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Fluorinated α-amino acids are versatile compounds that are
used for many purposes in medicinal and biochemistry. How-
ever, their synthesis remains a significant hurdle, often re-
quiring multiple steps, multiple protecting groups, and/or the
use of highly toxic reagents. These challenges have limited
the application of fluorinated α-amino acids. A convenient,
protecting-group-free and semi-continuous process for the
synthesis of racemic fluorinated α-amino acids from fluorin-

Introduction

Despite the existence of only one naturally occurring
fluorinated amino acid (4-fluoro-threonine),[1] their syn-
thetic variants have found a wide range of applications, for
example as mechanistic probes and enzyme inhibitors.[2,3]

Fluorinated amino acids have also been utilized for pept-
ide[4] and protein[5] modification, affecting the kinetics of β-
sheet formation,[6] as well as the thermal stability,[7] bind-
ing,[8] and folding[9] of α-helical coiled coil systems. While
these synthetic compounds continue to exhibit great poten-
tial for the manipulation and control of complex biological
processes, their use in research is limited due to the lack of
facile access to the appropriate fluorinated amino acids.[10]

Currently, there are three major synthetic pathways for the
synthesis of the canonical fluorinated α-amino acids (Fig-
ure 1).[3,10,11] Disconnect A represents the introduction of a
fluorinated group to a protected glycine,[12] requiring sev-
eral protection/deprotection steps and a limited pool of
available coupling agents. The second strategy (Discon-
nect B) introduces the fluorinated side chain and amine
equivalent sequentially, however, multiple synthetic steps
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ated amines is described. Following a singlet-oxygen-driven
photooxidative cyanation, an acid-mediated hydrolysis of the
intermediate α-amino nitrile yields the desired α-amino acid.
Aliphatic, benzylic, and homobenzylic residues with dif-
ferent fluorination degrees are tolerated, providing good
overall yields (50–67%). This semi-continuous process is par-
ticularly advantageous for an aliphatic amine, the intermedi-
ate α-amino nitrile of which decomposes upon isolation.

are required to procure the starting materials.[13] The
Strecker synthesis[14] (Disconnect C) is the most common
method for α-amino acid synthesis, and involves nucleo-
philic addition of cyanide to an imine, followed by acid-
mediated hydrolysis.[15,16]

Figure 1. Three strategies for the synthesis of fluorinated α-amino
acids. Rf = fluorinated alkyl or aromatic group.

The Strecker synthesis represents a concise, protecting-
group-free route, but suffers from drawbacks related to the
preparation of primary imines,[17] such as the need to re-
move water and the reactivity of aldehydes. Aldimines
themselves are unstable, resulting in nitrile and enamine for-
mation as well as polymerization. Recently, we developed a
fast and clean method for the direct oxidation of primary
amines to imines in a flow photoreactor.[18,19] These valu-
able intermediates can be trapped in situ to yield α-cyano-
epoxides[20] and α-amino nitriles.[18] We hypothesized that a
wide range of fluorinated α-amino acids could be quickly
accessed by coupling the photooxidative cyanation of fluor-
inated amines with an acid-mediated hydrolysis (Scheme 1).
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Scheme 1. Proposed coupling of photooxidation with acid-medi-
ated hydrolysis for the synthesis of fluorinated α-amino acids in
flow.

Results and Discussion

Utilizing the previously optimized conditions for primary
amine oxidation,[18] a 0.1 m solution of 4-fluorobenzylamine
with trimethylsilyl cyanide (TMSCN; 2.5 equiv.), tetrabut-
ylammonium fluoride (TBAF; 10 mol-%), and tetraphen-
ylporphyrin (TPP; 0.02 mol-%) in THF (1 mLmin–1) was
mixed with oxygen gas[21] (2 mLmin–1) via a T-mixer prior
to entering the 7.5 mL photooxidation module at
–50 °C.[22,23] After a residence time of four minutes, the de-
sired α-amino nitrile was obtained in 76 % yield.[24] By add-
ing 3.5 equiv. of TMSCN, the yield was improved to 94%
(Table 1, entry 1) with complete consumption of starting
material.

