Tetrahedron 64 (2008) 7992-7998

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis and characterization of 1,3-diarylbenzo[c]selenophenes

P. Amaladass, Natarajan Senthil Kumar, Arasambattu K. Mohanakrishnan*

Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India

ARTICLE INFO

ABSTRACT

Article history: Received 21 March 2008 Received in revised form 30 May 2008 Accepted 2 June 2008 Available online 6 June 2008

Keywords: Benzo[*c*]selenophene Diarylbenzo[*c*]furan Woollins reagent

1. Introduction

Conjugated macromolecules attracted considerable interest in the past two decades due to their unique electrical and optical properties.¹ Among the various conjugated systems developed, poly(thiophene) derivatives have been paid much attention due to their electronic properties, stability, and structural versatility.² The synthesis and electrochemical properties of benzo[*c*]thiophene analogs have been well explored due to the low band-gap properties associated with their polymer.^{3,4} However, the unstable benzo[*c*]selenophene **1** and its polymer have received only scant attention, Scheme 1. Hence, the synthesis of stable 1,3-diarylbenzo[*c*]selenophene analogs will be highly useful for further understanding of their physical properties.

$R^{1} \xrightarrow{Se} R^{1}$ $1 R^{1} = H$ $2 R^{1} = CN$ $3 R^{1} = 2-\text{thienyl}$ $R^{1} \xrightarrow{Fe} 4$ Fe C

Scheme 1.

The synthesis of dicyanobenzo[c]thiophene and dicyanobenzo[c]selenophene **2** analogs starting from o-xylene dicyanide using SOCl₂ and SeOCl₂ as sulfur and selenium transfer reagents have been reported,⁵ Scheme 1. The synthesis of 1,3-disubstituted

benzo[*c*]selenophene analogs using the procedure established for naphtho[*c*]thiophenes⁶ is also achieved. Cava and co-workers have reported 3,4-ethylenedioxyselenophene as a novel building block for electron rich π -conjugated polymers.⁷ The same group also reported the synthesis of benzo[*c*]selenophene via bromination– dehydrobromination as well as oxidation of the 1,3-dihydrobenzo[*c*]selenophene.⁸ Aqad and co-workers reported the synthesis and electrochemical studies of seleno[3,4-*b*]quinoxalines.⁹ The synthesis of methylthiocapped bi-isothianaphthalene and bi-isoselenophene derivatives¹⁰ was also achieved. Larock and co-workers recently reported 2,3-disubstituted benzo[*b*]selenophenes.¹¹

Satoshi Ogawa and co-workers outlined the synthesis and electrochemical studies of 1,3-diferrocenyl benzo[c]selenophene **4**.¹²

2. Results and discussion

A series of 1.3-diarylbenzolclselenophenes (symmetrical/unsymmetrical) have been synthesized in-

volving a selenium transfer reaction of keto-alcohol/benzo[c]furan using Woollins reagent. The optical

and electrochemical studies of these diarylbenzo[c]selenophenes are correlated with their structures.

The incredible properties of conducting poly(benzo[*c*]-thiophene) led us to explore the synthesis of the corresponding selenium analog namely benzo[*c*]selenophenes, which will be useful for further understanding of its optical properties. We have recently communicated the synthesis of 1,3-diarylbenzo-[*c*]thiophenes¹³ as well as benzo[*c*]selenophene¹⁴ analogs.

A survey of the literature revealed that Woollins reagent $[PhP(Se)(\mu-Se)]_2$, a selenium analog of well-known sulfur transfer Lawesson reagent, has been widely employed for the preparation of selenoamides.¹⁵ The usual ring opening of the lactones **5a**–**d** with freshly prepared aryl/hetero-arylmagnesium bromides followed by aqueous NH₄Cl quenching and subsequent interaction of the resulting keto-alcohols **6a**–**f** with 0.25 equiv of Woollins reagent at

© 2008 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +91 44 24451108; fax: +91 44 22300488. *E-mail address*: mohan_67@hotmail.com (A.K. Mohanakrishnan).

^{0040-4020/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.06.002

room temperature furnished the expected benzo[c]selenophenes **7a–f**. However, the yields of the various 1,3-disubstituted benzo-[c]selenophenes **7a–f** prepared using this procedure were only around 10–30%, Scheme 2.

The formation of the selenophenes 7a-f can be visualized through selenation of carbonyl group followed by intramolecular cyclization analogous to that of benzo[*c*]thiophenes.^{4a} The recovery of keto-alcohols **6a**–**f** confirmed that the selenation of keto group was not facile as that of thionation. Hence, it was decided to explore an alternative route to the preparation of benzo[*c*]selenophenes. It

 Table 1

 Synthesis of 1,3-diarylbenzo[c]selenophenes using keto-alcohol/benzo[c]furan

should be mentioned that the dithienylbenzo[*c*]furan on treatment with Lawesson reagent led to the formation of the 1,3-dithienybenzo[*c*]thiophene¹⁶ in good yields. To our delight, the interaction of known 1,3-dithienylbenzo[*c*]furan **8a** with 0.25 equiv of Woollins reagent at room temperature in dry DCM for 4 h followed by mass spectral analysis of the crude product indicated the absence of the M⁺ ion peak at *m*/*z* 282 corresponding to the dithienylbenzo[*c*]furan. The presence of M⁺ ion peak at *m*/*z* 345 confirmed the complete transformation of **8a** into the required dithienylbenzo[*c*]selenophene **7a** (67%).

^a Isolated yield after column chromatography.

^b Isolated yield from keto-alcohol.

^c Isolated yield from benzo[*c*]furan.

Hence, following this procedure, the unsymmetrical benzo-[c]furans **8b–f** are smoothly converted into the corresponding benzo[c]selenophenes **7b–f** in 55–66% yields, Scheme 3. Obviously, the interaction of the benzo[c]furans **8a–f** with Woollins reagent will lead to the formation of hetero Diels–Alder adduct between furan and P=Se. The unstable adduct on rearrangement will furnish the selenophenes **7a–f**. The yields of the various benzo[c]selenophenes prepared via interaction of keto-alcohol/benzo[c]furan with Woollins reagent are listed in Table 1.

Thus, the conversion of symmetrical/unsymmetrical benzo[*c*]furans **8a–f** into the corresponding selenium analogs **7a–f** could be easily carried out via interaction with Woollins reagent. The ring opening of the lactones **5a/5e** with Grignards followed by acidic workup led to the isolation of stable benzo[*c*]furan analogs **8g–j** in 51–72% yields. As expected, the benzo[*c*]furans **8g–j** on interaction with Woollins reagent afforded respective benzo[*c*]selenophene analogs **7g–j** in 58–70% of yields, Scheme 4. The details of the aryl Grignards used and the yield of the benzo[*c*]selenophene analogs **7g–j** obtained from the respective benzo[*c*]furans **8g–j** are presented in Table 2.

