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A B S T R A C T   

Use of green chemistry and alternative strategies has been explored to prepare diverse organic derivatives. The 
combination between heterogeneous catalyst, environmentally benign reaction and high-yielding methods is 
gaining momentum. Herein, a defective 6-connected Hf-MOF, named Hf-BTC, was efficiently synthesized and 
characterized for the heterogeneous catalysis under microwave irradiation. The MOF features including struc-
tural defect, porosity, acidity, and stability was analyzed by powder X-ray diffraction, N2 sorption isotherms, 
acid-base titration, and thermal gravimetric analysis. In the catalytic studies, the Brønsted-Lewis dual acidic Hf- 
BTC was efficiently applied for the synthesis of the heterocyclic compounds via the microwave-assisted cyclo-
addition and condensation reactions. The reactions proceeded smoothly in the presence of the Hf-MOF with a 
broad scope of substrates provided the expected products in high to excellent yields (up to 99 %) for few minutes 
and the catalyst could be easily recycle over many consecutive reactions without loss of its reactivity and 
structure.   

Introduction 

Aromatic heterocyclic rings containing nitrogen, including benzox-
azole, benzimidazole, benzothiazole, quinazolinone, and their de-
rivatives are an important class of heterocyclic compounds due to 
biological and pharmaceutical activities [1]. These compounds are also 
valuable precursors for the synthesis of various commercial drugs [2–4]. 
Traditionally, these compounds could be prepared via the reactions of 
2-aminophenol, o-phenylenediamine, 2-aminothiophenol and anthra-
nilamide with arylating reagents, for examples aldehydes, ketone, or 
carboxylic acid derivatives in the presence of acidic catalysts [5–8]. 
Although the synthesis could be effective in the catalysis of Brønsted or 
Lewis acids, such as ionic liquids [9], zeolites [10], resin [11], and 
halogen salts [12], the several drawbacks including large amounts of the 
catalysts, difficulty in recycling the catalysts, toxic and corrosive re-
actants, and a large amount of wastes from organic solvents and addi-
tives need to be overcome [13]. Besides that, the development of new 
methods for the synthesis of nitrogen-containing heterocycles is still a 
focus of intense and containing the interest in the organic chemistry, as 

well as in pharmaceutical and agrochemical chemistry [14]. The 
convenient and economic way to synthesize these heterocyclic classes by 
using microwave irradiation would be beneficial for improved product 
yields and reduction of reaction time as compared to those observed for 
the synthesis under conventional heating [15–18]. 

Metal-organic frameworks (MOFs), constructed by metal-connecting 
nodes and polydentate bridging linker, have attracted much attention of 
the scientific community for the past decades [19]. With many 
outstanding features such as large pores, thermal and chemical stability, 
and ease of tailoring the original material structure as well as 
post-synthesis on MOF materials, MOFs can be used for many applica-
tions such as adsorption and gas separation [20,21] catalysis [22–31], 
sensors [32–35], nanocarriers [36,37], electrochemical [33,38], and 
environmental treatment [39–41]. The water-stable MOFs, for examples 
Zr- and Hf- based MOFs, with structural stability at high temperature 
and in water at a wide range of pH have been good candidates for 
catalyst [23,42,43]. Moreover, these MOFs consist of Zr6-octahedra 
capped with by μ3-O and μ3− OH groups which can attribute as the 
Brønsted acid catalytic sites in their structure [14,44,45]. Among them, 

* Corresponding authors. 
E-mail addresses: thphuong@hcmus.edu.vn (P.H. Tran), dlhtan@inomar.edu.vn (T.L.H. Doan).  

Contents lists available at ScienceDirect 

Molecular Catalysis 

journal homepage: www.journals.elsevier.com/molecular-catalysis 

https://doi.org/10.1016/j.mcat.2020.111291 
Received 1 October 2020; Received in revised form 23 October 2020; Accepted 24 October 2020   

mailto:thphuong@hcmus.edu.vn
mailto:dlhtan@inomar.edu.vn
www.sciencedirect.com/science/journal/24688231
https://www.journals.elsevier.com/molecular-catalysis
https://doi.org/10.1016/j.mcat.2020.111291
https://doi.org/10.1016/j.mcat.2020.111291
https://doi.org/10.1016/j.mcat.2020.111291


Molecular Catalysis xxx (xxxx) xxx

2

Hf-BTC is a defect MOF, constructed from Hf6(μ3-O)4 
(μ3− OH)4-(HCOO)6 clusters and tricarboxylate linkers (BTC3− ), which 
have OH groups and formic acid on Hf cluster to play an active sites for 
catalysis [17,46–49]. 

