ₆ H ₄ SO ₂ Na	96
4	4-MeC ₆ H ₄ SH	4-MeOC ₆ H ₄ SO ₂ Na	81
5	4-MeC ₆ H ₄ SH	4-AcHNC ₆ H ₄ SO ₂ Na	62
6	4-MeC ₆ H ₄ SH	4-ClC ₆ H ₄ SO ₂ Na	76 ^[c]
7	4-MeC ₆ H ₄ SH	4-FC ₆ H ₄ SO ₂ Na	72 ^[d]
8	4-MeC ₆ H ₄ SH	MeSO ₂ Na	87
9	4-MeOC ₆ H ₄ SH	$4 - MeC_6H_4SO_2Na$	90
10	4-ClC ₆ H ₄ SH	4-MeC ₆ H ₄ SO ₂ Na	80
11	4-BrC ₆ H ₄ SH	4-MeC ₆ H ₄ SO ₂ Na	73
12	4-HOC ₆ H ₄ SH	$4-\text{MeC}_6\text{H}_4\text{SO}_2\text{Na}$	41 ^[c]
13	$4-H_2NC_6H_4SH$	4-MeC ₆ H ₄ SO ₂ Na	42 ^[c]
14	2-MeC ₆ H ₄ SH	4-MeC ₆ H ₄ SO ₂ Na	82
15	2-MeOC ₆ H ₄ SH	4-MeC ₆ H ₄ SO ₂ Na	70
16	2-BrC ₆ H ₄ SH	4-MeC ₆ H ₄ SO ₂ Na	69
17	2-naphthylSH	4-MeC ₆ H ₄ SO ₂ Na	73
18	2-PySH	4-MeC ₆ H ₄ SO ₂ Na	trace
19	nBuSH	$4-\text{MeC}_6\text{H}_4\text{SO}_2\text{Na}$	68 ^[c,e]
20	iPrSH	4-MeC H SO Na	40[c,e]

[a] Reaction conditions: A mixture of thiol 1 (0.3 mmol), sodium sulfinate 2 (0.36 mmol), NH_4BF_4 (0.15 mmol), and CuI-Phen·H₂O (1:1, 5 mol-%) in DMA (0.3 mL) and water (0.1 mL) at 30 °C under an oxygen atmosphere. [b] Yield of isolated product after silica gel chromatography. [c] 36 h. [d] 24 h. [e] The reaction was performed by using CuI-Phen·H₂O (1:1, 10 mol-%).

4-MeC ₆ H ₄ SH (0.3 mmol)	Cul–Phen•H ₂ O (1:1, 5 mol-%) NH ₄ BF ₄ (0.15 mmol)	
+ 4-MeC ₆ H ₄ SO ₂ Na (0.36 mmol)	DMA/H ₂ O (3:1), 30 °C, 18 h under N ₂	4-MeC ₆ H ₄ S-SO ₂ -4-MeC ₆ H ₄ 2%

Scheme 1. Reaction in the absence of oxygen.

		Phen·H ₂ O (0.3 mmol)	
	4-MeCoH4SOoNa	NH ₄ BF ₄ (0.15 mmol)	PhS-SO-4-MeCoH
(0.3 mmol)	(0.36 mmol)	DMA/H ₂ O O ₂ , 30 °C 18 h	49 %

Scheme 2. Reactivity of the copper-phenylthiolate complex.

From these investigations, a plausible reaction mechanism is considered as follows (Figure 3). In cycle A, thiolate–copper(I) complex 9 is formed from copper iodide and the thiol or sodium sulfinate. Oxidation of 9 gives Cu^{II} complex 10; and R¹S(R²SO₂)Cu^{II}L_n 11 is produced by transmetalation. Finally, thiosulfonate is produced by reductive elimination and Cu^IX is regenerated.^[11a] In cycle B, after the formation of the disulfide by the oxidation of the thiol, reaction of Cu^IX with the disulfide and sodium sulfinate affords complex 12. Reductive elimination of 12 produces thiosulfinate and 9. Consequently, the oxidation of 9 affords 10, and 11 is reproduced.

Figure 3. A plausible reaction mechanism.