The additional diarylbenzo[*c*]furans were prepared adopting the published procedure.¹⁷ The interaction of 3-methoxyphthalide with 2 equiv of aryl/hetero-aryl Grignards followed by acidic

Table	2
-------	---

Synthesis of benzo[c]sel	enophene from	benzo[c]furan
by maneous or benebole ber	emoprieme mom	benbololiaran

workup afforded the required diarylbenzo[*c*]furans **8a/10a**–**e** in 45– 55% yields. As expected, these symmetrical diarylbenzo[*c*]furans on reaction with 0.25 equiv of Woollins reagent led to the isolation of the corresponding diarylbenzo[*c*]selenophene analogs **7a/7k–o** in 40–61% yields, Scheme 5.

Finally, the bis-benz-annelated benzo[c]selenophenes **13**/14 were synthesized via ring opening reaction of commercially available diphthalide **11** with thienyImagnesium bromide followed by neutral workup and subsequent selenation of the resulting ketoalcohol using 0.5 equiv of Woollins reagent in 30 and 25% yields, respectively, Scheme 6. Since, the furan analogs of **13**/14 were found to be unstable, an alternative route for selenophenes **13**/14 from the respective benzo[c]furan could not be explored.

^a Isolated yield after column chromatography.

Scheme 6.

3. Photo physical and electrochemical studies

The UV-vis spectra of the benzo[c]selenophenes exhibited strong absorption in the region 410–447 nm corresponding to the π - π * electron transfer of the entire conjugated backbone. The exact λ_{max} values of the benzo[c]selenophene are listed in Table 3. On comparison with 1,3-dithienylbenzo[c]thiophene (λ_{max} =432 nm),^{4d} benzo[*c*]selenophene **7a** exhibited λ_{max} at 447 nm, which confirms the enhancement of conjugation. The introduction of alkyl substituent (*n*-C₆H₁₃) in the α/β positions of **7a** lowers the long-wavelength absorption to 422 nm. In general, the introduction of alkyl/ alkoxy groups into the benzo[c]selenophene system reduced the π conjugation, which was reflected through the bathochromic shift of its λ_{max} value. The bis-benzo[c]selenophenes **13** and **14** exhibited λ_{max} at 535 and 525 nm, respectively. Thus, the introduction of hexyl substituents at both the ends of benzo[c]selenophene 13 has decreased the π -conjugation. Increasing the ratio of benzo[c]selenophene/thiophene $(7a \rightarrow 13/14)$ led to the enhancement of conjugation, which was reflected by an increased λ_{max} value.

Qualitative fluorescence spectral data of the benzo[c]selenophenes are recorded in DCM solution and the values are presented in Table 3. Compounds 7a-k containing one benzo[c]selenophene unit emitted light in the region 485-570 nm. As in the case of absorption, the emission value of benzo[c]selenophenes 13/14 also red shifted with respect to the increase of π -conjugation.

The HOMO and LUMO energy levels of selected benzo[c]selenophenes were calculated from the absorption onset and the onset oxidation potential, and the values are presented in Table 3. All the benzo[c]selenophene analogs exhibited E_g value in the range of 2–2.8 eV. Increasing the ratio of benzo[c]selenophene to thiophene significantly reduced the E_g value (7a \rightarrow 13/14). Among the

Table 3

Summary of physical measurements for some selected benzo[c]selenophenes

						• •	
Compound	λ _{max} ^a (nm)	λ _{onset} (nm)	λ _{lum} b (nm)	E_{g}^{c} (eV)	E ^{onset} (eV)	HOMO ^d (eV)	LUMO ⁶ (eV)
7a	447	470	550	2.64	0.60	5.04	2.40
7b	422	465	530	2.66	0.77	5.21	2.55
7c	432	460	538	2.69	0.75	5.19	2.50
7e	421	453	570	2.74	0.75	5.19	2.45
7j	412	437	495	2.84	0.72	5.16	2.32
7k	420	452	517	2.74	0.70	5.14	2.40
7m	410	450	510	2.75	0.78	5.22	2.47
7n	420	455	485	2.72	0.81	5.25	2.53
13	535	610	615	2.03	0.57	5.01	2.98
14	525	595	610	2.08	0.61	5.05	2.97

Measured in dilute dichloromethane solution.

Excited at the absorption maxima.

Estimated from the onset of absorption ($E_g=1240/\lambda_{onset}$).

Calculated using empirical equation: HOMO= $(4.44+E_{ox}^{onset})$.

Calculated from LUMO=HOMO-Eg.

Table 4 Redox behavior of some selected benzol clselenophene analogs

+0.86

 $+0.86^{\circ}$

Compound	${}^{1}E_{\mathrm{pa}}{}^{\mathrm{a}}\left(\mathrm{V}\right)$	${}^{1}E_{\rm pc}{}^{\rm b}(V)$	$^{1}\Delta E_{p}^{c}$ (mV)	$^{2}E_{\mathrm{pa}}^{a}(\mathrm{V})$	$^{2}E_{\mathrm{pc}}^{b}(\mathrm{V})$	$^{2}\Delta E_{p}^{c}$ (mV)	
7a	+0.71 ^e						
7c	+0.88 ^e						
7e	+0.80	+0.47	330 ^e				
7i	+0.86						
7g	+0.63	+0.40	230 ^e	+1.00	+0.56	440 ^e	
7k	+0.77 ^e			+1.10	+0.67	430 ^e	
7n	+0 98 ^e						

а

7j 13

 ${}^{1}E_{pa}$ and ${}^{2}E_{pa}$ are the anodic peak potentials of the first and second redox processes, respectively.

 $^{b-1}E_{pc}$ and $^{2}E_{pc}$ are the cathodic peak potentials of the first and second redox processes, respectively.

 $^{-1}\Delta E_{\rm p}$ and $^{2}\Delta E_{\rm p}$ are the differences between the cathodic and anodic peak potentials of the first and second redox processes, respectively.

^d Quasireversible

^e Irreversible.

f Reversible.

benzo[c]selenophene analogs, compound 13 exhibited lowest E_{σ} value (~2 eV). The increase of the number of benzo[c]selenophene unit significantly increased the LUMO energy level. It should be mentioned that the corresponding HOMO energy levels of 7a and 13 are almost identical (~5 eV). The higher HOMO energy levels of benzo[c]selenophenes (~5.2 eV) greatly reduces energy barrier for hole injection from ITO (φ =4.8 eV) to emissive Alg₃ (φ =5.8 eV). Hence these benzo[c]selenophenes can be explored as hole transport material for double-layer OLEDS.