This work deals with the synthesis of 2-substituted benzoxazoles, 
benzimidazoles, benzothiazoles, quinazolinone derivatives through the 
reaction of o-amino aromatics coupled with different arylating reagent 
employing a Hf-MOF, named Hf-BYC, as an efficient Brønsted and Lewis 
dual acidic catalyst under microwave irradiation and solvent-free con-
ditions. The MOF could be recycled and reused several times without 
significant decrease operation of catalyst. 

Experimental 

Materials 

All materials and reagents were purchased from Merck and Acros 
Company and used without further purification. UiO-66 (Zr, Hf), Zr-BTC 
were prepared based on previously reported method [47,50]. 

General methods 

Gas chromatography-mass spectrometry measurements were carried 
out on an Agilent GC System 7890 equipped with a mass selective de-
tector (Agilent 5973 N) and a capillary DB-5MS column (30 m × 250 μm 
× 0.25 μm). Analytical thin-layer chromatography (TLC) was performed 
on F-254 silica gel coated aluminum plates from Merck. 1H and 13C 
nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 
Advance II 500 MHz NMR spectrometer. Powder X-ray diffraction 
(PXRD) patterns were recorded using a D8 Advance diffractometer 
equipped with a LYNXEYE detector (Bragg–Brentano geometry, Cu Kα 
radiation λ = 1.54056 Å). Fourier Transform infrared (FT-IR) spectra 
were recorded from KBr pellets using a Bruker Vertex 70 system. Ther-
mal gravimetric analysis (TGA) was performed on a TA Q500 thermal 
analysis system with the sample held in a platinum pan in a continuous 
airflow. Microwave irradiation was performed on a CEM Discover 
BenchMate apparatus. 

Synthesis and preparation of MOF 

Synthesis of Zr-BTC and Hf-BTC were prepared according to methods 
reported in the literature [51]. An equimolar solution (8.5 mM) of HfCl4 
salt (or ZrCl4 salt) and the tricarboxylic acid H3BTC in 320 mL solvent 
mixture of DMF and formic acid (v/v = 1:1) in 500-mL capped bottle 
was heated in an oven at 120 ◦C for 3 days under static conditions. After 
cooling the bottle to room temperature, the precipitates were collected 

by centrifugation. The sample was washed with fresh DMF (3 × 20 mL) 
for 3 days and dispersed in deionized water (3 × 20 mL). Then, the white 
solid was immersed in 20 mL of anhydrous acetone for once times, 
replaced nine successive times in 3 days. Finally, the materials were 
dried under reduced pressure at room temperature for 24 h and acti-
vated at 150 ◦C for 24 h. 

Evaluation of brønsted acidity 

The Brønsted acidity of material is defined by potentiometric acid- 
base titrations protocol [52]. 50 mg of each MOFs were immersed in 
60 mL of 0.01 M aqueous NaNO3 in an Erlenmeyer flask with the stopper 
and allowed to equilibrate in 18 h. Then, 15 mL were withdrawn from 
each solution and added to each 25 mL titration flask. Using 0.1 M 
aqueous HCl to adjust the pH of the solution to 3 and then titrating with 
0.1 M aqueous NaOH until the pH reach approximately 10. Titration 
curves were repeated for three times to get an average value. 

Typical procedure for the cycloaddition reaction 

A mixture of Hf-BTC (1 mol %), anthramide (0,5 mmol) and ketone 
(0.5 mmol) was heated under microwave irradiation in a CEM Discover 
apparatus monitored by TLC. After completion of the reaction, the 
catalyst was filtered from the reaction mixture and extract with ethanol 
(50 mL). The solvent was removed on a rotary evaporator and the crude 
product was purity by flash chromatography (90:10 acetone/petroleum 
ether to give a corresponding product. The purity and identity of the 
products were confirmed by GC–MS spectra, which were compared with 
the spectra in the NIST library, and by 1H and 13C NMR spectroscopy. 

