Tetrahedron Letters 52 (2011) 4965-4966

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A convenient synthesis of 5-fluorofuran-2-carboxylic acid

Renhua Song, Weimin Lin, Qin Jiang*

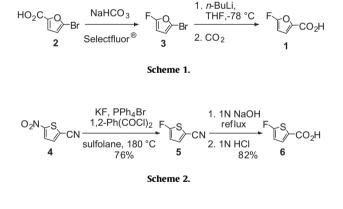
AMRI, 26 Corporate Circle, PO Box 15098, Albany, NY 12212, United States

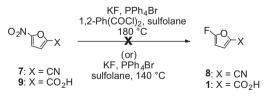
ARTICLE INFO

Article history: Received 12 July 2011 Accepted 20 July 2011 Available online 27 July 2011

Keywords:

5-Fluorofuran-2-carboxylic acid Benzyl 5-nitrofuran-2-carboxylate Benzyl 5-fluorofuran-2-carboxylate Synthesis


ABSTRACT


A convenient synthesis of 5-fluorofuran-2-carboxylic acid has been achieved in two steps and 56% total yield. Fluorodenitration of commercially available benzyl 5-nitrofuran-2-carboxylate utilizing potassium fluoride and catalytic tetraphenylphosphonium bromide in sulfolane at 140 °C for 2 h furnished benzyl 5-fluorofuran-2-carboxylate. Hydrogenolysis of benzyl 5-fluorofuran-2-carboxylate gave the title compound.

© 2011 Elsevier Ltd. All rights reserved.

5-Fluorofuran-2-carboxylic acid (1) is a useful building block in pharmaceutical research.¹ The preparation of **1** was described in the literature^{1a} as shown in Scheme 1. The authors did not provide a yield, and in our hands following the procedures provided only a 5% yield of **1** from **2**. Fluorodenitration is a practical method for introducing fluorine into the *meta*-position of an activated aromatic ring.² Chambers³ reported a fluorodenitration strategy to convert 5-nitrothiophene-2-carbonitrile (**4**) to 5-fluorothiophene-2-carboxylic acid (**6**) (Scheme 2) in good yield. Therefore, we considered a similar strategy to prepare the furan analogue (**1**) and the results are reported herein.

We first investigated Chambers' method (KF, PPh₄Br, 1,2-Ph(COCl)₂, sulfolane, 180 °C)³ to convert 5-nitrofuran-2-carbonitrile (7) to 5-fluorofuran-2-carbonitrile (8), as well as 5-nitrofuran-2carboxylic acid (9) to 1 (Scheme 3). In both cases, we observed no formation of the desired products. We investigated the fluorodenitration of various esters of 9. The reactions were carried out with or without phthaloyl chloride at various temperatures (Table 1). Both methyl ester (10a) and *tert*-butyl ester (10b) gave complex reaction profiles (entries 1 and 2), whereas the benzyl ester (10c) gave the desired corresponding fluoride (11c) (entries 3-12). Our investigation showed that the addition of phthaloyl chloride is not necessary for the fluorodenitration of an activated furan ring and reaction temperatures from 120 to 140 °C can be tolerated (entries 7–9). A significant reduction in yield was noted when the reaction was conducted at 160 °C (entry 5). Considering the shorter reaction time, we believe 140 °C is the best reaction temperature (entry 7).⁴ Different solvents were also investigated (entries 7 and 10-12) with sulfolane providing the best results of those examined. Our

Scheme 3.

fluorodenitration condition (KF, PPh₄Br, sulfolane, 140 $^{\circ}$ C) was applied to convert **7** to **8** and **9** to **1**. No desired corresponding fluorides were observed (Scheme 3).

Hydrogenolysis of **11c** gave the title compound (**1**) in 95% yield (Scheme 4).⁵ Thus, starting from the commercially available ester **10c**, 5-fluorofuran-2-carboxylic acid (**1**) has been achieved in two steps and 56% total yield.

^{*} Corresponding author. Tel.: +1 518 512 2380; fax: +1 518 512 2079. *E-mail address:* qin.jiang@amriglobal.com (Q. Jiang).

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.07.087

Table 1

Fluorodenitration of 5-nitrofuran-2-carboxylate

		0	2N $CO_{2}R$ KF, PPt	$\xrightarrow{H_4Br}$ $\xrightarrow{F_0}$ CO_2R	a : R = Me b : R = <i>t-</i> Bu			
		10		11	c : R = Bn			
Entry	Compound	R	Phthaloyl Chloride	Solvent	T (°C)	<i>t</i> (h)	Product	Yield (%) ^a
1	10a	Me	-	Sulfolane	140	2	11a	-
2	10b	t-Bu	-	Sulfolane	140	2	11b	-
3	10c	Bn	0.9 equiv	Sulfolane	180	2	11c	7
4	10c	Bn	-	Sulfolane	180	2	11c	11
5	10c	Bn	-	Sulfolane	160	2	11c	15
6	10c	Bn	0.9 equiv	Sulfolane	140	4	11c	40
7	10c	Bn		Sulfolane	140	2	11c	59
8	10c	Bn	-	Sulfolane	130	5	11c	56
9	10c	Bn	_	Sulfolane	120	6	11c	59
10	10c	Bn	_	DMSO	140	1.5	11c	20
11	10c	Bn	_	DMF	140	2.5	11c	42
12	10c	Bn	-	NMP	140	2	11c	31

