

Accepted Article

Title: Dehydration-type Ti-Claisen Condensation (Carbonhomologation) of α-Heteroatom-substituted Acetates with Alkyl Formates: Utilization as Novel (Z)-Stereodefined Cross-coupling Partners and Application to Concise Synthesis of Strobilurin A

Authors: Yoo Tanabe

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Adv. Synth. Catal. 10.1002/adsc.201700879

Link to VoR: http://dx.doi.org/10.1002/adsc.201700879

DOI: 10.1002/adsc.201((will be filled in by the editorial staff))

Dehydration-type Ti-Claisen Condensation (Carbonhomologation) of α-Heteroatom-substituted Acetates with Alkyl Formates: Utilization as (Z)-Stereodefined Crosscoupling Partners and Application to Concise Synthesis of Strobilurin A

Hidefumi Nakatsuji,^a* Risa Kamada,^a Hideya Kitaguchi,^a Yoo Tanabe^a*

^a Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan. Fax: (+81)79-565-9077; E-mail: <u>tanabe@kwansei.ac.jp</u>, <u>nakatsuji@kwansei.ac.jp</u>

Received: ((will be filled in by the editorial staff))

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201#######.((Please delete if not appropriate))

Abstract.

TiCl₄–Et₃N *or* –Bu₃N reagent conducted a highly (*Z*)stereoselective carbon homologation (dehydration type Ti-Claisen condensation) of alkyl α-heteroatom (halo and sulfonyloxy)-substituted acetates (XCH₂CO₂R) with alkyl formates (HCO₂R) to afford various alkyl β-alkoxy-α-halo *or* sulfonyloxy-substituted acrylates (24 examples; 51%– 91% yield). Stereoretentive Suzuki-Miyaura, Negishi, and Sonogashira cross-couplings using the obtained methyl βmethoxy-α-halo or sulfonyloxy-substituted acrylates proceeded smoothly to produce a variety of β-alkoxy-αsubstituted acrylates in moderate to high yield (35 examples; 29% – 99% yield).

Introduction

C-C bond formation at the α -position of carbonyl compounds is a well-recognized pivotal synthetic tool represented by alkylations, aldol additions, Claisen condensations, and Munnich reactions in organic synthesis. Due to the lower enolization ability of simple esters (pKa ~ 25) compared to ketones and aldehydes (pKa ~ 19-21), α -position-functionalized reactions using simple esters generally require harsher conditions.^[1] Mild Lewis acid–aminemediated enolate generation by virtue of the pushpull mechanism is superb, but, successful methods toward this objective for simple ester enolization, are limited to boron-amine-mediated aldol reactions group),^[2] using diazabromoborane (Corey's dicyclohexyliodoborane (Brown's group),^[3] and boron triflates (Masamune and Abiko's group).^[4]

Besides the well-investigated boron ester enolate chemistry, the method using TiCl₄-amine reagents contributes to smooth enolate generation from not only ketones or aldehydes, but also simple esters. The inherent potential of the TiCl₄-amine system for powerful C-C bond formation undoubtedly originates As a successful application, a 3-step straightforward synthesis of strobilurin A was performed utilizing the present reaction sequence (dehydration type Ti-Claisen condensation and Suzuki-Miyaura cross-coupling), wherein the geometry of the three consecutive olefins (2E,3Z,5E) was completely maintained.

Keywords: Synthetic methods; C-C coupling; Crosscoupling; Synthesis design; Ti-Claisen condensation; Suzuki-Miyaura cross-coupling; Negishi cross-coupling; Sonogashira cross-coupling; strobilurin A

from the original Mukaiyama aldol reaction.^[5] Among TiCl₄-amine-mediated reactions, Ti-Claisen condensations using simple ester substrates occupy a central position, categorized as self, crossed, or asymmetric versions to produce a variety of achiral and chiral β -ketoesters.^[6-8] A recent Ti-crossed Claisen condensation type between the simple ester methyl formate provides and а reliable carbonhomologation method to a-formyl esters as revealed in Organic Syntheses.[7f]

Consistent with our longstanding studies on Ti-Claisen condensations,^[6,7b-f,8] relevant Ti-direct aldoltype additions,^[9] and Mannich reactions,^[10] we next envisage Ti-crossed Claisen condensation using α heteroatom-substituted acetates with alkyl formates.

Very recently, Massanet's group disclosed a notable dehydration-type condensation of alkyl and aryl acetates with methyl formate using TiCl₄–Et₃N reagent,^[11] wherein a variety of alkyl (*E*)-2- alkoxyacrylates was produced. This reaction provides an accessible alternative for preparing "(*E*)"- α -alkoxyacrylates (**Scheme 1**).

In the precedent studies, we reported a couple of thioesters undergo specific dehydration-type intramolecular Ti-Claisen (Dieckmann) condensations to produce the corresponding vinyl sulfide products (**Scheme 1**): (i) short synthesis of 1 β -methylcarbapenem precursors,^[12a] including representative meropenem[®],^[13] and (ii) regioselective synthesis of 3-thiophen-2-carboxylate derivatives.^[12b] This background and prospect led us to further investigate the general scope of readily accessible α -heteroatom (halo and sulfonyloxy)-substituted acetate substrates **1** and **4**.