The electrochemical properties of benzo[c]selenophenes are summarized in Table 4. The benzo[c]selenophene 7a showed a irreversible anodic peak potential at +0.71 V at scan rate of 100 mV S⁻¹. The anodic peak potential for **7a** and the corresponding 1,3-dithienylbenzo[c]thiophene $(\sim 0.71)^{4d}$ was found to be the same. The introduction of alkyl side chain $(n-C_6H_{13})$ in the α/β positions of 7a significantly diminished its electro-oxidation behavior. Surprisingly, the increase of the number of benzo[*c*]selenophene unit $(7a \rightarrow 13)$ does not influence on its anodic peak potential value.

4. Conclusions

The synthesis of several 1,3-diarylbenzo[c]selenophenes involving a selenium transfer reaction of keto-alcohol or diarylbenzo[c]furans using Woollins reagent was achieved. The bisannelated benzo[c]selenophenes were also prepared using this procedure. The benzolclselenophenes were obtained in relatively better yields from the respective benzo[c]furan rather than the keto-alcohol. Results from the optical and electrochemical studies of benzo[c]selenophenes are also presented.

5. Experimental

5.1. General

All melting points are uncorrected. IR spectra were recorded on a SHIMADZU FT-IR 8300 instrument. ¹H and ¹³C NMR spectra were recorded in CDCl₃ using TMS as an internal standard on a JEOL 400 and Bruker-300 spectrometers, respectively. Mass spectra were recorded on a JEOL DX 303 HF spectrometer. Elemental analyses were carried out on Perkin-Elmer (Layolla College, Chennai) and Vario EL III (CDRI, Lucknow) equipments. All UV-vis spectra were recorded in CH₂Cl₂ solution. The emission spectra were recorded on Perkin-Elmer LS-45 spectrophotometer. The cyclic-voltammogram of 10^{-3} M solution of diarylbenzo[*c*]selenophenes was carried out on a CHI 600C electrochemical analyzer. All the measurements were carried out under oxygen free condition using three-electrode cell in which glassy carbon electrode was working electrode, saturated Ag/AgCl electrode was reference electrode, and platinum wire was used as an auxiliary electrode. Tetrabutylammoniumhexafluoro phosphate (TBAPF₆) was used as supporting electrolyte and its concentration was 10^{-1} M.

5.2. A representative procedure for the preparation of benzo[c]selenophene from keto-alcohol (procedure A)

To a solution of phthalide **5a** (2 g, 9.25 mmol) in anhydrous THF (25 mL), 2-thienylmagnesium bromide [prepared from 2-bromothiophene (1.81 g, 11.10 mmol) and magnesium turnings (0.29 g, 12.08 mmol)] was added at 0 °C under N₂. The reaction mixture was slowly raised to room temperature and stirred for 4 h. It was then quenched with aqueous ammonium chloride solution, extracted with DCM (2×20 mL), and dried (Na₂SO₄). The pale yellow solution of keto-alcohol in DCM was stirred with Woollins reagent (1.23 g, 2.31 mmol) for 4 h. After removal of the solvent, the residue was purified by column chromatography (neutral alumina, hexane) to afford the benzo[c]selenophene **7a** as an orange solid (0.32 g, 10%).

5.2.1. 2-(1-(Thiophen-2-yl)benzo[c]selenophen-3-yl)thiophene (7a)

Mp 85 °C. [Found: C, 55.81; H, 3.15; S, 18.81. $C_{16}H_{10}S_2Se$ requires: C, 55.65; H, 2.92; S, 18.57%.] R_f (hexane) 0.82; δ_H (300 MHz, CDCl₃) 7.82 (2H, dd, J 3.88, 2.96 Hz, ArH), 7.39–7.37 (2H, m, ArH), 7.30–7.28 (2H, m, ArH), 7.17–7.14 (2H, m, ArH), 7.01 (2H, dd, J 3.88, 3.2 Hz, ArH); δ_c (75.6 MHz, CDCl₃) 137.7, 127.9, 127.8, 126.1, 125.8, 124.4, 122.0, 119.8; m/z (EI) 345 (M⁺, 13).

5.3. A representative procedure for the preparation of benzo[*c*]selenophenes from benzo[*c*]furans (procedure B)

To a solution of phthalide **5a** (1 g, 4.62 mmol) in anhydrous THF (25 mL) was added 2-thienylmagnesium bromide [prepared from 2-bromothiophene (0.90 g, 5.55 mmol) and magnesium turnings (0.14 g, 5.83 mmol)] at 0 °C under N₂. The reaction mixture was slowly raised to room temperature and stirred for 4 h. It was then quenched with crushed ice (5 g) containing HCl (10 mL), extracted with DCM (2×20 mL), and dried (Na₂SO₄). The greenish-yellow fluorescent solution of benzo[*c*]furan was then stirred with Woollins reagent (0.62 g, 1.15 mmol) at room temperature for 4 h. After removal of the solvent, the residue was purified by column chromatography (neutral alumina, hexane) to afford the benzo[*c*]selenophene **7a** as an orange solid (1.07 g, 67%).

5.3.1. 2-(1-(Thiophen-2-yl)benzo[c]selenophen-3-yl)thiophene (7a)

Mp 85 °C. [Found: C, 55.81; H, 3.15; S, 18.81. $C_{16}H_{10}S_2Se$ requires: C, 55.65; H, 2.92; S, 18.57%.] R_f (hexane) 0.82; ν_{max} (KBr) 1600, 1510, 785, 465 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.82 (2H, dd, *J* 3.88, 2.96 Hz, ArH), 7.39–7.37 (2H, m, ArH), 7.30–7.28 (2H, m, ArH), 7.17–7.14 (2H, m, ArH), 7.01 (2H, dd, *J* 3.88, 3.2 Hz, ArH); δ_c (75.6 MHz, CDCl₃) 137.7, 127.9, 127.8, 126.1, 125.8, 124.4, 122.0, 119.8; m/z (EI) 345 (M⁺, 13).