From the described plausible mechanism, it was believed that the coupling of disulfides with sodium sulfinates could be performed. To date, an excess amount of the iodine oxidant was necessary for the reaction. To solve this problem, attention was focused on the coupling of disulfides with sodium sulfinates. Notably, the reaction could be performed at 30 °C in air, and the expected thiosulfonates were obtained in excellent yields. Furthermore, both sulfide groups of the disulfide were available to the reaction (Scheme 3). Further investigation into the exact details of the conditions and the mechanism are now in progress.

		Cul–Phen·H ₂ O	
		(1:1, 5 mol-%)	
		NH ₄ BF ₄ (0.15 mmol)	
(ArS) ₂ +	4-MeC ₆ H ₄ SO ₂ Na bl) (0.45 mmol)	DMA/H ₂ O (3:1)	2 ArS-SO ₂ -4-MeC ₆ H ₄
(0.15 mmol		air, 30 °C, 18 h	Ar = Ph: 90 %
			4-MeC ₆ H ₄ : 85 %

Scheme 3. Sulfonylation of disulfides.

Conclusions

In conclusion, the copper-catalyzed coupling of thiols with sodium sulfinates was achieved under an oxygen atmosphere. The procedure could be used to synthesize various thiosulfonates in good yields. The coupling of disulfides with sodium sulfinates also proceeded in air, and the two sulfide groups on the disulfides were available.

Experimental Section

General Method: CuI (2.9 mg, 0.015 mmol) and Phen·H₂O (3.0 mg, 0.015 mmol) were added to a mixture of benzenethiol (33.1 mg, 0.3 mmol), sodium 4-tolylsulfinate (64.1 mg, 0.36 mmol), and NH₄BF₄ (15.7 mg, 0.15 mmol) in DMA (0.3 mL) and H₂O (0.1 mL), and the mixture was stirred at 30 °C for 18 h under an oxygen atmosphere. After the residue was dissolved in Et₂O, the solution was washed with H₂O and saturated sodium chloride and dried with anhydrous magnesium sulfate. Chromatography on silica gel (30% diethyl ether/hexane) gave PhS-SO₂-4-MeC₆H₄ (67.5 mg, 85%).

Supporting Information (see footnote on the first page of this article): Experimental details, analytical data. and copies of the ¹H NMR and ¹³C NMR spectra.

SHORT COMMUNICATION

- a) B. M. Trost, I. Fleming (Eds.), Comprehensive Organic Synthesis, Pergamon, New York, 1991, vol. 4; b) F. A. Davis, J. Org. Chem. 2006, 71, 8993–9003.
- [2] a) A. Krief, Comprehensive Organometallic Chemistry II (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, New York, **1995**, vol. 11, chapter 13; b) A. de Meijere, F. Diederich (Eds.), Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, Weinheim, Germany, **2004**; c) S. V. Ley, A. W. Thomas, Angew. Chem. Int. Ed. **2003**, 42, 5400–5449; Angew. Chem. **2003**, 115, 5558–5607; d) T. Kondo, T. Mitsudo, Chem. Rev. **2000**, 100, 3205–3220; e) I. P. Beletskaya, V. P. Ananikov, Chem. Rev. **2011**, 111, 1596–1636; f) D. V. Partyka, Chem. Rev. **2011**, 111, 1529– 1595.
- [3] P. Metzner, A. Thuillier, Sulfur Reagents in: Organic Synthesis (Eds.: A. R. Katritzky, O. Meth-Cohn, C. W. Rees), Academic, San Diego, USA, 1994.
- [4] a) K. Sugata, L. Song, M. Nakamura, S. Ueki, P. G. Fajer, T. Arata, *J. Mol. Biol.* 2009, *386*, 626–636; b) B. Tiebel, N. Radzwill, L. M. Aung-Hilbrich, V. Helbl, H.-J. Steinhoff, W. Hillen, *J. Mol. Biol.* 1999, *290*, 229–240.
- [5] a) L. Field, T. F. Parsons, J. Org. Chem. 1965, 30, 657–659; b)
 M. M. Chau, J. L. Kice, J. Am. Chem. Soc. 1976, 98, 7711– 7716; c) M.-T. Cai, G.-S. Lv, J.-X. Chen, W.-X. Gao, J.-C. Ding, H.-Y. Wu, Chem. Lett. 2010, 39, 368–369; d) N. Iranpoor, H. Firouzabadi, A.-R. Pourali, Synlett 2004, 347–349; e) M. Kiriyama, S. Narito, Y. Ishizuka, H. Hanai, T. Noguchi, Tetrahedron Lett. 2011, 52, 3086–3089; f) S. Sobhani, S. Aryanejad, M. F. Maleki, Synlett 2011, 319–322; g) K. Bahrami, M. M. Khodaei, D. Khaledian, Tetrahedron Lett. 2012, 53, 354–358.

