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ABSTRACT: The gold(I)-catalyzed reaction of bromoalkynes with allylsilanes gives 1,4-enynes in a formal cross-coupling reaction. 
Mechanistic studies revealed the involvement of gold(I) vinylidenes or vinylidenephenonium gold(I) cations depending on the 
substituent on the bromoalkyne. In the case of bromo arylalkynes, the vinylidenephenonium gold(I) cations lead to 1,4-enynes via 
a 1,2-aryl rearrangement. The same reactivity has been observed in the presence of InBr3.
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INTRODUCTION

The gold(I) catalyzed intermolecular reaction of alkenes with 
alkynes can lead to the formation of cyclobutenes by a [2+2] 
cycloaddition or to 1,3 dienes via a rearrangement reaction.1 
Both reactions start with the anti-attack of the alkene on (2-
alkynes)gold(I) complexes to form cyclopropyl gold(I) 
carbenes I or II (Scheme 1A). The regioselectivity in the 
generation of these intermediates mainly depends on the 
substitution pattern of the substrates and influences the 
evolution of the reaction either towards the cyclobutene 
formation or the rearrangement in 1,3-dienes. As a general 
trend, for terminal alkynes the gold(I) carbene is preferentially 
formed at the alkyne carbon in β-position to electron-donating 
groups and in α-position to electron-withdrawing groups (I 
and II, respectively). 

Scheme 1. Generation of cyclopropyl gold(I) carbenes and 
gold(I) vinylidenes.

Gold(I) vinylidenes III-IV2 are a second fundamental group of 
intermediates in gold(I) catalysis, which can be generated by 
attack of a gold(I) acetylide to electrophiles (III, Scheme 1B)3 
or by an alkyne-vinylidene isomerization with 1,2-migration of 
a functional group (IV, Scheme 1B).4,5 

The alkyne-vinylidene isomerization via 1,2-halogen migration 
was invoked for the intramolecular gold(I)-catalyzed 
hydroarylation of haloalkynes,6 although in the case of 

bromoalkynes a more favorable hydroarylation/1,2-H 
shift/1,2-halide shift sequence was proposed for the formation 
of hydroarylation products.7 Apart from the widely studied 
hydroarylation,8 haloalkynes9 are scarcely involved in gold(I)-
catalyzed reactions, especially with alkenes. Only few examples 
of 1-bromo-1,5-enynes partaking in cycloisomerization 
reactions have been reported,10 whereas chloroalkynes 

undergo intermolecular [2+2] cycloadditions with alkenes to 
form cyclobutenes11 and react with electron-rich arenes to give 
(Z)-alkenyl chlorides in a hydroarylation reaction.12

We have now discovered a new mode of reactivity of 
bromoalkynes in the presence of gold(I). Bromoalkynes react 
with allyl silanes as electron-rich alkenes (R’ = CH2SiMe3) 
forming the gold(I) carbenes V where the carbene is located in 
-position to the more electron-withdrawing bromide 
substituent (Scheme 2). Intermediates V then undergo 
intramolecular attack of the bromine to form unprecedented 
cyclic bromonium intermediates VI13. Depending on the nature 
of the R substituent, ring opening of VI can generate gold(I) 
vinylidenes VII (R = alkyl) or vinylidenephenonium gold(I) 
cations (R = aryl). Interestingly, the same reactivity can be 
triggered by InBr3 instead of gold(I).

Scheme 2. Proposed evolution of cyclopropyl gold(I) 
carbenes into gold(I) vinylidenes.

RESULTS AND DISCUSSION

Synthesis of 1,4-Enynes. The reaction of 
(bromoethynyl)benzene (1a) with allyltrimethylsilane (2a) in 
presence of cationic gold(I) catalysts A-C led to skipped enyne 
3a in a formal cross-coupling reaction with loss of TMSBr in 
low to moderate yield (Table 1, entries 1-3).14 Whereas more 
electrophilic phosphite-based catalyst D, AuCl, and AuCl3 salts 
failed to catalyze this transformation (Table 1, entries 4-6), 
doubling the amount of 2a using gold complex B led to 3a in 
77% yield. Among the variety of other tested Lewis acids (Table 
1, entries 8-11), InBr3 provided enyne 3a in yields comparable 
to those obtained with cationic gold(I) catalyst B.
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Table 1. Reaction of bromoalkyne 1a with allylsilane 2a to 
form 1,4-enyne 3a.