5.3.2. 3-Hexyl-2-(1-(thiophen-2-yl)benzo[c]selenophen-3-yl)thiophene (**7b**)

Following the above-mentioned procedure B, compound **7b** was obtained using the phthalide **5a** (1 g, 4.63 mmol), 3-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-3-hexylthiophene (1.37 g, 5.55 mmol) and Mg (0.14 g, 5.83 mmol)] and Woollins reagent (0.61 g, 1.15 mmol) as a thick orange liquid (1.20 g, 61%). [Found: C, 61.22; H, 5.36; S, 15.22. C₂₂H₂₂S₂Se requires: C, 61.52; H, 5.16; S, 14.93%.] R_f (hexane) 0.84; ν_{max} (KBr) 3010, 1596, 1491, 1200, 908, 764, 740, 689 cm⁻¹; δ_{H} (400 MHz, CDCl₃) 7.76 (1H, d, *J* 8.8 Hz, ArH), 7.30–7.26 (4H, m, ArH), 7.22 (1H, dd, *J* 2.4, 1.2 Hz, ArH), 7.05 (1H, dd, *J* 3.6, 1.4 Hz, ArH), 6.97 (1H, d, *J* 5.3 Hz, ArH), 6.90 (1H, d, J 7.8 Hz, ArH), 2.53 (2H, t, J 7.8 Hz, CH₂), 1.31–1.60 (8H, m, CH₂), 0.74 (3H, t, J 6.8 Hz, CH₃); δ_c (75.6 MHz, CDCl₃) 143.9, 132.1, 131.8, 131.4, 130.4, 130.2, 129.1, 127.3, 126.8, 126.5, 125.3, 124.9, 124.0, 122.7, 122.3, 120.3, 31.9, 31.8, 30.1, 29.0, 22.8, 14.3; *m/z* (EI) 430 (M⁺¹, 100).

5.3.3. 2-Hexyl-5-(1-(thiophen-2-yl)benzo[c]selenophen-3-yl)thiophene (**7c**)

Following the above-mentioned procedure B, compound **7c** was obtained using the phthalide **5a** (1 g, 4.63 mmol), 5-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-5-hexylthiophene (1.37 g, 5.54 mmol) and Mg (0.14 g, 5.83 mmol)] and Woollins reagent (0.61 g, 1.15 mmol) as a thick orange liquid (1.30 g, 66%). [Found: C, 61.32; H, 5.32; S, 15.15. $C_{22}H_{22}S_2Se$ requires: C, 61.52; H, 5.16; S, 14.93%.] R_f (hexane) 0.86; δ_H (400 MHz, CDCl₃) 7.82–7.83 (2H, m, ArH), 7.27 (1H, d, *J* 1.2 Hz, ArH), 7.26 (1H, d, *J* 1.2 Hz, ArH), 7.10–7.13 (2H, m, ArH), 6.97–7.08 (2H, m, ArH), 6.78 (1H, d, *J* 3.6 Hz, ArH), 2.81 (2H, t, *J* 7.5 Hz, CH₂), 1.72 (2H, quintet, CH₂), 1.25–1.34 (6H, m, CH₂), 0.90 (3H, t, *J* 3.3 Hz, CH₃); δ_c (100 MHz, CDCl₃) 147.0, 137.9, 137.8, 135.1, 129.0, 127.8, 127.5, 127.1, 125.9, 125.8, 125.6, 124.9, 124.4, 124.1, 122.3, 122.0; m/z (EI) 429 (M⁺, o5).

5.3.4. 2-(1-(4-(Hexyloxy)phenyl)benzo[c]selenophen-3-yl)thiophene (**7d**)

Following the above-mentioned procedure B, compound **7d** was obtained using the phthalide **5b** (1 g, 3.22 mmol), 2-thienyImagnesium bromide [prepared from 2-bromothiophene (0.63 g, 3.86 mmol) and Mg (0.10 g, 4.16 mmol)] and Woollins reagent (0.43 g, 0.81 mmol) as yellow solid (0.78 g, 55%). Mp 63 °C. [Found: C, 65.81; H, 5.30; S, 7.41. C₂₄H₂₄OSSe requires: C, 65.59; H, 5.50; S, 7.30%.] R_f (hexane) 0.80; δ_H (400 MHz, CDCl₃) 7.83 (1H, d, *J* 8.8 Hz, ArH), 7.59 (1H, d, *J* 9.3 Hz, ArH), 7.51 (2H, d, *J* 8.8 Hz, ArH), 7.35 (1H, dd, *J* 4.1, 0.9 Hz, ArH), 7.26 (1H, dd, *J* 2.9, 0.9 Hz, ArH), 7.12 (1H, dd, *J* 3.7, 1.4 Hz, ArH), 6.95–7.01 (4H, m, ArH), 4.01 (2H, t, *J* 6.6 Hz, OCH₂), 1.81 (2H, quintet, *J* 7.1 Hz, CH₂), 1.45–1.55 (4H, m, CH₂), 1.34–1.38 (2H, m, CH₂), 0.90 (3H, t, *J* 7.1 Hz, CH₃); δ_c (100 MHz, CDCl₃) 159.7, 141.4, 138.2, 137.1, 136.5, 135.2, 132.5, 130.0, 128.6, 125.2, 124.5, 122.7, 124.4, 121.9, 121.2, 115.2, 68.3, 31.6, 29.2, 25.8, 22.62, 14.11; m/z (EI) 439 (M⁺, 54).

5.3.5. 2-(1-(Anthracen-10-yl)benzo[c]selenophen-3-yl)thiophene (7e)

Following the above-mentioned procedure B, compound **7e** was obtained using the phthalide **5c** (1 g, 3.22 mmol), 2-thienylmagnesium bromide [prepared from 2-bromothiophene (0.63 g, 3.86 mmol) and Mg (0.10 g, 4.16 mmol)] and Woollins reagent (0.43 g, 0.81 mmol) as orange solid (0.87 g, 62%). Mp 162 °C. [Found: C, 71.00; H, 3.50; S, 7.40. C₂₆H₁₆SSe requires: C, 71.06; H, 3.67; S, 7.30%.] *R*_f (hexane) 0.82; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.62 (1H, s, ArH), 8.09 (2H, d, *J* 8.1 Hz, ArH), 7.88 (2H, t, *J* 9.1 Hz, ArH), 7.42–7.55 (6H, m), 7.35 (1H, d, *J* 4.5 Hz), 7.15–7.17 (1H, m, ArH), 7.08–7.10 (2H, m, ArH), 6.91–6.93 (1H, m, ArH); δ_c (100 MHz, CDCl₃) 147.0, 137.9, 137.8, 135.1, 129.0, 127.8, 127.5, 127.1, 125.9, 125.8, 125.6, 124.9, 124.4, 124.1, 122.3, 122.0, 119.5; *m/z* (EI) 440 (M⁺, 35).

