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Abstract: Treatment of 6-iodo-4-oxa-3-sila-1-hexene derivatives
with arylmagnesium bromide in the presence of a catalytic amount
of a cobalt–diamine complex in THF afforded the corresponding
benzyl-substituted oxasilacyclopentanes in good yield. The prod-
ucts were converted to 4-aryl-1,3-diols after Tamao–Fleming oxi-
dation.
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1,3-Diol units are often observed in natural products, and
can be oxidized into 1,3-diketones or naturally occurring
polyketides. The synthesis of 1,3-diols is thus widely in-
vestigated.1 In light of the importance of the 1,3-diols,
here we disclose a new approach to 4-aryl-1,3-butanediols
starting from epoxides. As outlined in Scheme 1, ring
opening of epoxides with iodide followed by silylation
with chlorodimethylvinylsilane provides silicon-tethered2

6-iodo-1-hexene derivatives. Our cobalt-catalyzed radical

cyclization–arylation protocol3 yields oxasilacyclopen-
tanes. Finally, Tamao–Fleming oxidation4 affords 4-aryl-
1,3-butanediols. Without our cobalt-catalyzed protocol,
synthesis of 4-aryl-1,3-diols via the conventional silicon-
tethered strategy using the tin-based radical reaction2a,c

necessitates (2-arylethenyl)chlorodimethylsilanes that are
not readily available. The present route admits variety in
the aryl groups by simply changing the aryl Grignard re-
agents used.

We first chose cyclohexene oxide as the starting material.
Cyclohexene oxide underwent ring opening by the action
of lithium iodide and acetic acid in THF to give 2-iodo-1-
cyclohexanol.5 Treatment of the crude vic-iodohydrin
with chlorodimethylvinylsilane in the presence of tri-
ethylamine in dichloromethane provided silicon-tethered
substrate 2 in 100% overall yield. Phenylative cyclization
of 2 under the catalysis of [CoCl2 (1)] afforded 3a in
excellent yield (Scheme 2).
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A variety of aryl Grignard reagents were employed for the
coupling reaction (Scheme 3). All the corresponding
products could be easily transformed to diols 4 after oxi-
dation with alkaline hydrogen peroxide. Not only phenyl-
magnesium bromide but also 4-methoxy- and 3-
trifluoromethylphenylmagnesium bromides participated
in the reaction. Methyl substitution at the 2-position did
not retard the reaction. The cyclization–arylation with 2-
naphthyl Grignard reagent proceeded smoothly. Employ-
ing mesityl Grignard reagent did not give a satisfactory re-
sult. The products were always 1:1 mixtures of
diastereomers, which originate from the relationship be-
tween the cis-fused bicyclic system and arylmethyl group.

Scheme 3

Other silicon-tethered substrates, similarly prepared from
the corresponding epoxides, were examined (Scheme 4).
The reaction of iodide 5 with five-membered ring showed
higher diastereoselectivity than that of 2. The primary

alkyl iodide 8a serves as a substrate to provide the diol 10
in 66% yield. The substrate 8b bearing a diphenylvinylsi-
lyl group participated in the cyclization. Unfortunately,
the use of the corresponding bromides as substrates gave
the desired products in no more than 5% yield.

Scheme 4

The new approach to 4-aryl-1,3-butanediols is applicable
for the construction of an intermediate 16a in the synthe-
sis of 18, an antagonist of human CCR5 receptor.6 The
synthesis is outlined in Scheme 5. Construction of the ep-
oxide group in 13 was performed from 11 in two steps.
Ring opening of epoxide 13 with iodide followed by sily-
lation with chlorodimethylvinylsilane provided silicon-
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tethered 6-iodo-1-hexene derivatives 14 in 67% overall
yield. Treatment of 14 under the cobalt-catalyzed condi-
tions led to sequential radical cyclization–cross-coupling
reaction to afford a phenylated product 15a. Oxidation of
15a provided diol 16a, which will be converted into 17, a
key intermediate of 18. In addition, the protocol offered
easy accesses to 2-naphthyl- and 2-tolyl-substitued ana-
logues 16b and 16c by simply changing the aryl Grignard
reagents used.