Entry Catalyst (mol%) 1a:2a Yield (%)a

1 A (5) 1:1 13 (7)
2 B (3) 1:1 50
3 C (5) 1:1 14
4 D (5) 1:1 traces
5 AuCl (5) 1:1 0
6 AuCl3(5) 1:1 0
7 B (3) 1:2 (77)
8 PtCl2 (3) 1:1 traces
9 GaCl3 (3) 1:1 28-45b

10 InBr3 (3) 1:1 50-55b

11 InBr3 (3) 1:2 (81)
a Yields determined by 1H NMR using mesitylene as internal standard. 
Isolated yields in parentheses. b Range of yields obtained in different runs. 

(Chloroethynyl)benzene also reacted with allyltrimethylsilane 
(2a) to give 3a in 68% yield (Table 2, entry 2), while 
(iodoethynyl)benzene provided 3a in poor yield15 (Table 2, 
entry 3). Regarding the allylic partner (Table 2, entries 4-8), 
allyltriphenylsilyane also reacted satisfactorily with 1a to give 
3a in 66% yield (Table 2, entry 6). Nonetheless, in the interest 
of the atom economy, we continued our study using 
allyltrimethylsilanes as substrates. The reversed reaction of 
alkynylsilane 1d with allylbromide 2f did not occur under 
these conditions (Table 2, entry 9). 

Table 2. Optimization of the substitution pattern of the 
substrates to form 3a.a

Entry 1a-e R1 2a-g R2 Yield 
(%)b

1 1a Br 2a SiMe3 (77)
2 1b Cl 2a SiMe3 68c

3 1c I 2a SiMe3 9
4 1a Br 2b Si(OMe)3 21
5 1a Br 2c Si(iPr)3 23
6 1a Br 2d SiPh3 66
7 1a Br 2e Bpin 16
8 1a Br 2f Sn(nBu)3 14
9 1d SiMe3 2g Br -d

10 1e H 2a SiMe3 -e,f

a Substrates 1:2 in a 1:2 ratio. b Yields determined by 1H NMR using 
mesitylene as internal standard. Isolated yields in parentheses. c Reaction 
time was 48 h. d No reaction. e Product 4 was formed instead. f Reaction at 
50 °C.

As expected,1 reaction between phenylacetylene 1e and 
allylsilane 2a gave cyclobutene 4 (Table 2, entry 10). 

Table 3. Scope of the gold- or indium-catalyzed synthesis 
of skipped enynes 3a-y.a

a Isolated yields. b Reaction at 50 °C. c Yields determined by 1H NMR using 
mesitylene as internal standard. d Product 5g was also formed. e Product 5h 
was also formed.

We then examined the scope of the reaction between 
bromoalkynes 1 and allylsilanes 2 using either gold complex B 
or InBr3 and, in general, comparable yields were obtained with 
both catalysts (Table 3). Allylsilane 2a reacts with 
bromoalkynes bearing differently substituted aryl groups to 
give the corresponding skipped enynes 3a-n in yields ranging 
from 40 to 96%. The reaction of 1-(bromoethynyl)-1-
cyclohexene with 2a gave rise to 1,6-dien-3-yne 3o, albeit in 
low yields. Furyl substituted 1,4-enynes 3q,r were also 
obtained in low yields, whereas thiophenyl and indolyl 
substituted 1,4-enynes 3p,s were prepared in 48% and 87% 
yield, respectively. Diverse substituents at the 2 and 3 position 
of the allylsilane are tolerated, leading to skipped enynes 3t-x. 
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The formation of 3-substituted 1,4-enynes 3w,x starting from 
3-substituted allylsilanes indicates that the reaction proceeds 
by -attack on the allylsilane, commonly observed in reactions 
with electrophiles. Moreover, 1,3-bis(bromoethynyl)benzene 
underwent a twofold reaction with allylsilane 2a to afford 
bisallylated product 3y. 