5.3.6. 2-Hexyl-5-(1-(5-(thiophen-2-yl)thiophen-2-yl)benzo[c]-selenophen-3-yl)thiophene (**7f**)

Following the above-mentioned procedure B, compound **7f** was obtained using the phthalide **5d** (1 g, 3.35 mmol), 5-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-5-hexylthiophene (0.99 g, 4.01 mmol) and Mg (0.10 g, 4.16 mmol)] and Woollins reagent (0.44 g, 0.83 mmol) as a thick orange liquid (0.99 g, 58%). [Found: C, 60.92; H, 4.61; S, 18.92. C₂₆H₂₄S₃Se requires: C, 61.04; H, 4.73; S, 18.80%.] R_f (hexane) 0.78; ν_{max} (KBr) 1596, 1509, 1263, 954, 787, 753, 635 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.81–7.90 (1H, m, ArH), 7.70–7.76 (1H, m, ArH), 7.61–7.67 (1H, m,

ArH), 7.00–7.08 (2H, m, ArH), 7.11–7.12 (1H, d, J 6.6 Hz, ArH), 7.27–7.33 (5H, m, ArH), 2.80 (2H, t, J 7.6 Hz, CH₂), 1.23–1.54 (8H, m, CH₂), 0.83 (3H, t, J 6.6 Hz, CH₃); δ_c (75.6 MHz, CDCl₃) 145.0, 132.2, 131.8, 130.5, 130.3, 130.1, 129.2, 128.8, 127.8, 127.4, 127.2, 127.1, 126.9, 126.6, 125.4, 125.0, 124.2, 123.0, 122.8, 122.5, 32.1, 31.9, 30.2, 29.1, 23.0, 14.5; m/z (EI) 511 (M⁺, 21).

5.4. Preparation of unsymmetrical benzo[c]furans (procedure C)

5.4.1. 1-(Thiophen-2-yl)-3-p-tolylisobenzofuran (8g)

To a solution of phthalide 5a (2 g, 9.26 mmol) in anhydrous THF (25 mL), p-tolylmagnesium bromide [prepared from p-bromotoluene (1.90 g, 11.11 mmol) and magnesium turnings (0.29 g, 12.08 mmol)] was added at 0 °C under N₂. The reaction mixture was slowly raised to room temperature and stirred overnight. The reaction mixture was hydrolyzed by adding dropwise a solution of concd HCl (20 mL) and H₂O (20 mL) at 0 °C. The reaction mixture turned to bright orange with green fluorescence. Stirring was maintained under nitrogen atmosphere for 0.5 h. Then, Et₂O (50 mL) was added and the organic phase separated. The organic phase was washed with brine $(2 \times 50 \text{ mL})$, satd NaHCO₃ (50 mL), and dried (Na₂SO₄). After removal of the solvent, the residue was purified by column chromatography (silica gel, hexane) to afford the benzo[c]furan 8g as yellow solid (1.92 g, 72%). Mp 98 °C. [Found: C, 78.47; H, 4.92; S, 11.00. C₁₉H₁₄OS requires: C, 78.59; H, 4.86; S, 11.04%.] R_f (hexane) 0.96; v_{max} (KBr) 1605, 1500, 755, 685 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.78 (2H, d, J 8.2 Hz, ArH), 7.69–7.76 (2H, m, ArH), 7.47 (1H, d, J 3.58 Hz, ArH), 7.17-7.27 (3H, m, ArH). 7.11–7.13 (1H, m, ArH), 6.95–6.99 (2H, m, ArH), 2.39 (3H, s, CH₃); δ_c (75 MHz, CDCl₃) 137.0, 133.9, 130.2, 129.8, 129.2, 128.9, 127.9, 125.3, 125.2, 124.8, 123.9, 122.1, 121.7, 121.5, 120.3, 120.1, 21.5; m/z (EI) 290 (M⁺, 100).

5.4.2. 1-Phenyl-3-(thiophene-2-yl)isobenzofuran (8h)

Following the above-mentioned procedure C, **8h** was obtained using the phthalide **5a** (2 g, 9.25 mmol) and phenylmagnesium bromide [prepared from bromo benzene (1.74 g, 11.08 mmol) and Mg (0.29 g, 12.08 mmol)] as a thick yellow liquid (1.30 g, 51%). [Found: C, 78.13; H, 4.17; S, 11.72. C₁₈H₁₂OS requires: C, 78.23; H, 4.38; S, 11.60%.] R_f (hexane) 0.92; ν_{max} (KBr) 1600, 1505, 741, 691 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.62–7.64 (3H, m, ArH), 7.55–7.58 (3H, m, ArH), 7.40–7.47 (3H, m, ArH), 7.28–7.30 (2H, m, ArH), 6.98 (1H, t, J 4.2 Hz, ArH); δ_c (75.6 MHz, CDCl₃) 144.1, 139.8, 139.6, 137.2, 134.9, 134.8, 133.2, 132.4, 130.8, 130.4, 129.8, 129.7, 129.0, 128.8, 128.3; m/z (EI) 276 (M⁺, 100).

5.4.3. 1-(Napthalen-8-yl)-3-(thiophen-2-yl)isobenzofuran (8i)

Following the above-mentioned procedure C, **8i** was obtained using the phthalide **5e** (2 g, 7.69 mmol) and 2-thienyl magnesium bromide [prepared from 2-bromothiophene (1.50 g, 9.20 mmol) and Mg (0.24 g, 10.00 mmol)] as a yellow solid (1.55 g, 62%). Mp 87 °C. [Found: C, 80.87; H, 4.23; S, 9.92. $C_{22}H_{14}OS$ requires: C, 80.95; H, 4.32; S, 9.82%.] R_f (hexane) 0.90; δ_H (300 MHz, CDCl₃) 8.41 (1H, m, ArH), 7.80–7.96 (4H, m, ArH), 7.55–7.62 (5H, m, ArH), 7.32 (1H, d, *J* 4.89 Hz, ArH), 7.15–7.18 (1H, m, ArH), 6.97–7.09 (2H, m, ArH); δ_c (75.6 MHz, CDCl₃) 134.2, 133.9, 130.8, 128.7, 128.5, 128.1, 127.9, 127.3, 126.6, 126.2, 126.1, 125.4, 125.3, 125.1, 123.9, 123.7, 122.1, 121.0, 120.8, 119.7; m/z (EI) 326 (M⁺, 100).