Table 1. Synthesis of fluorinated α-amino nitriles from fluorinated
amines.[a]

Entry Rf Yield [%][b]

1 4-FC6H4 70 (94)[c]

2 3-FC6H4 88
3 2-FC6H4 61
4[d] 4-CF3C6H4 27
5[d] 3-CF3C6H4 52
6[d] 2-CF3C6H4 36
7 3,4-F2C6H3 55
8 3,5-F2C6H3 40
9 4-CF2HOC6H4 55
10 4-FC6H4CH2 89
11 3-FC6H4CH2 79
12 2-FC6H4CH2 75
13 CF3(CH2)2 decomposition

[a] Amine (0.1 m in THF), TMSCN (3.5 equiv.), TBAF
(0.14 equiv.), TPP (0.02 mol-%), O2 (3–5 mL min–1), LED 420 nm,
–50 °C, τres = 5 min, 7 bar BPR. For full reaction details, see sup-
porting information. [b] Isolated yield. [c] Yield determined by 1H
NMR spectroscopy with mesitylene as an internal standard. [d] Re-
action was run at –60 °C.

These optimized conditions were applied to a series of
benzyl and homobenzyl primary amines bearing varying
degrees of fluorination. Monofluorinated benzylamines
(Table 1, entries 1–3) gave good to high yields with the ex-
ception of the ortho derivative (entry 3), presumably due to
the slower rate of oxidation for this derivative.[25] Yields of
75–89% were observed for the homobenzyl species (en-
tries 10–12). However, multiple fluorine atoms (entries 7
and 8) or trifluoromethyl groups (entries 4–6) on the aro-
matic ring resulted in poor to moderate yields of the corre-
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sponding α-amino nitriles, even at decreased tempera-
tures.[18]

An alkyl substrate, 4,4,4-trifluorobutylamine, was also
tested in these reaction conditions (Table 1, entry 13). While
full conversion was observed with a 94% yield based on 19F
NMR spectroscopy, the product could not be isolated due
to decomposition. As such, we sought a means of per-
forming the subsequent hydrolysis step directly from the
crude α-amino nitrile.

With a series of fluorinated α-amino nitriles in hand, hy-
drolysis of the nitrile under acidic conditions[26] was at-
tempted in flow. One advantage of flow chemistry over
traditional batch procedures is the ability to use solvents,
such as the required 30 % HClaq, well above their boiling
point.[27] However, upon evaporation of the THF from the
previous step,[28] the α-amino nitriles were found to be only
partially soluble in this acidic solution. While alcohol co-
solvents, such as 2-propanol or n-butanol, gave homogen-
eous solutions, the corresponding α-amino esters were ob-
tained, as well as the desired amino acid.[29] After a short
screen of solvent mixtures, acetic acid in 30% HClaq [1:4
(v/v)] was found to be optimal.

A 0.1 m solution of 4-fluorobenzyl amino nitrile was
placed in an injection loop and passed through a 22 mL
reactor (70 °C) at 8 bar pressure.[22] With a residence time
of 37 min, nearly full conversion of the α-amino nitrile was
observed. However, amide formation was observed, re-
sulting from incomplete hydrolysis (Table 2, entry 1). In-
creasing the temperature to 110 °C gave full conversion to
the desired α-amino acid with no intermediate amide (en-
try 3). Decreasing the residence time resulted in incomplete
conversion (entries 4 and 5).

