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Abstract 
The severe side effects associated with the use of anthracycline anticancer agents continues to 
limit their use. Herein we describe the synthesis and preliminary biological evaluation of three 
enzymatically activatable doxorubicin-oligosaccharide prodrugs. The synthetic protocol 
allows late stage variation of the carbohydrate and is compatible with the use of disaccharides 
such as lactose as well as more complex oligosaccharides such as xyloglucan oligomers. The 
enzymatic release of doxorubicin from the prodrugs by both protease (plasmin) and human 
carboxylesterases (hCE1 and 2) was demonstrated in vitro and the cytotoxic effect of the 
prodrugs were assayed on MCF-7 breast cancer cells. 
 

 

Introduction 
Despite continuing efforts in oncogenic drug development, surgery remains an important form 
of treatment for solid tumours. This approach generally includes a postoperative drug therapy 
to prevent reoccurrence of the tumour. Currently used drugs for such adjuvant treatment 
include the anthracycline antibiotic Doxorubicin (Dox).1 While the details of the mechanism 
of action of anthracyclines are still under investigation,2 the cytotoxic activity is suggested to 
be a result of intercalation with DNA3 and inhibition of topoisomerase II.4 Due to the 
unselective nature of the anthracyclines, treatments are often associated with severe side 
effects such as cardiac toxicity.5 This has led to extensive efforts in reducing the systemic 
toxicity of Dox and other anticancer drugs by different types of prodrug approaches.6 In these 
strategies, the drug is modified in a way that minimizes its off target activity while allowing 
activation at the intended site. Prodrug approaches for Dox include both non-covalent and 
covalent modifications. A notable example of noncovalent prodrugs of Dox is the inclusion of 
Dox in liposomes.7 Lipid encapsulation of the drug contributes to decreasing toxic side 
effects, since liposomes can penetrate endothelial lesions found in the neovasculature of 
tumors but not in normal blood vessels. FDA approved pegylated and non-pegylated 
liposomal Dox formulations, namely Doxil® and Myocet® respectively for treating Aids 
related Kaposi’s sarcoma, ovarian cancer and breast cancer.8 The covalent approach typically 
involves modification either on the primary amine to form carbamates,9, 10 or on the ketone 
functionality by forming hydrazones. The pH-sensitive hydrazone can be cleaved in the acidic 
microenvironment of the tumour11 and the carbamate can be attached to an enzymatically 
hydrolyzable oligopeptide. Both approaches have been used to design cell-targeting prodrugs 
through the conjugation to antibodies.12, 13 
The diverse functionalities of carbohydrates make them potential candidates for use in 
prodrugs. Amazingly, there are very few examples of glycosylated prodrugs reported in the 
literature to date. Carbohydrates have mainly been used as a triggering group for the drug 
release since they can be hydrolyzed by the glycosidases overexpressed by cancer cells. The 
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most prominent example is that of glucuronic acid14, 15 that is degraded by β-glucuronidase 
which have been found at high levels in tumour tissue.16 Assets of carbohydrates are not 
restricted to their biocompatibility and biodegradability. They also present a large range of 
remarkable biological and physico-chemical properties. Carbohydrate-protein interactions 
play an important role for regulating biochemical processes, such as cell differentiation, 
proliferation and adhesion, inflammation, and immune response. The feasibility of using 
carbohydrate ligands to target protein receptors, termed 'glycotargeting', was first 
demonstrated in 1971.17 Since then the potential of using carbohydrates to design drug-
delivering systems has been made clear. However, small molecule drugs, no matter how 
heavily glycosylated they are, have the potential to pass into the kidneys, through glomerular 
filtration, and be rapidly cleared. For this reason, much effort are devoted to designing 
macromolecular glycosylated carriers and there is little work on the development of such 
glycotargeting prodrugs.18 
Carbohydrates also interact with other carbohydrates through the establishment of an 
extensive network of hydrogen bondings and of hydrophobic interactions. In particular, 
polysaccharide-polysaccharide interactions play an important role in the control of the 
architecture of animal and plant cells. Cellulose and xyloglucan (XG) assemble to form the 
cellulose/XG network, which is considered the dominant load-bearing structure in the 
growing cell walls of non-graminaceous land plants. In a biomimetic approach, Brumer et al. 
reported the efficient modification of cellulosic materials with different molecules including 
enzymes and the cell adhesion peptide RGD through anchorage of xyloglucan-based 
glycoconjugates at their surface.19, 20 A particular advantage of such non-covalent 
modification is to circumvent the limited reactivity of insoluble cellulose and to preserve the 
fibre’s integrity. 
In the present work, we report the synthesis and preliminary biological evaluation of new 
enzymatically activated Dox glyco-prodrugs aimed at being administered in situ at the tumor 
site after resection. The carbohydrates, lactose and XGO, the oligosaccharide-repeating unit 
of xyloglucan, were chosen to address two specific roles. Lactose binds to galectins, a family 
of β-galactoside binding proteins associated with tumour malignancy.21, 22 Interaction between 
lactose and galectins is expected to decrease diffusion of the glyco-prodrug and to hamper its 
rapid clearance thus allowing a sustained release of the Dox when administered in solution. 
On the other hand, the use of XGO could allow the immobilization of the Dox prodrug onto 
cellulosic wound dressing. The synthetic route consisted in the conjugation of furan-modified 
carbohydrates and maleimide-activacted Dox by a metal free Diels Alder cycloaddition 
(Figure 1). We have previously used thiol-maleimide Michael-type addition23 coupling for 
conjugation of reducing-end functionalized carbohydrates. While being a metal-free reaction, 
this reaction requires handling sulfurylated molecules susceptible to oxidation. Another type 
of ligation reaction is the Diels-Alder cycloaddition.24 The inverse electron demand Diels–
Alder reaction (iEDDA) between 1,2,4,5-tetrazines and olefins has increasingly gained 
importance in chemical biology as a fast and metal-free bioorthogonal ligation reaction.25, 26 
Furan-maleimide cycloaddition is another type of popular Diels-Alder reaction having the 
advantage of using widely available reactants. This conjugation method recently allowed us to 
prepare glycosylated chromatographic matrices for the capture of carbohydrate-binding 
proteins.27 This reaction allows catalysis-free introduction of the carbohydrate part in water or 
in organic solvent at a late stage, avoiding extensive carbohydrate protecting group strategies. 
The presence of a peptide- or ester-containing spacer arm between the maleimide group and 
the anthracycline should allow the enzymatic release of the Dox by endogenous peptidases or 
esterases.  
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Figure 1. General scheme of the enzymatically activated glyco-prodrugs of Dox. D.A.=Diels 
–Alder. 

 
Results and Discussion 
Synthesis  

We sought to obtain two types of glyco-prodrugs of Dox with different activating 
mechanisms. Our first strategy was to link the drug to the carbohydrate part through ester 
formation, permitting the release of the drug by esterases, particularly human carboxylesterase 
2 that is commonly expressed in tumor tissues.28 The ester functionality is linked to the 
primary amine of Dox by a p-aminobenzyl alcohol (PABA) spacer. Hydrolysis of the ester 
bond will initiate a cascade reaction of this so-called self-immolative spacer, first reported by 
Katzenellenbogen,29 ultimately resulting in the release of Dox.  Our second strategy sought to 
enable Dox release by specific proteases. To this goal, we chose a tripeptide linker (D-Ala-
Phe-Lys)30 known to be cleaved by plasmin, which has been identified as a potential target 

Page 3 of 22

ACS Paragon Plus Environment

Bioconjugate Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



protease for prodrug activation of cancer drugs.31 This linker has previously been used in 
combination with the PABA self-immolative linker in the synthesis of Dox32 and Dox 
derivative prodrugs.33 The latter were shown to be stable in human plasma and poorly 
membrane permeable, thereby limiting activation to locally secreted proteolytic activity and 
reducing the likelihood of severe side effects. 
 