Typical procedure for the condensation reaction 

A mixture of Hf-BTC (1 mol %), benzoyl chloride (0.140 g, 1 mmol) 
and an 2-aminophenol (0.119 g, 1 mmol) was heated under microwave 
irradiation at 120 ◦C for 15 min in a CEM Discover apparatus monitored 
by TLC. After completion of the reaction, the catalyst was filtered from 
the reaction mixture. The filtrate was diluted with ethyl acetate (50 mL), 
washed with H2O (3 × 20 mL), aqueous NaHCO3 (2 × 20 mL), and brine 
(20 mL), and dried over Na2SO4. The solvent was removed on a rotary 
evaporator. The crude product was purified by flash chromatography 
(90:10 acetone/petroleum ether to give a corresponding product. The 
purity and identity of the products were confirmed by GC–MS spectra, 
which were compared with the spectra in the NIST library, and by 1H 
and 13C NMR spectroscopy. They were obtained by the same microwave 
irradiation procedure as that for preparation of 2-aryl substituted 
benzimidazole and 2-aryl substituted benzothiazole using 1,2- 

Fig. 1. a) PXRD patterns of Hf-BTC, simulated and activated. b) N2 isotherms of Hf-BTC (The filled and opened symbols represent the adsorption and desorption 
processes respectively). 
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phenylenediamine (0.108 g, 1 mmol) or 2-aminothiophenol (0.125 g, 1 
mmol) instead of 2-aminophenol. 

Result and discussion 

Catalysts characterization 

The Hf-BTC was synthesized from tricarboxylic acid (H3BTC) and 
hafnium tetrachloride according to method reported in the literature 
with the high yield after a simple the purification step [51]. The phase 
purity of synthesized Hf-BTC was further confirmed by PXRD, TGA, and 
N2 isothermal. Powder X-ray diffraction (PXRD) patterns between 
experimental and the simulated pattern has been recognized in Fig. 1a to 
show the match well with reported literature [51]. The characteristic 
peaks of Hf-BTC at 2θ values of 8.3, 8.7, 10.1, 11.0 and 13.1 corre-
sponding to (311), (222), (400), (331), and (511) index planes respec-
tively. N2 isotherm of Hf-BTC at low relative pressures and 77 K 
exhibited type1with Brunauer–Emmett–Teller of 1540 m2/g, a pore 
volume of 0.13 cm3/g and an average pore diameter of about 14 Å. 
(Fig. 1b) 

To quantify the defects in Hf-BTC, potentiometric acid-base titration 
method was performed for Hf-BTC and Zr-BTC as a verification material. 
Accordingly, the pKa value at 3.67 was recorded by acid-base titration of 
activated Zr-BTC at distinct equivalent point (5.8) (Fig. S3, Section S2, 
SI), corresponding with appear representative of MOF with Zr nodes 
with μ3− OH proton in the previous report [52]. For Hf-BTC, the pKa 
value was 3.48 at equivalent calculated point (5.9) (Fig. 2a). Comparing 
with Zr-BTC, the more flexibility of proton of Hf-μ3− OH than Zr-μ3− OH 
is understood since the coordination between Hf and oxygen is stronger 
than Zr and oxygen, leading to pKa of Hf-BTC is lower than Zr-BTC and 
Brønsted acidic of Hf-BTC is higher than Zr-BTC. These results opened up 
the potential of Hf-BTC for catalytic activity in diverse organic reactions. 

TGA measurements were carried out for the Hf-BTC sample under air 
flow and TGA curve was built per 100 % of the residual hafnium oxide 
(Fig. 2b). Fig. 2b shows two distinct weight loss steps, corresponding to 
the presence of defect sites (HCOO− ) and the decomposition of BTC3- 

linkers. In the first step (200− 300 ◦C), a weight percentage loss over 

6HfO2, attributed to formate groups, was lower than the calculated form 
the crystal structure (1.40 and 1.45 wt % over 6HfO2 for the experi-
mental and theoretical, respectively) [45,52]. In the second step above 
450 ◦C, the weight loss over HfO2, corresponded to the complete 
decomposition of the linkers, decreased lower than the expected value 
for the crystal structure (1.24 and 1.28, respectively). It is note that TGA 
supported for identification the mixing linker and defect sites in the 
structure. 