We reported cobalt-catalyzed intramolecular Heck-type
reaction of 6-halo-1-hexene derivatives.7,8 We next turned
our attention to the Heck-type reaction of the silicon-teth-
ered substrates. Trimethylsilylmethylmagnesium chloride
(2.0 mmol, 1.7 M THF solution) was added to a mixture
of cobalt(II) chloride (0.05 mmol) and 1,4-bis(diphen-
ylphosphino)butane (0.06 mmol) in THF. The resulting
mixture was stirred for 5 minutes, and substrate 2 (0.5
mmol) was added at 0 °C. The mixture was heated at re-
flux for 10 minutes, usual work-up followed by silica gel
column purification afforded the alcohol 19 in 65% yield
(Scheme 6). In this process, the Heck-type reaction of-
fered methyleneoxasilacyclopentane 18, which was then
alkylated with trimethylsilylmethyl Grignard reagent,
yielding 19. This Heck-type reaction was applicable to the
primary iodide 8a to yield 21. We attempted the synthesis
of b-hydroxyketone. However, Tamao–Fleming oxida-
tion of 19 and 21 resulted in failure.

Scheme 6

In summary, we have developed an access to a variery of
4-aryl-1,3-diols by a combination of the silicon-tethered
strategy and the cobalt-catalyzed radical arylative cycliza-
tion reaction. The silicon-tethered substrates also enjoyed
intramolecular Heck-type reaction upon treatment with
trimethylsilylmethylmagnesium chloride under cobalt ca-
talysis.9
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72 °C. IR (nujol): 3345, 2924, 973, 743 cm–1. 1H NMR (300 
MHz, CDCl3): d = 1.21–1.32 (m, 1 H), 1.32–1.52 (m, 3.5 H), 
1.56–1.87 (m, 4.5 H), 2.23–2.29 (br s, 2 H), 2.71–2.94 (m, 2 
H), 3.86 (m, 0.5 H), 4.04–4.08 (m, 1 H), 4.40 (m, 0.5 H), 
7.20–7.35 (m, 5 H). 13C NMR (125.7 MHz, CDCl3): d = 
18.63, 19.97, 20.35, 25.00, 25.83, 25.88, 33.23, 33.87, 
41.38, 41.97, 44.23, 44.77, 67.40, 72.43, 76.59, 77.62, 
126.66, 126.75, 128.82, 128.88, 129.44, 129.50, 138.82, 
138.83.
A Typical Procedure for Heck-Type Reaction.
The CoCl2 (6.5 mg, 0.05 mmol) was placed in a 20-mL 
reaction flask and was heated with a hair dryer in vacuo for 
2 min. Then, DPPB (26 mg, 0.06 mmol) and anhyd THF (0.1 
mL) were added under argon. After the mixture being stirred 
for about 5 min at r.t., trimethylsilylmethylmagnesium 
chloride (1.7 M THF solution, 1.2 mL, 2.0 mmol) and 2 (155 
mg, 0.5 mmol) were sequentially added dropwise to the 

reaction mixture at 0 °C. The resulting mixture was heated at 
reflux for 10 min. After the mixture was cooled to r.t., the 
reaction mixture was poured into sat. NH4Cl solution. The 
products were extracted with EtOAc (2 × 20 mL). The 
combined organic layer was dried and concentrated in 
vacuo. Chromatographic purification on silica gel afforded 
the alcohol 19 (87 mg, 0.32 mmol) in 65% isolated yield.
Alcohol 19: oil. IR (neat): 3567, 1447, 1249, 1051, 837 cm–1. 
1H NMR (300 MHz, C6D6): d = –0.24 (s, 2 H), 0.05 (s, 9 H), 
0.11 (s, 3 H), 0.12 (s, 3 H), 1.16–1.42 (m, 6 H), 1.74–1.95 
(m, 2 H), 2.08 (m, 1 H), 2.37 (dm, J = 12.3 Hz, 1 H), 3.86 
(m, 1 H), 5.45 (d, J = 2.7 Hz, 1 H), 5.64 (dd, J = 2.7, 1.2 Hz, 
1 H). 13C NMR (125.7 MHz, C6D6): d = 0.22, 0.48, 1.87, 
2.86, 20.40, 24.98, 27.11, 33.18, 47.22, 66.98, 125.68, 
156.10. Anal. Calcd for C14H30Si2O: C,  62.15; H, 11.18. 
Found: C, 62.39; H, 11.44.
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