Starting with the linker drug end of the prodrugs, the synthesis of the maleimidyl ester linked 
Dox (MalEsterDox 1) was performed starting from ω-aminocapronic acid 2 (Scheme 1). The 
five-carbon spacer length provided by the use of ω-aminocapronic acid has previously been 
reported for enzymatically cleaved prodrugs of Dox.34 
 

 

 

Scheme 1. Synthesis of 1. a) (Boc)2O (1.1 equiv.) in NaOH(aq.), 1,4-dioxane 1:2, 16 h, 89%. 
b) DCC (1 equiv.), DMAP (20 mol%), p-methoxybenzaldehyde (0.95 equiv.) in CH2Cl2, 0 ℃ 
to r.t., 21 h, 86%. c) NaBH4 (0.95 equiv.) in CF3CH2OH, 0 ℃, 1 h 20 min, 90%. d) TFA: 
CH2Cl2 1:1, r.t. 20 min, then e) 3-(N-maleimido)propionic acid (1.1 equiv.), DCC (1.1 equiv.), 
NMM (3 equiv.) in CH2Cl2, 0 ℃ to r.t., 17 h, 51% over 2 steps. f) Bis(4-nitrophenyl) 
carbonate (1.5 equiv.), DIPEA (3 equiv.) in CH2Cl2, r.t., 4 h, 70%. g) Dox*HCl (0.9 equiv.), 
Et3N (2 equiv.) in DMF, r.t., 22h, 59%. 
 
 
tert-Butyloxycarbonyl (tBoc) protection of the amine with di-(tert-butyl)dicarbonate in the 
presence of sodium hydroxide (NaOH) gave carboxylic acid 3 which was coupled with p-
hydroxybenzaldehyde by Steglich esterification to give ester 4 in 86% yield. The next step 
was the reduction of the aldehyde to the corresponding alcohol. Performing the reduction with 
NaBH4 in THF at 0°C resulted in multiple products as observed by TLC already after 15 min. 
Trifluoroethanol has previously been reported as a co-solvent for NaBH4 reductions.35, 36 
Reduction of aldehyde 4 with NaBH4 in trifluoroethanol at 0°C resulted in full conversion 
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after one hour and allowed us to isolate hydroxyl 5 in high yield (90%). Next, the maleimide 
(Mal) was introduced by tBoc deprotection with trifluoroacetic acid (TFA) followed by 
amidation with 3-maleimidopropionic acid in the presence of dicyclohexylcarbodiimide 
(DCC) and N-methylmorpholine (NMM). MalEsterOH 6 was isolated in 51% over two steps. 
To introduce the carbamate-linked Dox, the hydroxyl of 6 was converted to a mixed 
anhydride by reaction with bis p-nitrophenoxyanhydride in the presence of N,N-
diisopropylethylamine (DIPEA) in dichloromethane (DCM) (70% yield). Stirring 7 in 
dimethylformamide (DMF) at room temperature (r.t.) with Dox in the presence of 
triethylamine resulted in MalEsterDox 1 in 59% yield. 
 
The synthesis of the peptide-linked glyco-prodrug started with the synthesis of the D-Ala-Phe-
Lys tripeptide.  The synthesis of this tripeptide has previously been described both in 
solution32 and on solid support.33 Our synthetic strategy for the Dox tripeptide motif started 
from Nα-Fmoc-Nε-Alloc-Lysine 8 which was activated by iso-butylchloroformate and 
functionalized with p-aminobenzylalcohol to give 9 in 72 % yield (Scheme 2).  
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Scheme 2. Synthesis of 13. a) ibutylchloroformate (1.1 equiv.), p-aminobenzylalchohol (1.2 
equiv.), NMM (2.3 equiv.) in THF, - 40 ℃, 72%. b) 1,4-dioxane:MeOH: 2M NaOH (aq.), r.t., 
20 min, then c) DMTMM (1 equiv.), FmocPheOH (1 equiv.), NMM (1.1 equiv.) in CH3CN, 
r.t., 19h, then d) 1,4-dioxane:MeOH: 2M NaOH (aq.), r.t., 20 min, then e) DMTMM (1 
equiv.), Boc-D-AlaOH (1 equiv.), NMM (1.1 equiv.) in CH3CN, r.t., 14 h, 47% over 4 steps. 
f) TFA: CH2Cl2 0.8:1, r.t., 15 min, then g) DMTMMBF4 (1.1 equiv.), 3-(N-

maleimido)propionic acid (1.2 equiv.), NMM (1.1 equiv.) in CH3CN, r.t., 22 h, 43% over two 
steps. h) bis(4-nitrophenyl) carbonate (5 equiv.), DIPEA (3 equiv.) in DMF, r.t., 46 h then i) 
Dox*HCl (0.9 equiv.), Et3N (2 equiv.) in DMF, r.t., 24h, 75%. 
 
The tripeptide linker was synthesized by solution phase peptide synthesis with N-Fmoc 
protected amino acids using 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium 
tetrafluoroborate (DMTMMBF4)

37, 38
 as coupling reagent followed by deprotection with 

NaOH (aq.). The tripeptide 10 was obtained in 47% yield over 4 steps. The maleimide was 
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introduced in a similar way as for the previously described linker by TFA deprotection of the 
tBoc followed by amidation to give MaltriPep 11 in 43% yield over two steps. The 
hygroscopic nature of the tripeptide in combination with the risk of hydrolyzing the 
maleimide made it necessary to thoroughly dry (high vacuum pump) and store all following 
intermediates below -15℃. As for the ester-based linker described above, the hydroxyl 
function of 11 was activated as a mixed anhydride by reaction with five equivalents of bis p-
nitrophenoxy carbonate in the presence of DIPEA. The mixed anhydride 12 was isolated by 
precipitation in diethyl ether and was used in the following substitution without further 
purification. Stirring 12 with Dox and Et3N in DMF at room temperature gave MaltriPepDox 
13 in 75% yield and high purity as confirmed by HPLC (see SI).  
 