^a Isolated yield.

$$\begin{array}{c}
F \\
O \\
CO_2Bn \\
11c \\
95\% \\
\end{array}
\begin{array}{c}
Pd/C, H_2 (1 atm) \\
MeOH, rt, 30 min \\
95\% \\
1 \\
\end{array}$$

Scheme 4.

Acknowledgments

The authors would like to thank Professor Thomas R. Hoye, Dr. Keith Barnes, Dr. R. Jason Herr, and Dr. P. Jolicia Gauuan for helpful suggestions to this manuscript.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2011.07.087.

References and notes

 (a) Neustadt, B. R.; Lindo, N. A.; Greenlee, W. J.; Tulshian, D.; Silverman, L. S.; Xia, Y.; Boyle, C. D.; Chackalamannil, S. WO 2001092264 A1 2001.; (b) Shin, Y.; Chen, W.; Habel, J.; Duckett, D.; Ling, Y. Y.; Koenig, M.; He, Y.; Vojkovsky, T.; LoGrasso, P.; Kamenacka, T. M. Bioorg. Med. Chem. Lett. 2009, 19, 3344; (c) Mazurov, A.; Miao, L.; Xiao, Y.; Hammond, P. S.; Miller, C. H.; Akireddy, S. R.; Murthy, V. S.; Whitaker, R. C.; Breining, S. R.; Melvin, M. S. WO 2008057938.

- (a) Adams, D. J.; Clark, J. H. Chem. Soc. Rev. 1999, 28, 225; (b) Suzuki, H.; Yazama, N.; Yoshida, Y.; Furusawa, O.; Kimura, Y. Bull. Chem. Soc. Jpn. 1990, 63, 2010.
- 3. Chambers, R. J.; Marfat, A. Synth. Commun. 2000, 30, 3629.
- 4. Standard procedure for fluorodenitration: A suspension of commercially available benzyl 5-nitrofuran-2-carboxylate (**10c**, 0.793 g, 3.21 mmol), spray-dried potassium fluoride (0.932 g, 16.0 mmol), and tetraphenylphosphonium bromide (0.139 g, 0.330 mmol) in anhydrous sulfolane (10 mL) was heated at 140 °C under nitrogen for 2 h (reaction was monitored by TLC). The reaction mixture was cooled to rt and diluted with water (10 mL). The resulting mixture was extracted with diethyl ether (×3). The combined extracts were washed with brine, dried over anhydrous MgSQ₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column (5% MTBE/hexanes) to give **11c** (0.416 g, 59%) as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 7.40–7.34 (m, 5H), 7.15 (t, *J* = 3.5 Hz, 1H), 5.62 (dd, *J* = 7.1, 3.6 Hz, 1H), 5.23 (s, 218); ¹³C NMR (75 MHz, CDCl₃) δ 188.9 (d, *J* = 284 Hz), 157.7, 135.5, 135.0, 128.6, 128.5, 128.4, 120.6, 85.1 (d, *J* = 13.4 Hz), 66.6; ¹⁹F NMR (282 MHz, CDCl₃) δ 106.4.
- 5. Preparation of **1**: To a solution of **11c** (0.220 g, 1.00 mmol) in MeOH (10 mL) was added 10% Pd/C (50% wet, 22 mg). The resulting suspension was stirred at rt under hydrogen atmosphere (balloon, 1 atm) for 30 min (reaction was monitored by TLC; prolonged reaction time resulted in de-fluoronation). The reaction mixture was filtered through a short pad of diatomaceous earth and the filter cake was washed with methanol (10 mL). The filtrate was concentrated under reduced pressure. The residue was triturated with a mixture of hexanes (4 mL) and methylene chloride (2 mL), filtered, and dried under high vacuum to give **1** (0.123 g, 95%) as a white solid: ¹H NMR (300 MHz, CD₃OD) δ 7.20 (t, *J* = 3.5 Hz, 1H), 5.81 (dd, *J* = 7.0, 3.5 Hz, 1H); ¹³C NMR (75 MHz, CD₃OD) δ 160.7, 160.2 (d, *J* = 281 Hz), 137.1, 121.6, 86.0 (d, *J* = 13.6 Hz); ¹⁹F NMR (282 MHz, CD₃OD) δ 110.8.