Interestingly, in the gold(I)-catalyzed reaction of o-methyl- or 
o-ethyl(bromoethynyl)benzene with 2a, the 3-allylindenes 5g 
and 5h were formed together with the 1,4-enynes 3g,h. Control 
experiments showed that 3g cannot be converted into 5g 
under the reaction conditions.14 These two results suggested 
the involvement of gold(I) vinylidenes as reactive 
intermediates that undergo C−H insertion on the o-methyl or o-
ethyl groups to form indenes 5g and 5h.

Hydroarylation Cascade. Intrigued by the hint on the 
involvement of gold(I) vinylidenes in the formation of 5g and 
5h, we tested aryl substituted bromoalkynes in the reaction 
with allylsilanes to trigger a gold(I) vinylidene 
formation/hydroarylation cascade. Initially, we evaluated the 
reaction of allylsilane 2a with o-alkynylbiaryls 6a-c at 75 °C 
(Scheme 3A). Using 6a in presence of catalyst B, 1,4-enyne 7a 
and allylphenantrene 8a were obtained in 53% and 23% yields, 
respectively. With InBr3 as catalyst, both products were 
generated in similar ratios, although in lower yield. In the case 
of methyl substituted derivative 6b, gold(I) catalyst led to the 
formation of 7b and 8b in 2:1 ratio. Importantly, the formation 
of phenanthrene 8b, with differently substituted A and C rings, 
demonstrates that the cyclization proceeds by a process in 
which a formal 1,2-migration of the allyl chain takes place. No 
hydroarylation was observed with 6c, which gave the skipped 
enyne 7c in excellent yield with both gold and indium catalysts. 
In this last example, the bis(trifluoromethyl)aryl moiety in 6c 
is not electron-rich enough to undergo the hydroarylation 
reaction. On the other hand, substrate 9 reacts with 
allyltrimethylsilane in the presence of catalyst B to give 1,2-
dehydronapthalene 10 (64% yield) (Scheme 3B).

Scheme 3. Intramolecular hydroarylation reactions.

The intramolecular reaction of 1-bromo-1,6-enynes 11a-c was 
also examined to test if the corresponding gold(I) vinylidenes 
would undergo an intramolecular hydroarylation with the aryl 
substituent of the alkene (Scheme 4). Thus, when 11a-c were 

heated at 75 °C with gold(I) complexes E or F as catalysts, in 
presence of BHT,16 2,3-dihydro-1H-
cyclopenta[b]naphthalenes 12a-c were obtained in 
satisfactory yields as a result of a formal [4+2] cycloaddition. 

Scheme 4. Synthesis of 2,3-dihydro-1H-
cyclopenta[b]naphthalenes 12a-c from 11a-c.

Insights into the reaction mechanism. To prove our initial 
hypothesis of the formation of the gold(I) vinylidene 
intermediate, we performed a series of mechanistic 
experiments and computational DFT calculations. Firstly, we 
investigated the possible intermediacy of gold acetylide and/or 
,-digold(I) alkyne complexes, which has been proposed in 
other reactions of haloalkynes and in the formation of gold(I) 
vinylidenes.17 Thus, we subjected complexes G and H to the 
reaction conditions, in absence or presence of the gold catalyst 
B or different bromide sources, although no reaction was 
detected in any case (Scheme 5).14 Hence, we discarded 
possible mechanisms involving those intermediates. 

Scheme 5. Reactions with gold(I) acetylides.

To demonstrate the bromine migration, we conducted the 
reaction of 1a with simple alkenes 13a-c (Scheme 6A). In these 
reactions, homopropargyl bromides 14a-c were obtained as 
major products as a result of a 1,2-bromoalkynylation of the 
alkenes. The high diasteroselectivity observed in the formation 
of 14b,c suggests that the reaction occurs through a cyclic 
intermediate.18 Finally, 13C-labeled bromoalkyne 13C-1a was 
prepared and subjected to the reaction with allylsilane 2a or 
alkene 13b (Scheme 6B). Remarkably, in both 13C-3a and 13C-
14b products, the 13C carbon had migrated from the - to the 
-position with respect to the phenyl group.