The next step was the conjugation of the drug-linker part with the carbohydrate moiety. The 
furfuryl-functionalized carbohydrates were obtained through a two steps method for 
synthesizing N-glycosylamides first introduced by Lokhoff et al.39 and utilized in our group to 
synthesize a range of reducing-end functionalized oligosaccharides.23, 27 The unprotected 
carbohydrate was stirred in neat furfurylamine for 72 hours to afford a transient 
glycosylamine that was made non-hydrolyzable by acylation of the nitrogen with acetic 
anhydride. The synthesis of furfuryl-lactose 14 was previously published for the production of 
conjugatable glycosaminoglycans.40 The furfuryl-XGO 15 was synthesized for this study from 
the oligosaccharide-repeating unit of tamarind seed xyloglucan. First, the XGO repeating unit, 
which consists in a mixture of hepta-, octa- and nona-saccharides in a ratio of 15/35/50, was 
obtained quantitatively by enzymatic hydrolysis of the polysaccharide as reported 
previously.41 The furfuryl-XGO was then obtained in 90% yield following the same protocol 
as for lactose. The conjugation of MalEsterDox 1 with furfuryl-lactose 14 in DMF and water 
(1:1) at 37 ºC gave LacEsterDox 16 in high yield (91%, Scheme 3). The XGOEsterDox 
prodrug 17 was prepared under similar reaction conditions but was isolated in 35% yield only 
after purification on reverse phase C18 cartridges. The yield is lower than typically observed in 
this type of cycloaddition and is partly explained by extensive chromatographic purification. 
The reaction conditions and the purification procedure should be optimized but sufficient 
quantities for drug release and cell toxicity studies were isolated and no attempt to improve 
the yield have been done so far. 
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Scheme 3. Synthesis of 16 and 17. DMF:H2O 1:1, 37 ºC, 3 and 4 days for 16 and 17, 
respectively. 
 
To obtain the tripeptide linked glyco-prodrug (LactriPep(Alloc)Dox) (18, Scheme 4), 13 and 
furfuryl-lactose 14 were stirred in a mixture of DMF and H2O (2:1) at 37℃ for 7 days. 18 
(57% yield) was isolated in high purity as confirmed by HPLC (see SI) after purification on 
silica eluting with 10% water in acetonitrile.  
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Scheme 4. Synthesis of 19. a) DMF:H2O 2:1, 37℃, 7 days, 58%. b) Pd(PPh3)4 (1.2 equiv.), 
CH2Cl2:AcOH 5:1, r.t., 30 min, 59%. 
 
The last step of removal of the Alloc protecting group from the lysine side chain was more 
tricky. Commonly used conditions for Alloc removal include catalytic amounts of Pd0 in the 
presence of an allyl scavenger such as morpholine, tributyltin hydride or silane.42 However, 
using catalytic amounts of Pd(PPh3)4 (20 mol%) and morpholine as allyl scavenger, we were 
unable to isolate the desired product, only observing degradation on TLC. Eliminating the 
scavenger and running the reaction with equimolar amount of Pd(PPh3)4 in a mixture of acetic 
acid and dichloromethane as described by Barthel et al.33 gave the desired product 19 
(LactriPepDox) in 59% yield after precipitation from diethyl ether. 
 
Enzymatic release of Dox from glyco-prodrugs 

To confirm the intended enzymatic release of Dox, the LactriPepDox 19 (100 µM) was 
incubated in vitro in the presence 15 µg/ml of human plasmin at 37 ºC in phosphate buffer 
(pH 7.5). The disappearance of prodrug and appearance of Dox was followed by HPLC 
(Figure 2). We first checked the stability of the prodrugs in these conditions in the absence of 
plasmin (no release after up to 25h at 37°C, data not shown). In the presence of plasmin, 
nearly full conversion of the prodrug into Dox was achieved after 2 h. 
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Figure 2. In vitro protease mediated release of Dox (•) from LactriPepDox 19 (100µM) using 
15µg/ml plasmin in phosphate buffer (pH 7.5) at 37 ºC. 
 
The release of Dox from LacEsterDox 16 was performed in 50 mM Tris buffer (pH 7.4). 
Incubating 16 (100µM) at 37 ºC in the presence of human carboxylesterase 1 (hCE1) (100 
µg/ml) resulted in only minor (~5%) release of Dox after 22 h (Figure 3). 

 
Figure 3. In vitro esterase mediated release of Dox using 100µg/ml esterase in 50 mM Tris 
buffer (pH 7.4) at 37 ºC from LacEsterDox 16 with hCE2(▲), from LacEsterDox 16 with 
hCE1(♦), from XGOEsterDox 17 with hCE2(■) and LacEsterDox 16 without enzyme (x).The 
values for hCE2 measurements are mean values of duplicate experiments. 

 
 

In contrast, incubating 16 with human carboxylesterase 2 (hCE2) under identical conditions 
resulted in full release after 23h. The rate of hydrolysis for XGOEsterDox 17 was slightly 
slower than for 16 (83% after 23h), possibly owing to the steric effect of the larger 
oligosaccharide. Nevertheless, after 48h, 98% of 17 had been hydrolyzed. The difference in 
rate between hCE1 and hCE2 could be explained by the presence of a phenyl on the alcohol 
side since hCE2 is known to hydrolyze esters with bulkier alcohol groups at a higher rate than 
hCE1.43 As was observed for the tripeptide prodrug 19, incubating the ester prodrug 
(LacEsterDox) in the absence of esterase resulted in less than 2% Dox after 27h (data not 
shown). These results confirm that Dox is enzymatically released from prodrugs 16, 17 and 
19 and that these three prodrugs are stable in the buffers in absence of enzyme. 
 
Biological evaluation 

As a preliminary test for verifying the biological interest of the prodrugs, the cytotoxicity of 
compounds 16, 17 and 19 was assayed on MCF-7 breast cancer cells and compared with that 
of free Dox (Table 1).  
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Compound IC50 (µM) 

16 0.51 ± 0.07 

17 0.31 ± 0.15 

19 1.11 ± 0.11 

Dox 0.53 
 
Table 1. Inhibition of MCF-7 breast cancer cell growth by the glyco-prodrugs and free Dox 
as reference. IC50 values were calculated as the concentration of compound needed to reduce 
cell growth by 50%. Values are reported as mean ± the standard deviation (SD) of triplicate 
measurements.  
 
The plasmin-activated prodrug 19 displayed a slightly higher (~2 fold) IC50 compared to Dox 
while the esterase activated prodrugs 16 and 17 showed IC50 values similar to that of the 
parent drug. Since it has been previously shown that protection of the primary amine of Dox 
results in a significant decrease in activity,44 these results are a clear indication of Dox release 
from prodrugs 16, 17 and 19 in presence of the MCF-7 cells. One would have probably 
expected a more pronounced difference between the IC50 of the ester and amide prodrugs as 
plasmin (which is not over-expressed on MCF-7 cells) has not been added in the cell culture 
medium), and further experiments are now required to study the mode of action of the glyco-
prodrugs.  Nevertheless, the similar IC50 obtained for XGOEsterDox 17 and LacEsterDox 16 
are very encouraging since they show that the release of Dox is not dependent on the size and 
therefore steric hindrance of the oligosaccharide moiety. In a forthcoming work, we wish to 
implement the use xyloglucan glycoconjugates to the development of drug-functionalized 
cellulosic biomaterials.    
 

Conclusion 
 
We have synthesized a small series of enzymatically activatable glyco-prodrugs of Dox. We 
demonstrated the release of the drug by enzymatic cleavage in vitro and in cellulo on MCF-7 
cancer cells, as the prodrugs and Dox itself display similar IC50. The late stage metal free 
cycloaddition used to ligate the oligosaccharide and the drug allows this methodology to be 
used with different oligosaccharides and potentially with different drugs. Current work in our 
groups includes extending this ligation to synthesize prodrugs of other drug classes. 
 