Catalytic performance 

Synthesis of cycloaddition reaction 
In our previous study, the synthesis 2,3-dihydroquinazolin-4(1H)- 

ones in the presence of UiO-66 catalyst under traditional heating 
required the reaction time prolonged to 8 h to get the desired product 
[53]. According to the structural characterization of Hf-BTC, our 
expectation is using Hf-BTC which higher Brønsted acidity in catalyst 
and microwave irradiation method for the preparation of this reaction to 
scale down the reaction time and enhance the yield of the products. 

Fig. 2. Acid–base titration curve of Hf-BTC (blue) and first derivative (red). b) TGA curve of activated Hf-BTC. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article). 

Table 1 
Study of the effect of various catalysts in the solvent-free synthesis of 2,2- 
diphenyl-2,3-dihydroquinazolinone-4(1H)-one.  

Entry MOF 
catalyst 

Types of active 
sites 

Average pore 
size (Å) 

GC yield 
(%) 

TOF 
(h− 1) 

1 None –  0 0 
2 UiO-66 

(Zr) 
12-connected 
Zr6 

10.5 [54] 36 1.08 

3 UiO-66 
(Hf) 

12-connected 
Hf6 

10.5 65 1.95 

4 Zr-BTC 6-connected 
Zr6 

14 85 5.10 

5 Hf-BTC 6-connected 
Hf6 

14 96 5.76 

Reaction conditions: anthranilamide (0.5 mmol), benzophenone (0.5 mmol) and 
the catalyst (0.2 mmol %) were stirred under microwave irradiation without 
using solvent at 160 ◦C for 50 min. TOF (turnover frequency) was moles of 
product formed per mol of catalyst per hour. 

Scheme 1. The cyclization reaction between anthranilamide and benzophenone.  
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With the goal of evaluating the catalytic behavior of MOF based on 
the node connectivity, the model reaction between anthranilamide and 
benzophenone in the catalysis of Zr-, Hf-UiO-66 (12-connected), and 
Zr-/ Hf-BTC (6-connected) under microwave irradiation and solvent- 
free at 160 ◦C for 50 min (Scheme 1) was applied to evaluate the cata-
lytic behavior. As shown in Table 1, a clear distinction was made among 
the various catalysts in this reaction. The failure in the formation of this 
product was observed in the absence of the catalyst (Table 1, entry 1). 
The desired product was achieved with the performance when using Hf- 
BTC as a heterogeneous catalyst (Table 1, entry 5) while much lower 
efficiency was observed in the reaction catalyzed by other MOFs 
(Table 1, entries 2–4). This mainly results from the acidic features of the 
Hf− OH/Hf− OH2 facing the pores and the large pore of Hf-BTC which 
made its catalytically active sites accelerate the cycloaddition reaction 
[16,45]. 

We next proceeded to evaluate the scope and limitation of Hf-BTC in 
the cyclization reaction with a variety of ketones and aldehydes (Scheme 
2). The investigation results indicated that the best result obtained in 
two cases ketone such as acetone and cyclohexanone could effort the 
2,2-dimethyl-2,3-dihydroquinazolin-4(1H)-one and spiroquinazolin-4- 
(1H)-one with excellent yields of 95 %. The effect of the cumbersome 
structure of cyclohexanone required increasing temperature reaction to 
60 ◦C for a quantitative transformation into expected the yield of 

spiroquinazolin-4-(1H)-one. Similarly, the benzaldehyde has a certain 
effect on the yields of the desired products. The resonance effect of 
benzene on carbonyl group lead this carbonyl less reactivity in cyclo-
addition reaction. 

We expanded the reaction scope over many ketones in the formation 
of quinazolin-4(1H)-one. The summarized data in the Table 2 illustrated 

Table 2 
GC yields for reaction of the Hf-BTC catalyzed synthesis of various functionalization from the anthranilamide and ketone.  