Page 3 of 6

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

Scheme 6. Experimental mechanistic investigations.

Considering all these experimental results, we examined the 
mechanism of the reactions of bromoalkynes 1a and 9 with 2a 

by means of DFT calculations (Scheme 7).19 The most favored 
pathway involves the generation of cyclopropyl gold(I) 
carbenes Int2a,b (a: R = Ph; b: R = (CH2)2Ph), in which the 
gold(I) carbene is formed in β-position to the electron-
donating R group and in α-position to electron-withdrawing 
bromine, in agreement with the previously observed tendency 
(Scheme 1A). In these intermediates, the partially cationic 
center at C4 is stabilized by the -silyl group and can 
experience nucleophilic attack by the bromine to form cyclic 
bromonium intermediates Int3a,b. Depending on the nature of 
the R group, Int3a,b undergo ring opening to form different 
intermediates. The opening of Int3a (R = Ph) is assisted by the 
phenyl group to form Int4a, a vinylidenephenonium-gold(I) 
cation,20 instead of a gold(I) vinylidene. Then, Int4a leads to 
Int5a in a highly exothermic step reminiscent of the Fritsch-
Buttenberg-Wiechell rearrangement.21 Int5a corresponds to 
the product of formal 1,2-bromoalkynylation of the alkene, as 
observed in products 14a-c (Scheme 6A). Gold-promoted 
elimination of the bromide in Int5a via Int6a leads to bromide 
gold(I) complex Int7 and skipped enyne Int8a, in which the 
trimethylsilyl group is still bound to the alkene.14 Finally, the 
activation of the gold complex Int7 with the trimethylsilyl 
derivative Int8a releases TMSBr along with (η2-alkene)gold(I) 
complex Int9a,14 which can turn over the catalytic cycle by 
ligand exchange to form Int1a. Thus, this reaction would afford 
1,4-enyne 3a, which is in agreement with the experimental 
results. 
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Scheme 7. Mechanism for the formation of 1,4-enyne 3a and cyclized product 10 based on DFT calculations. Free energies 
in kcal/mol. L = PMe3. a The energy of TS3b-4b was calculated by freezing the d(C1−Br). The value of this distance was taken from 
the previously optimized geometry of the corresponding TS with R = o-MeC6H4

The opening of Int3b (R = (CH2)2Ph) originates gold(I) 
vinylidene Int4b, which undergoes an intramolecular 
hydroarylation, via Wheland-type intermediate Int10, to form 
Int11 (Scheme 7). Final gold(I)-promoted elimination of 
TMSBr via Int12 gives Int13, and then Int14, which 
corresponds to the observed product 10 (Scheme 3B). 

According to 13C-labeling experiments, the indium-catalyzed 
transformations follow analogous mechanisms to that of the 
gold(I)-catalyzed reactions.22 Indeed, DFT calculations with 
InBr2

+ as the catalytic species show that the minimized 
structure for Int4c is even more distorted towards the 
vinylidenephenonium cation, with the phenyl being 
equidistant from C1 and C2 in a cyclopropene-like 
intermediate.

CONCLUSIONS

We have found that the gold(I)-catalyzed reaction of 
bromoalkynes with allylsilanes gives rise to 1,4-enynes by an 
unprecedented mechanism initiated by the formation of five-
membered ring bromonium intermediates. Although this cyclic 
intermediate can give rise to gold(I) vinylidenes, in the case of 
aryl alkynes, vinylidenephenonium cations are formed and 
undergo a 1,2-aryl migration, bypassing the formation of 
gold(I) vinylidenes. These new reaction pathways could be the 
basis of the discovery of new transformations in electrophilic 
metal-catalyzed reactions of haloalkynes. 
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