Experimental procedures 

 
General considerations 

All commercial chemicals were used without prior purification. 1H- and 13C-NMR spectra 
were obtained at 400 and 101 MHz respectively, using a Bruker Advance DRX 400 
spectrometer. Solvent residual peaks were used as reference and calibrated as follows; CDCl3: 
7.26ppm; MeOD-d4: 3.31ppm; DMSO-d6: 2.50 ppm. Reactions were monitored by TLC 
(Merck Silica gel 60 F254) and analyzed under UV (254 nm). Reactions involving 
carbohydrates were followed by staining TLC plates with H2SO4: MeOH : H2O (3:45:45). 
Column chromatography was performed by manual flash chromatography (wet-packed silica, 
0.04-0.063 mm) or by automated column chromatography on a Grace Reveleris instrument 
using prepacked silica columns. Analytical high performance liquid chromatography (HPLC) 
was performed using a Waters µBondapak C18-column (3.9 x 300mm, 125Å pore size, 10 µm 
particle size) connected to a Waters photodiode array detector 996. HPLC method A: 10-
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100% MeOH in water (phosphoric acid pH 2.5) over 5 min, 2 ml/min. HPLC method B: 0-
100% MeOH in water (phosphoric acid pH 2.5) over 5 min, then 100% water for 5 min, 2 
ml/min. Mass analyses (ESI) were recorded on a Bruker Daltonics Esquire 3000+ instrument 
and HRMS analyses were obtained on a Waters Xevo G2-S QTOF instrument. 
 

6-((tert-Butoxycarbonyl)amino)hexanoic acid (3) 
Following a published procedure,45 NaOH (4.0 g, 0.1 mol) was dissolved in water (130 ml) 
and 1,4-dioxane (260 ml) was added. ω-Aminocapronic acid (13.1 g, 99.9 mmol) was added, 
allowed to dissolve and the solution was cooled to 0 °C. Di-tert-butyl dicarbonate (24.0 g, 110 
mmol) was added in three portions, the reaction mixture was stirred at 0 °C for 30 min and 
then at r.t. for 16 h. The 1,4-dioxane was removed by rotary evaporation and the crude was 
diluted with water (400 ml) and washed with EtOAc (2 x 200 ml). The aqueous phase was 
acidified by addition of 1 M HCl (aq.) and extracted with EtOAc (3 x 300 ml). The organic 
phases from the second extraction were collected and dried over MgSO4. Removal of the 
solvents gave the expected product 3 as an oil that crystallizes to light pink crystals (20.6 g, 
89% yield). Rf : 0.20  (2% MeOH in CH2Cl2). 

1H NMR (400 MHz, CDCl3) δ 10.85 (br s, 1H), 
5.97 (br s, 0.3H, -CONH-), 4.63 (br s, 0.7H, -CONH-), 3.08 (br s, 2H), 2.32 (t, J = 7.4 Hz, 
2H), 1.62 (p, J = 7.5 Hz, 2H), 1.53 – 1.18 (m, 13H) ; ESI-MS m/z [M+Na]+ : 254.2. 
 
4-Formylphenyl-6-((tert-butoxycarbonyl)amino)hexanoate (4) 
3 (10.0 g, 43.2 mmol) was dissolved in dry CH2Cl2 (43 ml) in a two necked flask under argon. 
DCC (8.9 g, 43.2 mmol) and DMAP (1.0 g, 8.2 mmol) were added, the reaction mixture was 
cooled to 0 °C and p-hydroxybenzaldehyde (5.0 g, 41.2 mmol) was immediately added. The 
reaction was stirred at 0 °C for 30 min and then at r.t. for 21 h. The white precipitate that 
formed was filtered off and washed twice with a small volume of CH2Cl2. The solvents were 
removed from the filtrate which gave an off-white solid that was redissolved in CH2Cl2 (200 
ml), washed with 0.5 M HCl (50 ml), sat. NaHCO3 (50 ml) and brine (50 ml). The organic 
phase was dried over MgSO4 and filtered. Removal of the solvents by rotary evaporation gave 
the crude as an off white solid. Purification by column chromatography on silica eluting with 
2% MeOH in CH2Cl2 gave 4 as a white solid (12.5 g, 86% yield). Rf : 0.36  (2% MeOH in 
CH2Cl2); 

1H NMR (400 MHz, CDCl3) δ 9.98 (s, 1H), 7.95-7.86 (m, 2H), 7.30-7.20 (m, 2H), 
4.57 (br s, 1H), 3.14 (q, J = 6.7 Hz, 2H), 2.59 (t, J = 7.4 Hz, 2H), 1.77 (p, J = 7.5 Hz, 2H), 
1.61 – 1.49 (m, 2H), 1.48 – 1.38 (m, 11H); 13C NMR (101 MHz, CDCl3) δ 191.0, 171.4, 
156.1, 155.5, 134.1, 131.3, 122.5, 79.3, 40.5, 34.3, 29.9, 28.5, 26.3, 24.5; MS (ESI) m/z: 
[M+Na]+: 358.3 HRMS m/z [M+Na]+ calculated for C18H25NO5Na: 358.1630, found: 
358.1627.  
 
4-(Hydroxymethyl)phenyl-6-((tert-butoxycarbonyl)amino)hexanoate (5) 
4 (1.00 g, 2.98 mmol) was dissolved in trifluoroethanol (6 ml) and the flask was cooled on 
ice. NaBH4 (107 mg, 2.83 mmol) was added and the reaction was stirred on ice. Full 
consumption of 4 was observed after 1 h on TLC (2% MeOH in CH2Cl2). The reaction was 
kept on ice and quenched by slow addition of sat. NH4Cl (7 ml) after 1h 20 min. The mixture 
was allowed to reach r.t. and stirred for 40 min. Water (5 ml) was added and the aqueous 
phase was extracted with EtOAc (3 x 30 ml). The organic phases were pooled, dried over 
Na2SO4 and filtered. Removal of the solvents gave a colorless oil, which was purified by flash 
column chromatography on silica eluting with 1% MeOH in CH2Cl2 to obtain 5 as a white 
solid (900 mg, 90% yield). Rf : 0.32 (2% MeOH in CH2Cl2);

 1H NMR (400 MHz, CDCl3) δ 
7.37-7.29 (m, 2H), 7.06-6.99 (m, 2H), 4.62 (s, 3H,-CH2- and –CONH-), 3.10 (q, J = 6.6 Hz, 
2H), 2.5 3 (t, J = 7.4 Hz, 2H), 2.49 (br s, 1H), 1.74 (p, J = 7.5 Hz, 2H), 1.56 – 1.46 (m, 2H), 
1.45 – 1.35(m, 11H) ; 13C NMR (101 MHz, CDCl3) δ 172.2, 156.1, 150.0, 138.7, 128.0, 
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121.6, 79.2, 64.6, 40.4, 34.3, 29.8, 28.5, 26.3, 24.6; MS (ESI) m/z: [M+Na]+: 360.2; HRMS 
m/z [M+Na]+ calculated for C18H27NO5Na: 360.1787, found: 360.1786. 
 