5.4.4. 1-(Naphthalen-1-yl)-3-phenylisobenzofuran (8j)

Following the above-mentioned procedure C, **8j** was obtained using phthalide **5e** (2 g, 7.69 mmol) and phenylmagnesium bromide [prepared from bromo benzene (1.45 g, 9.23 mmol) and Mg (0.24 g, 10.00 mmol)] as a yellow solid (1.50 g, 61%). [Found: C, 89.87; H, 4.96. $C_{24}H_{16}O$ requires: C, 89.97; H, 5.03; S, 9.82%.] R_{f} (hexane) 0.92; ν_{max} (KBr) 1595, 1495, 735, 451 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.22–8.21 (1H, m, ArH), 7. 81 (1H, d, *J* 7.1 Hz, ArH), 7.73–7.70 (1H, m, ArH), 7.59–7.52 (4H, m, ArH), 7.48–7.44 (3H, m, ArH), 7.40–7.36 (3H, m, ArH), 7.34–7.32 (3H, m, ArH); $\delta_{\rm c}$ (75.6 MHz, CDCl₃) 141.0, 140.5, 137.3, 135.2, 133.6, 133.1, 132.8, 131.4, 130.9, 130.8, 130.4, 130.0, 129.5, 129.0, 128.3, 128.1, 127.7, 126.4, 125.7, 123.9; *m/z* (EI) 320 (M⁺, 70).

5.5. A representative procedure for the preparation of unsymmetrical benzo[c]selenophene from corresponding benzo[c]furan (procedure D)

Compound **8g** (0.2 g, 0.69 mmol) in dry DCM (10 mL) along with Woollins reagent (0.09 g, 0.17 mmol) was stirred for 4 h at room temperature. After removal of the solvent, the residue was purified by column chromatography (silica gel, hexane) to afford the benzo[c]selenophene **7g** as a thick yellow liquid (0.16 g, 66%).

5.5.1. 2-(1-p-Tolylbenzo[c]selenophen-3-yl)thiophene (7g)

Found: C, 64.30; H, 4.19; S, 9.20. $C_{19}H_{14}SSe$ requires: C, 64.58; H, 3.99; S, 9.07%. R_f (hexane) 0.86; δ_H (400 MHz, CDCl₃) 7.85 (1H, d, J 8.8 Hz, ArH), 7.63 (1H, d, J 8.8 Hz, ArH), 7.51 (2H, d, J 8.3 Hz, ArH), 7.36 (1H, d, J 4.8 Hz, ArH), 7.02–7.14 (3H, m, ArH), 6.94–7.00 (3H, m, ArH), 2.42 (3H, s, CH₃); δ_c (100 MHz, CDCl₃) 146.5, 141.4, 138.0, 137.0, 136.4, 135.6, 130.4, 130.0, 129.2, 124.8, 124.6, 121.9, 121.1, 21.29; m/z (EI) 354 (M⁺, 21).

5.5.2. 2-(1-Phenylbenzo[c]selenophen-3-yl)thiophene (7h)

Following the above-mentioned procedure D, **7h** was obtained using benzo[c]furan **8h** (0.2 g, 0.72 mmol) and Woollins reagent (0.10 g, 0.18 mmol) as thick yellow liquid (0.15 g, 62%). [Found: C, 63.60; H, 3.50; S, 9.51. $C_{18}H_{12}SSe$ requires: C, 63.71; H, 3.56; S, 9.45%.] R_f (hexane) 0.82; ν_{max} (KBr) 1597, 1500, 1227, 735, 681 cm⁻¹; δ_H (400 MHz, CDCl₃) 7.84 (1H, d, *J* 8.8 Hz, ArH), 7.61–7.71 (2H, m, ArH), 7.45 (2H, t, *J* 7.32 Hz, ArH), 7.35–7.38 (2H, m, ArH), 7.29–7.30 (1H, m, ArH), 7.13–7.15 (1H, m, ArH), 6.94–7.03 (3H, m, ArH); δ_c (100 MHz, CDCl₃) 143.7, 137.2, 132.9, 131.6, 130.3, 129.8, 129.6, 128.8, 128.3, 126.8, 125.1, 124.7, 122.1, 120.1; m/z (EI) 340 (M⁺¹, 100).

5.5.3. 2-(1-(Naphthalen-1-yl)benzo[c]selenophen-3-yl)thiophene (7i)

Following the above-mentioned procedure D, **7i** was obtained using benzo[*c*]furan **8i** (0.2 g, 0.61 mmol) and Woollins reagent (0.08 g, 0.15 mmol) as a yellow solid (0.14 g, 58%). Mp 92 °C. [Found: C, 67.70; H, 3.52; S, 8.33. $C_{22}H_{14}SSe$ requires: C, 67.86; H, 3.62; S, 8.24%.] R_f (hexane) 0.82; δ_H (400 MHz, CDCl₃) 7.93 (2H, d, *J* 8.2 Hz, ArH), 7.88 (2H, m, ArH), 7.63 (1H, d, *J* 6.8 Hz, ArH), 7.56 (1H, d, *J* 7.8 Hz, ArH), 7.50–7.54 (1H, m, ArH), 7.41–7.45 (2H, m, ArH), 7.33–7.39 (1H, m, ArH); 7.41–7.17 (1H, m, ArH), 7.02–7.04 (2H, m, ArH), 6.84–6.99 (1H, m, ArH); δ_c (100 MHz, CDCl₃) 143.8, 141.0, 134.2, 133.8, 130.8, 128.6, 128.4, 128.1, 127.8, 127.2, 126.6, 126.1, 126.1, 125.78, 125.3, 125.2, 125.0, 123.9, 122.1, 120.2, 119.6; *m/z* (EI) 390 (M⁺).

5.5.4. 1-(Naphthalene-1-yl)-3-phenylbenzo[c]selenophene (7j)

Following the above-mentioned procedure D, **7j** was obtained using benzo[*c*]furan **8j** (0.2 g, 0.62 mmol) and Woollins reagent (0.08 g, 0.15 mmol) as a thick yellow liquid (0.17 g, 70%). [Found: C, 74.85; H, 4.35. C₂₄H₁₆Se requires: C, 75.20; H, 4.21%.] *R_f* (hexane) 0.80; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.57 (1H, dd, *J* 3.42, 2.92 Hz, ArH), 8.17 (2H, d, *J* 7.32 Hz, ArH), 8.08 (2H, d, *J* 8.08 Hz, ArH), 7.98 (1H, d, *J* 7.36 Hz, ArH), 7.61–7.90 (5H, m, ArH), 7.41–7.58 (2H, m, ArH), 7.11– 7.21 (3H, m, ArH); $\delta_{\rm c}$ (100 MHz, CDCl₃) 144.6, 144.4, 134.2, 131.8, 130.9, 129.6, 129.4, 128.9, 128.4, 128.3, 127.3, 126.81, 126.6, 126.1, 7998

125.4, 125.3, 124.6, 124.6, 123.9, 121.5, 120.3, 119.8; m/z (EI) 384 (M⁺, 20).