Table 2. Effects of residence time (τres) and temperature on amino
acid formation from pure α-amino nitrile.[a]

Entry Temperature τres Ratio of products[b]

[°C] [min] Amino Amide Amine
acid salt

1 70 37 1.00 2.70 0.10
2 90 37 1.00 0.10 0.00
3 110 37 1.00 0.00 0.00
4 110 18 1.00 0.15 0.00
5 110 9 1.00 0.54 0.00

[a] Amino nitrile [0.1 m in CH3COOH/30% HClaq (1:4 v/v)]. For
full reaction details, see the Supporting Information. [b] Deter-
mined by 19F NMR spectroscopy.

Finally, a fully semi-continuous process was developed.
To facilitate the transition between the two processes, the
solvent for the photooxidative cyanation was changed from
THF to 2-MeTHF to allow for the extraction of water-solu-
ble byproducts from the first step.[30] Upon subsequent sol-
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vent removal, the crude material was dissolved in a 4:1 mix-
ture of 30% HClaq/acetic acid to provide a 0.1 m solution
with small amounts of precipitate, which were easily fil-
tered.[31] Good yields were observed for the two-step pro-
cess, providing benzylic (Table 3, entries 2 and 4) and
homobenzylic (entry 1) fluorinated α-amino acids in 60–
67 %. The lower yield observed for the meta-CF3 derivative
(entry 3) presumably is due to its inefficient photooxidative
cyanation (Table 1, entry 5). The true advantage of the de-
scribed process is shown in entry 5. An aliphatic derivative,
the intermediate of which decomposes upon purification
(vide supra), can efficiently be transformed to the isolatable
α-amino acid in comparable yields to the aromatic contain-
ing species. This rapid semi-continuous procedure requires
no chromatography.

Table 3. Two-step synthesis of α-amino acids from fluorinated
amines.[a]

Entry Rf Yield [%]

1 4-FC6H4CH2 64
2 4-FC6H4 67
3 3-CF3C6H4 50
4 3,4-F2C6H3 60
5 CF3CH2CH2 63[b]

[a] For full experimental details, see the Supporting Information.
[b] Average yield of two runs.

Conclusions

In conclusion, a convenient, protecting-group-free
method for the synthesis of racemic fluorinated α-amino
acids from fluorinated amines is described. This semi-con-
tinuous process links a photooxidative cyanation, providing
synthetically valuable fluorinated α-amino nitriles,[32] to an
acid-mediated nitrile hydrolysis to yield aliphatic, benzylic,
and homobenzylic racemic α-amino acids with varied fluor-
ination patterns. The extension of this methodology
towards optically pure amino acids is currently underway.

Experimental Section
General Procedure for Synthesis of Fluorinated Amino Nitriles:
TMSCN (3.5 equiv.) was added to the solution of amine (1 mm)
and TPP (1 mg per 5 mL) in THF, followed by addition of a 1 m

solution of TBAF in THF (4 mol-% based on TMSCN). The re-
sulting solution was mixed with oxygen gas (solution flow rate
1.0 mLmin–1) and pumped through a photoreactor. Gas flow rate
was adjusted such that the residence time was four minutes. The
solvent was removed in vacuo and the residue was purified by col-
umn chromatography. In the case of CF3 substituted aromatics,
work-up with saturated aqueous Na2S2O3 was done prior to remov-
ing the solvent in vacuo.
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General Procedure for Synthesis of Fluorinated Amino Acids from
Fluorinated Amines: 2-MeTHF was used as a solvent for the syn-
thesis of fluorinated amino nitriles by using the set-up described
above. The reaction mixture, collected after the photoreactor, was
washed with water (3 � 20 mL) and solvent was removed in vacuo.
The reaction mixture was dissolved in acetic acid (1.2 mL); 30%
aqueous HCl (3.5 mL) was added followed by sonication for 2 min
and filtration. The precipitate was washed with 30% HCl (2.5 mL).
An injection loop was then filled with the filtrate and the solution
was passed through a 22 mL reactor heated to 110 °C at
0.6 mLmin–1. The solvent was removed in vacuo and the residue
was purified, if necessary, by column chromatography to afford the
desired amino acid salt as a white solid.
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