MalEsterOH (6) 
5 (400 mg, 1.19 mmol) was dissolved in dry CH2Cl2 (1.5 ml) and TFA (1.5 ml) was added. 
The reaction was stirred at r.t. for 20 min. Full consumption of 5 was observed by TLC (10% 
MeOH in CH2Cl2). Solvents were removed and coevaporated four times with CH2Cl2. The 
resulting clear oil was redissolved in dry CH2Cl2 (2 ml) and basified (pH approx. 8) by 
addition of N-methylmorpholine (400 µl). 3-(Maleimidyl)propanoic acid (220 mg, 1.30 
mmol) was added, the reaction was cooled on ice and DCC (268 mg, 1.30 mmol) was added. 
The ice bath was removed and the reaction was stirred at r.t. for 17 h. The white precipitate 
that had formed was filtered off and the filtrate was concentrated. The yellow oil that resulted 
was redissolved in CH2Cl2 (20 ml), washed with 0.5 M HCl (5 ml) and dried over MgSO4 and 
filtered.  Removal of the solvents gave a white solid, which was purified by flash column 
chromatography on silica eluting with 25% cyclohexane in EtOAc to obtain 6 as a white solid 
(236 mg, 51% yield). Rf : 0.52 (10% MeOH in CH2Cl2); 

1H NMR (400 MHz, CDCl3) δ 7.41-
7.34 (m, 2H), 7.09-7.02 (m, 2H), 6.68 (s,2H), 5.74 (br s, 1H), 4.67 (s, 2H), 3.81 (t, J = 7.2 Hz, 
2H), 3.28-3.19 (m, 2H), 2.55 (t, J = 7.3 Hz, 2H), 2.48 (t, J = 7.2 Hz, 2H), 1.86 (br s, 1H), 1.75 
(p, J = 7.4 Hz, 2H), 1.58 – 1.48 (m, 2H), 1.46 – 1.36 (m, 2H); 13C NMR (101 MHz, CDCl3) 
δ172.3, 170.7, 169.6, 150.2, 138.7, 134.3, 128.2, 121.8, 64.8, 39.4, 34.9, 34.4, 34.2, 29.2, 
26.4, 24.5; MS (ESI) m/z: [M+Na]+: 411.3; HRMS m/z [M+H]+ calculated for C20H25N2O6: 
389.1713, found: 389.1714. 
 
MalEsterPNP (7) 
6 (178 mg, 0.46 mmol) and bis(p-nitrophenyl)carbonate (210 mg, 0.69 mmol) were added to a 
dry flask filled with argon which was capped, evacuated and refilled with argon (repeated 3 
times). Dry CH2Cl2 (4.6 ml) was added followed by diisoproylethylamine (245 µl, 1.38 
mmol). The yellow reaction mixture was stirred at r.t. for 4 h in the dark. Full consumption of 
6 was observed on TLC (2% MeOH in CH2Cl2). The reaction mixture was diluted with 
CH2Cl2 (25 ml) and washed with aq. citric acid (10 % w/v). The organic phase was dried over 
Na2SO4 and filtered. Removal of the solvents gave a yellow oil. DEE (25 ml) was added and 
brief sonication resulted in a white precipitate. The precipitate was filtered off, washed with 
DEE repeatedly, collected and redissolved in a minimum of CH2Cl2. The solution was added 
dropwise to stirred DEE (25 ml). The white precipitate that formed was collected by filtration 
and dried to give 7 as a white solid (178 mg, 70% yield). Rf : 0.28 (2% MeOH in CH2Cl2); 

1H 
NMR (400 MHz, CDCl3) δ 8.31-8.23 (m, 2H), 7.50-7.43 (m, 2H), 7.41-7.35 (m, 2H), 7.16-
7.09 (m, 2H), 6.70 (s, 2H), 5.64 (br s, 1H), 5.28 (s, 2H), 3.84 (t, J = 7.2 Hz, 1H), 3.31-3.20 
(m, 2H), 2.58 (t, J = 7.4 Hz, 1H), 2.51 (t, J = 7.1 Hz, 1H), 1.82-1.72 (m, 2H), 1.58 – 1.50 (m, 
2H), 1.49 – 1.38 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 172.0, 170.7, 169.6, 155.6, 152.6, 
151.3, 145.6, 134.4, 131.9, 130.2, 125.5, 122.2, 121.9, 70.4, 39.4, 34.9, 34.4, 34.3, 29.3, 26.4, 
24.5; MS (ESI) m/z: [M+H]+: 554.2 and  [M+Na]+: 576.2; HRMS m/z [M+H]+ calculated for 
C27H28N3O10: 554.1775, found: 554.1776. 
 
MalEsterDox (1) 
7 (132 mg, 0.24 mmol) was dissolved in dry DMF (2.2 ml) and the solution was added to 
Doxorubicin hydrochloride (128 mg, 0.22 mmol). Et3N (61 µl, 0.44 mmol) was added and the 
dark red reaction mixture was stirred under argon. After 22 h,  the reaction mixture was added 
dropwise to stirred DEE (75 ml) resulting in a red precipitate which was collected by filtration 
and further purified by flash column chromatography eluting with 2-5% MeOH in CH2Cl2. 1 

(124 mg, 59% yield) was isolated as a red foam. Rf : 0.29 (5% MeOH in CH2Cl2); 
1H NMR 
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(400 MHz, CDCl3) δ 13.96 (s, 1H), 13.23 (s, 1H), 8.02 (dd, J = 7.7, 1.1 Hz, 1H), 7.82 – 7.73 
(m, 1H), 7.39 (dd, J = 8.6, 1.1 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 
6.68 (s, 2H), 5.73 (s, 1H), 5.49 (d, J = 3.8 Hz, 1H), 5.28 (br s, 1H), 5.22 (d, J = 8.6 Hz, 1H), 
5.08-4.91 (m, 2H), 4.75 (dd, J = 5.0, 1.4 Hz, 2H), 4.57 (s, 1H), 4.18 – 4.08 (m, 1H), 4.07 (s, 
3H), 3.85 (br s, 1H), 3.81 (t, J = 7.2 Hz, 2H), 3.66 (d, J = 7.2 Hz, 1H), 3.32 – 3.16 (m, 3H), 
3.08-2.94 (m, 2H), 2.53 (t, J = 7.3 Hz, 2H), 2.48 (t, J = 7.2 Hz, 2H), 2.39-2.27 (m, 1H), 2.25-
2.10 ( m, 2H), 1.91 – 1.68 (m, 4H), 1.52 (p, J = 7.1 Hz, 2H), 1.46-1.33 (m, 2H), 1.28 (d, J = 
6.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 214.0, 187.2, 186.8, 172.2, 170.7, 169.7, 161.2, 
156.3, 155.8, 155.6, 150.6, 135.9, 135.6, 134.3, 134.1, 133.7, 129.5, 121.8, 121.0, 120.0, 
118.6, 111.7, 111.6, 110.1, 100.8, 76.8, 69.7, 69.6, 67.5, 66.2, 65.7, 56.8, 47.2, 39.4, 35.8, 
34.9, 34.4, 34.2, 34.1, 30.3, 29.2, 26.4, 24.5, 17.0; MS (ESI) m/z: [M+Na]+ : 980.3;  HRMS 
m/z [M+H]+ calculated for C48H52N3O18: 958.3246, found: 958.3235. 
 