3a 

3b 3c 3d 
5 min, 50 ◦C 40 min, 60 ◦C 50 min, 80 ◦C 50 min, 100 ◦C 
Yield: 95 % MP (oC): 185− 188 Yield: 96 % MP (oC): 223− 188 Yield: 83 % MP (oC): 167− 170 Yield: 91 % MP (oC): 165− 172 

3e 

3f 3g 3h 
50 min, 50 ◦C 50 min, 100 ◦C 30 min, 100 ◦C 40 min, 80 ◦C 
Yield: 75 % Yield: 85 % Yield: 85 % Yield: 93 % 
MP (oC): 223− 225 MP (oC): 165− 168 MP (oC): 195− 203 MP (oC): 201− 204 

3i 

3j 3k 3 L 
50 min, 160 ◦C 15 min, 60 ◦C 40 min, 80 ◦C 40 min, 60 ◦C 
Yield: 96 % MP (oC): 208− 211 Yield: 95 % MP (oC): 202− 205 Yield: 92 % MP (oC): 205− 207 Yield: 70 % MP (oC): 202− 205  

Scheme 2. Catalytic application of Hf-BTC for the preparation of quinazolinone derivatives.  

Table 3 
The comparison of the microwave irradiation method and solvent-free with 
previous literatures in the synthesis of 2,3-dihydroquinazolin-4(1H)-one.  

Entry Catalyst Conditions Yield 
(%) 

Ref. 

1 H2SO4 Few min 68− 78 [55, 
50] 

2 2-morpholinoethanesulfonic 
acid (MES) 

10 min, 60 ◦C 95 [56, 
51] 

3 Co-CNTs 59 min, 100 W 50 [57, 
52] 

4 Amberlyst-15 3 min, 130 ◦C, 
360 W 

78 [58, 
53] 

5 Catalyst free 3 min, 60 ◦C, 
300 W 

91 [55, 
50] 

6 Hf-BTC 15 min, 60 ◦C, 
80 W 

85 This 
work  
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that all reactions performed under short time with high reaction yields. 
Comparing with the traditional heating method, microwave method 
exhibited as a powerful to enhance catalytic activity of Hf-BTC in the 
reaction with high yield and short reaction times. Interestingly, the re-
action time under microwave irradiation for a few minutes could obtain 
2,2-diphenyl-2,3-dihydroquinazolin-4(1H)-one whereas using the con-
ventional heating required hours for obtained the same yield of this 
product. 

It is essential to compare our work with previous literature using 
acidic catalysis. A comparative study of the microwave irradiation 
method with previous literatures was reported in Table 3, efficiency of 
Hf-BTC catalyzed condensation between anthranilamide and benzalde-
hyde afforded the 2,3-dihydroquinazolin-4(1H)-one product under of 
lower temperature and power MWI heating. 

Synthesis of condensation reaction 
After investigating the catalytic efficiency of Hf-BTC in the cyclo-

addition reaction, the MOF was used as catalyst for solvent-free prepa-
ration of heterocyclic analogues including 2-arylbenzoxazole, 2- 
arylbenzimidazole, and 2-arylbenzothiazole derivaties through a 
condensation reaction under microwave irradiation. The effect of 
important parameters such as amount of catalyst, temperature and sol-
vent free conditions was examined for the model reaction. Under the 

obtained optimized set of reaction time, the promising results under 
microwave irradiation and solvent free conditions, at 120 ◦C in the 
presence of 1 mol % of Hf-BTC (Scheme 3). The increasing yield of 
products in this model reaction were 98 %, 95 % and 85 % for 2-phenyl-
benzoxazole, 2-phenylbenzothiazole and 2-phenylbenzimidazole, 
respectively. While 2-aminothiophenol was able to undergo the aryla-
tion with the same ease as 2-aminophenol, o-phenylenediamine trans-
formation maintained in the prolonging reaction time with up to 30 min. 