5.6. A representative procedure for the preparation of symmetrical benzo[c]furans 10a-e

Symmetrical benzo[c]furans 8a/10a-e were prepared using the published procedure.¹⁷

5.6.1. 1,3-Bis(4-methoxyphenyl)benzo[c]selenophene (7k)

Following the above-mentioned procedure D, compound 7k was obtained using the benzo[c]furan 10a (0.2 g, 0..61 mmol) and Woollins reagent (0.08 g, 0.15 mmol) as a thick yellow liquid (0.12 g, 50%). [Found: C, 67.25; H, 4.57. C₂₂H₁₈O₂Se requires: C, 67.18; H, 4.61%.] R_f (hexane) 0.65; δ_H (400 MHz, CDCl₃) 7.76 (4H, d, J 9.0 Hz, ArH), 7.65 (2H, dd, J 2.7, 4.2 Hz, ArH), 6.91–6.95 (6H, m, ArH), 3.79 (6H, s, OCH₃); δ_c (100 MHz, CDCl₃) 137.3, 135.0, 134.0, 131.5, 129.2, 123.9, 121.4, 55.6; *m*/*z* (EI) 394 (M⁺, 33).

5.6.2. 1,3-Di-p-tolylbenzo[c]selenophene (71)

Following the above-mentioned procedure D, 71 was obtained using the benzo[c]furan 10b (0.2 g, 0.67 mmol) and Woollins reagent (0.09 g, 0.17 mmol) as a thick yellow liquid (0.12 g, 51%). [Found: C, 73.03; H, 5.10. C₂₂H₁₈Se requires: C, 73.13; H, 5.02%.] R_f (hexane) 0.82; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.55–7.57 (2H, m, ArH), 7.40 (4H, d, J 7.6 Hz, ArH), 7.14 (4H, d, J 7.6 Hz, ArH), 6.86-6.88 (2H, m, ArH), 2.30 (6H, s, CH₃); δ_c (100 MHz, CDCl₃) 137.2, 137.2, 136.6, 130.4, 129.1, 126.7, 123.5, 121.7, 21.2; *m/z* (EI) 362 (M⁺, 54).

5.6.3. 1,3-Di-o-tolylbenzo[c]selenophene (7m)

Following the above-mentioned procedure D, 7m was obtained using the benzo[c]furan 10c (0.2 g, 0.67 mmol) and Woollins reagent (0.09 g, 0.17 mmol) as thick yellow liquid (0.11 g, 46%). [Found: C, 73.01; H, 5.10. C₂₂H₁₈Se requires: C, 73.13; H, 5.02%.] R_f (hexane) 0.86; ν_{max} (KBr) 3060, 1595, 1500, 1230, 743, 695 cm⁻¹; δ_{H} (400 MHz, CDCl₃) 7.78–7.68 (4H, m, ArH), 7.47–7.40 (6H, m, ArH), 7.11–7.09 (2H, m, ArH), 2.71 (6H, s, CH₃); δ_c (75.6 MHz, CDCl₃) 145.3, 136.5, 131.3, 130.6, 129.4, 128.0, 125.9, 124.5, 122.4, 120.0, 21.3; *m/z* (EI) 362 (M⁺, 14).

5.6.4. 1,3-Diphenylbenzo[c]selenophene (7n)

Following the above-mentioned procedure D, 7n was obtained using the benzo[c]furan 10d (0.2 g, 0.74 mmol) and Woollins reagent (0.10 g, 0.19 mmol) as thick yellow liquid 0.096 g, (40%). [Found: C, 72.00; H, 4.18. C₂₀H₁₄Se requires: C, 72.07; H, 4.23%.] R_f (hexane) 0.80; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.97 (4H, d, J 7.8 Hz, ArH), 7.82 (2H, dd, J 3.92, 2.96 Hz, ArH), 7.48 (4H, t, J 7.8 Hz, ArH), 7.29 (2H, t, J 6.52 Hz, ArH), 7.02 (2H, dd, J 3.92, 2.98 Hz, ArH); δ_c (100 MHz, CDCl₃) 143.6, 131.6, 128.5, 127.0, 126.8, 124.7, 122.03, 120.0; m/z (EI) 334 (M⁺, 31).

5.6.5. 1,3-Di(naphthalene-1-yl)selenophene (70)

Following the above-mentioned procedure D, compound 70 was obtained using the benzo[c]furan 10e (0.2 g, 0.54 mmol) and Woollins reagent (0.07 g, 0.13 mmol) as thick yellow liquid (0.10 g, 43%). [Found: C, 77.70; H, 4.11. C₂₈H₁₈Se requires: C, 77.60; H, 4.19%.] R_f (hexane) 0.72; $\nu_{\rm max}$ (KBr) 1596, 1479, 762, 722 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.72-7.68 (6H, m, ArH), 7.48-7.33 (8H, m, ArH), 7.20–7.18 (2H, m, ArH), 6.86–6.84 (2H, m, ArH); δ_c (100 MHz, CDCl₃) 143.1, 133.1, 129.8, 128.7, 128.3, 127.3, 126.4, 126.3, 125.3, 124.8, 123.6, 121.6, 120.1; *m*/*z* (EI) 434 (M⁺, 11).

5.6.6. 2-(1-(1-(Thiophen-2-yl)benzo[c]selenophen-3-yl)benzo[c]selenophen-3-yl)thiophene (13)

Following the above-mentioned procedure A, 13 was obtained using diphthalide 11 (0.5 g, 1.87 mmol), 2-thienylmagnesium bromide [prepared from 2-bromothiophene (0.67 g, 4.11 mmol) and Mg (0.11 g, 4.58 mmol)] and Woollins reagent (0.50 g, 0.94 mmol) as red solid (0.29 g, 30%). [Found: C, 54.81; H, 2.75; S, 12.35. C₂₄H₁₄S₂Se₂ requires: C, 54.97; H, 2.69; S, 12.23%.] *R*_f(hexane) 0.72; $\nu_{\rm max}$ (KBr) 1598, 1502, 1227, 753, 695 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.03 (2H, d, / 8.4 Hz, ArH), 7.87 (2H, d, / 8.1 Hz, ArH), 7.35-7.42 (4H, m, ArH), 7.16–7.23 (6H, m, ArH); δ_c (75.6 MHz, CDCl₃) 136.9, 135.5, 135.1, 128.5, 127.9, 125.7, 125.0, 124.8, 124.2, 121.8, 121.4; m/z (EI) 525 (M⁺, 11).