FmocLys(Alloc)PABOH (9) 
Following a published procedure,32 FmocLys(Alloc)OH (1.44g, 3.18 mmol) was dissolved in 
dry THF (20 ml) under argon in a two-necked flask equipped with an addition funnel. The 
solution was cooled to -40 °C and N-methylmorpholine (0.39 ml, 3.54 mmol) and isobutyl 
chloroformate (0.45 ml, 3.47 mmol) were added. The turbid mixture was stirred at -40 °C for 
3 h after which a solution of p-aminobenzylalcohol (470 mg, 3.82 mmol) and N-
methylmorpholine (0.42 ml,  3.82 mmol) in dry THF (6 ml) was added dropwise over 10 min. 
The reaction mixture was stirred at -40 °C for 2 h and then at room temperatrure for 1 h. The 
solvents were removed and the yellow residue was taken up in CH2Cl2 (250 ml). The organic 
phase was washed with 0.5 M NaHCO3 solution (100 ml), 0.5 M NaHSO4 solution (100 ml) 
and brine (100 ml). The organic solvents were removed under reduced pressure and the 
yellow residue was purified by flash column chromatography on silica (2-10% methanol in 
CH2Cl2) to provide 9 as a white solid (1.28 g, 72% yield). 1H NMR (400 MHz, dmso-d6) δ 
9.96 (s, 1H), 7.89 (d, J = 7.5 Hz, 2H), 7.74 (dd, J = 7.5, 4.9 Hz, 2H), 7.62 (d, J = 7.9 Hz, 1H), 
7.55 (d, J = 8.4 Hz, 2H), 7.41 (t, J = 7.3 Hz, 2H), 7.37-7.29 (m, 2H), 7.24 (d, J = 8.3 Hz, 2H), 
7.19 (t, J = 5.8 Hz, 1H), 5.89 (ddt, J = 17.2, 10.5, 5.3 Hz, 1H), 5.30-5.20 (m, 1H), 5.18 – 5.12 
(m, 1H),5.10 (t, J = 5.7 Hz, 1H) 4.52-4.39 (m, 4H), 4.34 – 4.06 (m, 4H), 3.07 – 2.91 (m, 2H), 
1.75-1.56 (m, 2H), 1.51 – 1.21 (m, 4H). 13C NMR (101 MHz, DMSO-d6) δ 171.0, 156.1, 
155.9, 143.9, 143.8, 140.7, 137.5, 137.4, 133.8, 127.6, 127.0, 126.9, 125.3, 120.1, 118.9, 
116.8, 65.6, 64.1, 62.6, 55.4, 46.7, 31.6, 29.1, 22.9. HRMS m/z [M+H]+ calculated for 
C32H36N3O6: 558.2604, found: 558.2606. 
 

Tripep (10) 
Compound 9 (560 mg, 1.00 mmol) was dissolved in a premade mixture of 1,4-
dioxane:MeOH:2M NaOH(aq.) (14:5:1, 20 ml).46 After 30 min (TLC, CH2Cl2:MeOH 90:10), 
the solution was neutralized by addition of acetic acid. The solvents were removed by 
evaporation and coevaporated with 1,4-dioxane (2 x 20 ml). The oily solid residue was 
washed with DEE (3 x 10 ml) and then with CH2Cl2 (10 x 10 ml). The CH2Cl2 fractions were 
collected and the solvent was removed to yield the free amine as a pale yellow oil (326 mg) 
which was used in the next step without further purification. 
A solution of DMTMMBF4 (365 mg, 1.11 mmol), FmocPheOH (390 mg, 1.01 mmol) and N-
methyl morpholine (121 µl, 1.10 mmol) in CH3CN (5 ml) was stirred for 10 min and then 
added to a solution of the crude form the previous step (326 mg) in CH3CN (5 ml). The 
reaction mixture was stirred at r.t for 19 h (TLC, CH2Cl2:MeOH 90:10). The solvents were 
removed by evaporation and CH2Cl2 (100 ml) was added and the organic phase was washed 
with water (25 ml), 0.5 M NaHCO3 (25 ml), 0.5 M NaHSO4 (3 x 25 ml) and water (50 ml). 

Page 14 of 22

ACS Paragon Plus Environment

Bioconjugate Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The solvents were removed from the organic phase to give an off-white solid (665 mg) which 
was used in the next step without further purification. 
A premade mixture of 1,4-dioxane:MeOH:2M NaOH(aq.) (14:5:1, 20 ml) was added to the 
crude from the previous step and the reaction mixture was stirred at r.t. for 50 min (TLC, 
CH2Cl2:MeOH 90:10). The reaction was neutralized by addition of acetic acid. The solvents 
were removed by evaporation and coevaporated with 1,4-dioxane (20 ml). The resulting white 
residue was washed with DEE (3 x 5 ml) and then with CH2Cl2 (10 x 20 ml). The white 
precipitate formed in the DEE phase was collected by filtration, dissolved in CH2Cl2 and 
pooled with the other CH2Cl2 fractions. The CH2Cl2 fractions were collected and the solvent 
was removed to yield the free amine as an off white solid (463 mg) which was used in the 
next step without further purification.  
A solution of DMTMMBF4 (360 mg, 1.10 mmol), Boc-D-AlaOH (190 mg, 1.00 mmol) and 
N-methyl morpholine (121 µl, 1.10 mmol) in CH3CN (5 ml) was stirred for 10 min and then 
added to a solution of the crude from the previous step (463 mg) in CH3CN (6 ml). The 
reaction mixture was stirred at r.t for 14 h (TLC, CH2Cl2:MeOH 90:10). The solvents were 
removed by evaporation and CH2Cl2 (70 ml) was added and the organic phase was washed 
with water (40 ml), 0.5 M NaHSO4 (2 x 20 ml), 0.5 M NaHCO3 (3 x 20 ml) and water (20 ml). 
The solvents were removed from the organic phase to give an off-white solid, which was 
purified by flash column chromatography on silica eluting with 2-5% methanol in CH2Cl2. 
The product was dryloaded on to the column after being dissolved in 10% methanol in 
CH2Cl2 and dried on to silica.  Compound 10 was isolated as a white solid (309 mg, 47% over 
4 steps). 1H NMR (400 MHz, MeOD-d4) δ 7.61 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 
7.28 – 7.09 (m, 5H), 5.91 (ddt, J = 16.3, 10.7, 5.5 Hz, 1H), 5.28 (dd, J = 17.1, 1.7 Hz, 1H), 
5.16 (d, J = 10.5 Hz, 1H), 4.60 (dd, J = 9.8, 4.5 Hz, 1H), 4.56 (s, 2H), 4.50 (d, J = 5.0 Hz, 
2H), 4.43 (dd, J = 9.6, 4.9 Hz, 1H), 4.00 (q, J = 7.1 Hz, 1H), 3.30-3.23 (m, 1H), 3.11 (t, J = 
6.7 Hz, 2H), 2.95 (dd, J = 14.2, 9.8 Hz, 1H), 2.02 – 1.78 (m, 2H),1.59-1.40 (m, 4H) 1.33 (s, 
9H), 1.13 (d, J = 7.1 Hz, 3H). 13C NMR (101 MHz, MeOD-d4) δ 176.9, 173.6, 172.2, 158.8, 
157.9, 138.8, 138.5, 138.4, 134.5, 130.2, 129.5, 128.5, 127.8, 121.4, 117.4, 80.7, 66.3, 64.8, 
56.4, 55.7, 51.8, 41.5, 37.9, 32.3, 30.5, 28.7, 24.5, 17.7. HRMS m/z [M+H]+ calculated for 
C34H48N5O8: 654.3503, found: 654.3496. 
 