- [6] a) S. Oae, T. Takata, Y. H. Kim, Bull. Chem. Soc. Jpn. 1982, 55, 2484–2494; b) S. Oae, T. Tanaka, Y. H. Kim, Tetrahedron 1981, 37, 37–44; c) K. Fujiki, N. Tanifuji, Y. Sasaki, T. Yokoyama, Synthesis 2002, 343–348; d) M.-L. Alcaraz, S. Atkinson, P. Cornwall, A. C. Foster, D. M. Gill, L. A. Humphries, P. S. Keegan, R. Kemp, E. Merifield, R. A. Nixon, A. J. Noble, D. O'Beirne, Z. M. Patel, J. Perkins, P. Rowan, P. Sadler, J. T. Singleton, J. Tornos, A. J. Watts, I. A. Woodland, Org. Process Res. Dev. 2005, 9, 555–569.
- [7] a) E. Block, J. O'Connor, J. Am. Chem. Soc. 1974, 96, 3921– 3929; b) M. D. Bently, I. B. Douglass, J. A. Lacadie, J. Org. Chem. 1972, 37, 333–334.
- [8] a) G. Liang, J. Chen, W. Li, J. Chen, H. Wu, *Tetrahedron Lett.* 2012, 53, 6768–6770; b) G. Liang, M. Liu, J. Chen, J. Ding, W. Gao, H. Wu, *Chin. J. Chem.* 2012, 30, 1611–1616.
- [9] a) A. Bewick, J. M. Mellor, D. Milano, W. M. Owton, J. Chem. Soc. Perkin Trans. 1 1985, 1045–1048; b) R. D. Bach, S. J. Rajan, H. B. Vardhan, T. J. Lang, N. G. Albrecht, J. Am. Chem. Soc. 1981, 103, 7727–7734; c) A. Ichimura, D. L. Nosco, E. Deutsch, J. Am. Chem. Soc. 1983, 105, 844–850.
- [10] S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, *Chem. Rev.* 2013, 113, 6234–6458.
- [11] a) N. Taniguchi, J. Org. Chem. 2007, 72, 1241–1245; b) N. Taniguchi, Eur. J. Org. Chem. 2010, 2670–2673; c) N. Taniguchi, Tetrahedron 2014, 70, 1984–1990; d) M. M. Kadooka, L. G. Warner, K. Seff, J. Am. Chem. Soc. 1976, 98, 7569–7578.
- [12] For the preparation of PhSCu, see: Organic Syntheses, Coll. Vol. V, Wiley, New York, 1973, p. 107–110.

Received: July 1, 2014 Published Online: Date: 04-08-14 12:10:36

Pages: 5

Synthesis of Thiosulfonates by Oxidative Coupling

Oxidative Coupling

The copper-catalyzed sulfonylation of thiols is performed by using sodium sulfinates under an oxygen atmosphere to afford the corresponding thiosulfonates in good yields. The procedure tolerates numerous combinations of arene- and alkanethiols with sodium sulfinates. Phen = 1,10-phenanthroline.

R ¹ SH	cat. Cul–Phen∙H ₂ O NH ₄ BF ₄	
+ R ² SO ₂ Na	DMA/H ₂ O (3:1) O ₂ , 30 °C, 18 h	R 0-302R

N. Taniguchi* 1-5

Copper-Catalyzed Synthesis of Thiosulfonates by Oxidative Coupling of Thiols with Sodium Sulfinates

Keywords: Synthetic methods / Oxidative coupling / Sulfur / Thiols / Sulfinates / Copper