5.6.7. 2-Hexyl-5-(1-(1-(5-hexylthiophen-2-yl)benzo[c]selenophen-3-yl)benzo[c]selenophen-3-yl)thiophene (14)

Following the above-mentioned procedure A, 14 was obtained using diphthalide 11 (0.5 g, 1.87 mmol), 5-hexyl-2-thienylmagnesium bromide [prepared from 2-bromo-5-hexylthiophene (1.02 g, 4.12 mmol) and Mg (0.11 g, 4.58 mmol)] and Woollins reagent (0.50 g, 0.94 mmol) as a thick orange liquid (0.32 g, 25%). [Found: C, 62.50; H, 5.43; S, 9.30. C₃₆H₃₈S₂Se₂requires: C, 62.42; H, 5.53; S, 9.26%.] R_f (hexane) 0.75; δ_H (300 MHz, CDCl₃) 8.01–8.07 (2H, m, ArH), 7.86 (2H, d, J 9.0 Hz, ArH), 7.15-7.20 (6H, m, ArH), 6.85 (2H, d, J 3.3 Hz, ArH), 1.77 (4H, t, J 7.35 Hz, CH₂), 1.33–1.47 (12H, m, CH₂), 0.90–0.95 (10H, m, CH₂CH₃); δ_c (75.6 MHz, CDCl₃) 146.76, 136.83, 134.74, 129.11, 125.33, 124.92, 124.66, 123.69, 121.88, 121.62, 31.58, 30.27, 28.83, 22.58, 14.08; m/z (EI) 694 (M⁺, 15).

Acknowledgements

The authors thank DST, New Delhi and UGC-Potential for excellence (F. 12-140/2001 SR-1) for a financial support. P.A. thanks CSIR for a CSIR–SRF fellowship and NS thanks DST for a fellowship. Authors thank DST-FIST for 300 MHz NMR facility.

References and notes

- 1. (a) Roncali, J. Chem. Rev. 1997, 97, 173-205; (b) Kraft, A.; Grimsdal, C. A.; Holmes, B. A. Angew. Chem., Int. Ed. 1998, 37, 402-428.
- (a) Roncali, J. Chem. Rev. 1992, 92, 711-738; (b) McCullough, R. D. Adv. Mater. 2. 1998, 10, 93-116.
- (a) Cava, M. P.; Pollack, N. M.; Mamer, O. A.; Mitchel, M. J. Org. Chem. 1971, 36, 3932-3937; (b) Wudl, F.; Kobayashi, M.; Heeger, A. J. Org. Chem. 1984, 49, 3382-3384; (c) Colaneri, N.; Kobayashi, M.; Heeger, A. J. Synth. Met. 1986, 14, 45-52; (d) Ikenous, Y.; Wudl, F.; Heeger, A. J. Synth. Met. 1991, 40, 1-12; (e) Pomerantz, M.; Chaloner-Gill, B.; Harding, L. O.; Tseng, J. J.; Pomerantz, W. J. Synth. Met. 1993, 55-57.
- 4. (a) Lorcy, D.; Cava, M. P. Adv. Mater. 1992, 4, 562-564; (b) Musinanni, S.; Ferraris, J. P. J. Chem. Soc., Chem. Commun. 1993, 172-174; (c) Kiebooms, R. H. L.; Adriaensens, P. J. A.; Vanderzande, D. J. N.; Gelan, J. M. J. V. J. Org. Chem. 1997, 62, 1473-1480; (d) Mohanakrishnan, A. K.; Lakshmikantham, M. V.; Mcdougal, C. D.; Cava, M. P.; Baldwin, J. W.; Metzger, R. M. J. Org. Chem. 1998, 63, 3105-3112; (e) Raimundo, J. M.; Blanchard, P.; Brisset, H.; Akoudad, S.; Roncali. J. Chem. Commun. 2000, 939-940; (f) Strassler, C.; Davis, N. E.; Kool, E. T. Helv. Chim. Acta **1999**, *82*, 2160–2171; (g) Tan, S.; Bhowmik, A. K.; Thakur, M. V.; Lakshmikan-thanm, M. V.; Cava, M. P. J. Chem. Phys. **2000**, *112*, 383–385.
- Amaresh, R. R.; Lakshmikantham, M. V.; Baldwin, J. W.; Cava, M. P.; Metzger, R. M.; Rogers, R. D. J. Org. Chem. 2002, 67, 2453-2458.
- Mohanakrishnan, A. K.; Lakshmikantham, M. V.; Cava, M. P.; Rogers, R. D.; 6. Rogers, L. M. *Tetrahedron* **1998**, *54*, 7075–7080. 7. Aqad, E.; Lakshmikantham, M. V.; Cava, M. P. Org. *Lett.* **2001**, *3*, 4283–4285.
- Aqad, E.; Lakshmikantham, M. V.; Cava, M. P.; Broker, G. A.; Rogers, R. D. Org. 8. Lett. 2003, 5, 2519-2521.
- 9. Aqad, E.; Lakshmikantham, M. V.; Cava, M. P. Org. Lett. 2003, 5, 4089-4092.
- 10. Aqad, E.; Lakshmikantham, M. V.; Cava, M. P. Org. Lett. 2004, 6, 3039-3041.
- 11. Kesharwani, T.; Worlikar, S. A.; Larock, R. C. J. Org. Chem. 2006, 71, 2307-2312.
- 12. Ogawa, S.; Muraoka, H.; Kikuta, K.; Saito, F.; Sato, R. J. Organomet. Chem. 2007, 692, 60-69.
- (a) Mohanakrishnan, A. K.; Amaladass, P. Tetrahedron Lett. 2005, 46, 4225-4229; 13. (b) Mohanakrishnan, A. K.; Amaladass, P. Tetrahedron Lett. 2007, 48, 779–784.
- 14. Mohanakrishnan, A. K.; Amaladass, P. Tetrahedron Lett. 2005, 46, 7201–7204. 15. (a) Bhattacharyya, P.; Woollins, J. D. Tetrahedron Lett. 2001, 42, 5949-5952; (b)
- Bethke, J.; Karaghiosoft, K.; Wessjohann, L. A. Tetrahedron Lett. 2003, 44, 6911-6913
- 16. Bäuerle, P.; Götz, G.; Emerle, P.; Port, H. Adv. Mater 1992, 4, 564-568.
- 17. Bederradji, F.; Nechab, M.; Einhorn, C.; Einhorn, J. Synth. Lett. 2006, 13, 2035-2038