MaltriPep (11) 
10 (150 mg, 0.23 mmol) was suspended in dry CH2Cl2 (1ml) under argon, TFA (0.8 ml) was 
added and the solution was stirred for 15 min. Full consumption of 10 was confirmed by TLC 
(10% methanol in CH2Cl2). The solvents were removed and coevaporated with CH2Cl2 (3 x 1 
ml). The resulting residue was taken up in CH3CN (3.5 ml) and neutralized by addition of 
NMM (150 µl). DMTMMBF4 (82 mg, 0.25 mmol), 3-(maleimidyl)propanoic acid (46 mg, 
0.27 mmol) and NMM (27 µl, 0.25 mmol) were stirred in CH3CN (1.5 ml) at r.t. until all 
material dissolved (~5 min). The solution of deprotected 10 was then added and the reaction 
mixture was stirred at r.t. for 22 h. The formed precipitate was filtered off and washed with 
ice cold CH3CN and DEE. The filtrate was collected, diluted in CH2Cl2 (100 ml) and washed 
with 0.5 M NaHSO4 (30 ml) and water (30 ml). The organic phases were dried over MgSO4 
and the solvents were then removed to give a white solid which was pooled with the 
precipitated material. The crude was purified by flash column chromatography on silica 
eluting with 5% methanol in CH2Cl2. The crude product was dryloaded on to the column after 
being dissolved in methanol and dried on to silica.  The expected product 11 was isolated as a 
white solid (72 mg, 43% over 2 steps). 1H NMR (400 MHz, MeOD-d4) δ 7.60 (app d, 
2H),7.29 (app d, 2H), 7.28-7.14 ( m, 5H), 6.76 (s, 2H) 5.91 (ddt, J = 16.3, 10.6, 5.4 Hz, 1H), 
5.28 (dd, J = 17.2, 1.8 Hz, 1H), 5.20 – 5.12 (m, 1H), 4.62 – 4.52 (m, 3H), 4.50 (dt, J = 5.6, 1.6 
Hz, 2H), 4.40 (dd, J = 9.6, 5.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 1H), 3.73-3.57 (m, 2H), 3.30-3.25 
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(m, 1H, partly overlapping with solvent peak), 3.13 (t, J = 6.7 Hz, 2H), 2.95 (dd, J = 14.2, 
10.0 Hz, 1H), 2.47-2.27 (m, 2H), 2.00 – 1.84 (m, 2H), 1.62 – 1.36 (m, 4H), 1.14 (d, J = 7.1 
Hz, 3H). 13C NMR (101 MHz, MeOD-d4) δ 176.2, 173.7, 173.2, 172.4, 172.1, 158.8, 138.8, 
138.5, 135.4, 134.6, 130.2, 129.5, 128.5, 127.8, 121.4, 117.4, 112.9, 66.3, 64.8, 56.7, 55.8, 
51.1, 41.5, 37.8, 35.2, 35.1, 32.3, 30.5, 24.5, 17.1. MS (ESI) m/z: [M+H]+: 705.4 and 
[M+Na]+: 727.4; HRMS m/z [M+H]+ calculated for C36H45N6O9: 705.3248, found: 705.3253. 
 
MaltriPepOPNP (12) 
11 (65 mg, 0.09 mmol) and bis(p-nitrophenyl)carbonate (82 mg, 0.27 mmol) were dissolved 
in dry DMF (1.5 ml) under argon. The flask was capped, evacuated and refilled with argon 
several short turns before DIPEA (47 µl, 0.27 mmol) was added by syringe. The reaction 
mixture was stirred at r.t. for 23 h at which time a second portion of bis(p-

nitrophenyl)carbonate (55 mg, 0.18mmol) was added. The reaction was stirred for an 
additional 23 h after which all 11 was consumed as verified by TLC (5% methanol in 
CH2Cl2). The reaction mixture was diluted in CH2Cl2 (40 ml), washed with citric acid solution 
(10 wt%, 2 x 15 ml) and dried over MgSO4. The solvents were removed resulting in a yellow 
oil, which was dissolved in a small amount of CH2Cl2 and added dropwise to DEE (40 ml) 
while stirring. The product precipitated as a white solid (60 mg) containing ~15% p-

nitrophenol (estimated from 1H-NMR integrals). The identity of the expected product was 
confirmed by 1H-NMR, ESI-MS and HRMS and the material was used without further 
purification in the following step. 1H NMR (400 MHz, MeOD-d4) δ 8.31 (app d, 2H), 7.69 (d, 
J = 8.6 Hz, 2H), 7.46 (app d, 2H), 7.41 (d, J = 8.6 Hz, 2H), 7.31-7.23 (m, 4H), 7.23-7.16 (m, 
1H), 6.74 (s, 2H), 5.97-5.84 (m, 1H), 5.33-5.23 (m, 3H), 5.16 (d, J = 10.5 Hz, 1H), 4.56 (dd, J 
= 10.0, 4.4 Hz, 1H), 4.53 – 4.46 (m, 2H), 4.41 (dd, J = 9.6, 5.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 
1H), 3.73 – 3.44 (m, 3H), 3.14 (t, J = 6.7 Hz, 2H), 2.95 (dd, J = 14.2, 10.1 Hz, 1H), 2.46-2.25 
(m, 2H), 2.08 – 1.81 (m, 1H), 1.63 – 1.37 (m, 4H), 1.15 (d, J = 7.1 Hz, 3H). MS (ESI) m/z: 
[M+Na]+: 892.3; HRMS m/z [M+H]+ calculated for C43H48N7O13: 870.3310, found: 870.3318. 
 
MaltriPepDox (13) 
12 (53 mg, 0.061 mmol) was dissolved in dry DMF (1.7 ml) and the hydrochloride salt of 
doxorubicin (35 mg, 0.061 mmol) was added followed by Et3N (18 µl, 0.12 mmol). The 
reaction mixture was stirred at r.t. and followed by TLC (5% methanol in CH2Cl2). After 24 h, 
the reaction mixture was added dropwise to DEE (35 ml) under stirring which resulted in a 
red precipitate. The precipitate was collected by filtration and isolated by washing the filter 
paper with a solution of 5% methanol in CH2Cl2. The solvents were removed to give a red 
solid, which was purified by flash column chromatography on silica eluting with 5% methanol 
in CH2Cl2. The product was dryloaded on to the column after being dissolved in 
methanol:CH2Cl2 mixture and dried on to silica. The expected product 13 was isolated as a red 
solid (59 mg, 75%). HPLC method A. MS (ESI) m/z: [M+Na]+: 1296.5; HRMS m/z [M+Na]+ 

calculated for C64H71N7O21Na: 1296.4601, found: 1296.4608. Characteristic peaks of 
maleimidyl (6.96 ppm, s, 2H), Vinyl proton from Alloc protecting group (5.86 ppm, m, 1H), 
methoxy methyl of doxorubicin (3.97 ppm, s, 3H), Alaninyl methyl (1.12 ppm, d, 3H) and 
doxorubicin glycon methyl (0.91ppm, d, 3H) with matching integrals found on 1H-NMR 
(DMSO-d6) (see SI). 
 