We explored the reaction scope over many aromatic carbonyl chlo-
rides in the formation of 2-arylbenzoxazoles and other analogues 
(Table 4). In general, a series of 2-substituted benzaldehyde smoothly 
reacted with 2-aminophenol, 1,2-phenylenediamine, and 2-aminothio-
phenol provide 2-arylbenzoxazole, 2-arylbenzimidazole and 2-arylben-
zothiazole in excellent yields. As a common trend, the reactions 
between 2-aminothiophenol and aromatic carbonyl derivatives 

Scheme 3. Catalytic application of Hf-BTC for the preparation of 2-phenylbenzoxazole, 2-phenylbenzimidazole and 2-phenylbenzithiazole.  

Fig. 3. PXRD patterns of Hf-BTC before (blue) and after (red) 5 consecutive 
condesation reactions in comparison to the simulated pattern (black). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article). 

Table 4 
GC yields for reaction of the Hf-BTC catalyzed synthesis of various functionali-
zation from the 2-aminophenol, 1,2-phenylenediamine, 2-aminothiophenol and 
aromatic carbonyl chloride.  

4b 
4c 4d 

Yied: 85 % Yied: 51 % Yied: 30 % 
MP 103− 104 (oC) MP 99− 100 (oC) MP 156− 157 (oC) 

5b 
5c 5d 

Yield: 90 % Yield: 55 % Yield: 62 % 
MP 203− 204 (oC) MP 253− 254 (oC) MP 234− 236 (oC) 

6b 
6c 6d 

Yield: 98 % Yield: 98 % Yield: 95 % 
MP 123− 124 (oC) MP 110− 111 (oC) MP 206− 207 (oC) 

Reaction conditions: 2-aminophenol, 1,2-phenylenediamine, or 2-aminothio-
phenol (1 mmol), aromatic carbonyl chloride (1 mmol) and the catalyst (1 
mmol %) were stirred under microwave irradiation without using solvent at 120 
◦C for 15 min. 

Table 5 
Reusability of Hf-BTC in the synthesis of 2-phenylbenzoxazole.  

Run 1 2 3 4 5 

Isolated yield (%) 98 97 97 95 95  
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proceeded smoothly to give the corresponding products in excellent 
yields. Intuitively, the electronic properties of substituents of benzal-
dehydes exhibited a little effect on the reaction. Electron-donating group 
on benzoyl chloride, such as 4-methoxybenzoyl chloride, gave the ex-
pected products in excellent yield (85–98 %). Electron-withdrawing 
groups on benzoyl chloride, such as 4-nitrobenzoyl chloride, was all 
effectively reactive and provided the corresponding products in good 
yields. Benzoyl chloride bearing halogen substituents could also react 
smoothly to attain the expected products in high yields (51–98 %). 

The recyclability of Hf-BTC was surveyed on the optimized 
condensation reaction of a 2-aminophenol and benzoyl chloride. Upon 
completion of the reaction, the recovered catalyst was easily separated 
by centrifuging and washing many times with ethyl acetate. The catalyst 
was collected by filtration, washed with acetone, reactivated under 
vacuum at 120 ◦C for 24 h before the reuse for consecutive cycles. PXRD 
patterns corresponding to the fresh and used Hf-BTC after 5 times were 
observed without a changed structure (Fig. 3). Furthermore, no loss of 
catalytic activity in the recycling test of this catalyst is the most prom-
inence of microwave method (Table 5). 

According to the literatures and our experiment results, we suggest a 
mechanism for the formation of 2-arylbenzoxazole, in Scheme 4. The 
μ3− OH and format groups act both as Brønsted acid and Lewis acid to 
protonate of the carbonyl oxygen from benzoyl chloride. The interme-
diate A was formed through the reaction of the amino group on the 
substrate with activated carbonyl. Then the termination, cyclization and 
dehydration take place to form the desired product. 

Conclusions 

A defective Hf-BTC has been successfully synthesized via sol-
vothermal reaction and characterized to define the defective sites and 
the structural features. The catalytic ability of the MOF in the solvent- 
free cyclization and condensation reactions for synthesis of heterocy-
clic compounds was investigated under microwave irradiation. Notably, 
Hf-BTC exhibited the highly catalytic efficiency in the reactions due to 
its large pore size and acidic features. The material was proven as an 
effectively heterogeneous catalyst for the reactions with high yield and 
selectivity as well as ease of recycling without losing its performance 
and crystallinity. 
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