N-Acetamido-N-furfuryl-XGO (15) 
A solution of XGO41 (1.015 g, 8.3 mmol based on the octasaccharide) in furfurylamine (4 
mL) was stirred for 72h at 25°C. The solution was poured into ethyl acetate (25 mL), cooled 
to 0°C and centrifuged for 20 min at 6000 rpm. The solid was washed with ethyl acetate and 
centrifuged again. The crude solid of glycosylamine was then dissolved in methanol (15 mL) 
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and acetic anhydride (7 mL) was slowly added at 0°C to the solution. The reaction mixture 
was then allowed to warm up to room temperature and stirred a further 16h. The solution was 
then concentrated and co-evaporated with toluene. The residue was dissolved in 14% aqueous 
ammonia (50 mL), stirred 1h at room temperature to hydrolyze potential O-acetyl groups. 
After concentration of the solution to half of its initial volume under vacuum, the aqueous 
phase was extracted 3 times with ethyl acetate to remove free N-acetyl furfurylamine and 
concentrated. N-acetamido-N-furfuryl-XGO was isolated in 90% yield (998 mg) after 
purification by flash chromatography on silica gel (CH3CN/H2O 7:3 v/v). 1H NMR (400 
MHz, D2O) δ 7.51 and 7.45 (2 x s, rotamers, 1H), 6.46-6.36 (m, 2H), 5.53 (d, J =  9.0 Hz, 
0.3H, H1

GlcN rotamer), 5.18 (m, 1H), 5.13 (d, J = 9.0 Hz, 1H, H1
GlcN rotamer), 4.96 (m, 2H), 

4.62-4.55 (m, 5H), 4.06-3.33 (m, 51H), 2.30 and 2.26 ( 2 x s, rotamers, 3H, NCOCH3). The 
presence of the amide rotamers was confirmed by their disappearance at elevated temperature 
(323K) as observed by VT-NMR (see SI). (ESI) m/z: [M+Na]+ : 1206.4 (DP7), 1368.5 (DP8), 
1530.5 (DP9). HR-MS m/z [M+Na]+ calculated for DP7; C46H73NO34Na; 1206.3912 Found 
1206.3876, m/z [M+Na]+ calculated for DP8; C52H83NO39Na; 1368.4440 Found 1368.4401, 
m/z [M+Na]+ calculated for DP9; C58H93NO44Na; 1530.4968 Found 1530.4930.  
 
LacEsterDox (16) 
1 (21 mg, 0.022 mmol) was dissolved in DMF (60 µl) and N-acetamido-N-furfuryl-Lactose40 
(28 mg, 0.06 mmol) was added followed by water (40µl). The reaction mixture was stirred at 
37 °C for 3 days. The solvents were removed by rotary evaporation and the crude material 
was dissolved in CH2Cl2/MeOH, loaded on to silica and purified by flash column 
chromatography eluting with 10-20% H2O in CH3CN. 16 was isolated as a red solid (30 mg, 
91%) after lyophilization. HPLC method A (see SI); MS (ESI) m/z: [M+Na]+ : 1443.6; HR-
MS m/z [M+Na]+ calculated for C67H80N4O30Na 1443.4755; Found 1443.4757. 
 
XGOEsterDox (17) 
1 (10 mg, 0.01 mmol) was dissolved in DMF (60 µl) and N-acetamido-N-furfuryl-XGO 15 
(66 mg, 0.05 mmol) was added followed by water (60µl). The reaction mixture was stirred at 
37 °C for 4 days. The solvents were removed by rotary evaporation and the crude was 
purified by two consecutive C18-columns (1g) eluting with a gradient of 0-100% MeOH in 
water. The expected product 17 was isolated as a red solid (8 mg, 35%) after lyophilization. 
HPLC method A (see SI); (ESI) m/z: [M-H]- : 2140.9 (DP7) , 2302.9 (DP8), 2464.9 (DP9). 
HR-MS m/z [M+Na]+ calculated for DP7; C94H124N4O52Na; 2163.7029 Found 2163.7079, m/z 
[M+Na]+ calculated for DP8; C100H134N4O57Na; 2325.7607 Found 2325.7495, m/z [M+Na]+ 
calculated for DP9; C106H144N4O62Na; 2487.8135 Found 2487.8136.  
 
LactriPep(Alloc)Dox (18) 
13 (15 mg, 0.012 mmol) was dissolved in DMF (80 µl) and N-acetamido-N-furfuryl-Lactose 
(16 mg, 0.035 mmol) was added followed by water (40µl). The reaction mixture was stirred at 
37 °C for 7 days. The solvents were removed by rotary evaporation and the crude material 
was dissolved in CH2Cl2/MeOH, loaded on to silica and purified by flash column 
chromatography eluting with 10% H2O in CH3CN. The expected product 18 was isolated as a 
red solid (12 mg, 58%) after lyophilization. HPLC method A (see SI). MS (ESI) m/z: 
[M+Na]+: 1759.7; HRMS m/z [M+Na]+ calculated for C83H100N8O33Na: 1759.6290, found: 
1759.6302. 
 
LactriPepDox (19) 
Following a modified procedure for Alloc deprotection,33 18 (7 mg, 4.0 µmol) was dissolved 
in degassed CH2Cl2:AcOH (5:1, 600 µl). Pd(PPh3)4 (6 mg, 5.2 µmol) was added. The reaction 
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was stirred at rt in the dark and followed by TLC (CH2Cl2:MeOH:NH4OH 80:18:2). After 30 
min, the CH2Cl2 was removed and DEE (1 ml) was added which resulted in a red precipitation 
which was washed with DEE (1 ml), EtOAc (2 x 1 ml) and then DEE (1 ml) again. 
Ultrasonication and quick centrifugation was used in each wash cycle. The resulting red pellet 
was dried in a dessicator under low pressure.  The resulting red solid (4 mg, 59%) had a mass 
on ESI-MS and HRMS corresponding with the expected product 19 and consisted of one 
main compound with minor impurities on HPLC-UV. HPLC method A. MS (ESI) m/z: 
[M+H]+:  1653.6 HRMS m/z [M+H]+ calculated for C79H97N8O31: 1653.6260, found: 
1653.6244. 
 
Enzymatic release of Doxorubicin 

Plasmin and human carboxylesterases were purchased from Sigma-Aldrich. 

Plasmin 

Following a protocol from the enzyme provider,47 a 100 µM solution of 19 in phosphate 
buffer (pH 7.5) containing 100mM Lysine was incubated at 37 ℃ with plasmin from human 
plasma (15µg/ml). The reaction was followed by reversed phase HPLC (method B) by 
injecting 15µl aliquots from the reaction. The ratio of released doxorubicin over prodrug was 
calculated from integration of the peaks at 480 nm and plotted against time. 
  
Carboxylesterase 
A 100 µM solution of ester linked prodrug (16 or 17) in Tris buffer (50 mM, pH 7.4)48 was 
incubated at 37 ℃ with either recombinant human carboxylesterase 1 isoform b (100µg/ml) or 
recombinant human carboxylesterase 2 (100µg/ml) expressed in baculovirus infected BTI 
insect cells . The reaction was followed by reversed phase HPLC (method B) by injecting 15 
µl aliquots from the reaction. The ratio of released doxorubicin over prodrug was calculated 
from integration of the peaks at 480 nm and plotted against time. 
 

Growth inhibition assay 

The breast cancer cells MCF-7 were seeded at a density of 2×103 cells per well in 96-well 
plates. After 24 h, cells were treated with an increasing concentration of compounds, from 0 
to 100 µM. Cells were incubated for 72 h, and then, 20 µL of MTS (Promega) was added per 
well for one hour at 37 °C. The absorbance was read at 492 nm using a spectrophotometer 
(SPECTRAmax, Molecular Devices). IC50 values were obtained from the cytotoxicity curves 
using SOFTmax PRO software. 
 

Supporting Information description 
The SI contains NMR spectra and HPLC chromatograms. 
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