Scheme 1. Reported dehydration-type inter and intramolecular Ti-Claisen condensations.

The present paper disclose a novel (Z)stereoselective dehydration-type Ti-crossed-Claisen condensation (alkoxyvinylidene carbonhomologation) using α - halo or sulfonyloxysubstituted acetates 1 (XCH₂CO₂R¹: X=Cl, Br, I) and 4 (YOCH₂CO₂Me: Y=Ts, Tf) with alkyl formates 2 (HCO₂R²) to produce alkyl (Z)- β -alkoxy- α -halo or sulfonyloxy-substituted acrylates 3 and 5. respectively (Scheme 2). The obtained acrylates 3 and 5 were successfully applied as Suzuki-Miyaura (SM), Negishi, and Sonogashira cross-coupling partners with E-stereoretention (Note: due to the sequence rule, E-geometry is indicated for the setereoretentive reactions). (Scheme 3). As a successful application of the present method, concise and convergent synthesis of strobilurin A,^[14] natural product possessing the potent fungicidal activity was performed.

Scheme 2. (*Z*)-Stereoselective dehydration-type Ti-Claisen condensation of esters 1 and 4 with alkyl formates 2.

Scheme 3. (*Z*)-Stereoretentive Suzuki-Miyaura, Negishi, and Sonogashira cross-couplings using acrylates **3** and **5**.

Results and Discussion

A fundamental Massanet's group reexamination^[11] using simple octyl acetate with HCO₂Me (**2a**) was initially tested using TiCl₄–Et₃N reagent; octyl (*E*)-2-methoxyacrylate (**8**) was actually obtained as the sole product in 64% yield instead of the expected methyl α -formyl ester^[6-8] (**Scheme 4**). The dehydration mode apparently differs from that of the typical Ti-Claisen condensation using α -alkylester substrates (RCH₂CO₂R'; R \neq H).^[6-8]

Scheme 4. (*E*)-Stereoselective dehydration Ti-Claisen condensation of octyl acetate with methyl formate **2a**.

First, the TiCl₄-mediated reaction was applied using α -halogenated propanoates **1a-c** (X = Cl, Br, I) with alkyl formates **2a-c**. Contrary to our expectation, the normal type Ti-Claisen condensation did not occur, but rather a dehydration-type took place to yield alkyl (Z)- β -alkoxy- α -halo-substituted acrylates **3**.

Table 1 lists various successful examples, and the salient features are as follows. (i) Good to excellent yield with nearly perfect (*Z*)-selectivity was obtained in almost all cases examined. (ii) Finely tuned conditions (Method *A*-*C*) were adopted for α -haloesters **1a**, **1b**, and **1c**, respectively. (iii) Acid-labile *t*Bu esters were also tolerated, although the yield was moderate (Entries 4, 10, 16). (iv) High substrate-generality was demonstrated; The entries

includes three sets of four esters, 1a-1~4, 1b-1~4, 1c-1~4, and three formyl esters, 2a-2c.

Even a trace amount of α -formyl esters was not detected. Concerning this eventful dehydration-mode, we speculate that the produced β -methoxyacrylate is more themodynamically stable than α -formyl esters when using α -heteroatom-substituted ester substrates. Actually, several attempts for the acid hydrolysis of β -methoxyacrylates to convert to α -formyl esters, resulted completely in no reaction.

Notably, compared with the reported methods^[15] utilizing α -halogenations both of β -methoxyacrylate and of propiolate, the present one-step preparation provided a wealth of both α -alkoxy and alkyl ester analogues (higher substrate-generality).

Table 1. (Z)-Selective dehydration-type Ti-Claisen condensation of α -halogenated esters 1 with alkyl formates 2

x^	0	TiCl ₄ (1.5 eq.) – Et ₃ N <i>or</i> Bu ₃ N (2.4 eq.)	R ² O
X CO ₂ R +	H ^{LL} OR ²	/ CH ₂ Cl ₂	x ^{⊥⊥} CO₂R ¹
1a: X = Cl	(3.0 eq.)	< Method A-C >	3a-3c
1b: = Br	2a: R ² = Me		
10: =1	2b : = <i>i</i> Pr		
(R ¹ = Me, <i>t</i> Bu, Allyl, Benzyl)	2c : = Bn		

Method A: amine: Bu₃N, -78 °C, 10 min and 0 – 5 °C, 1 h. *Method B*: amine: Et₃N, -50 – 45 °C, 10 min and 0 – 5 °C, 1 h.

Method C: amine: Et₃N, -78 °C, 10 min and 0 -5 °C, 1 h.

Entry Halo ester Formate Method Product Yield / %^[a]

 $X R^1 R^2$

1	Cl Me 1a-1 Me 2a A	3a-1	97
2	<i>i</i> Pr 2b	3a-2	81
3	Bn 2 c	3a-3	98
4	tBu 1a-2 Me 2a	3a-4	59
5	Bn 1a-3	3a-5	87
6	Allyl 1a-4	3a-6	82
7	Br Me 1b-1 Me 2a B	3b-1	73
8	<i>i</i> Pr 2b	3b-2	81
9	Bn 2 c	3b-3	87
10	tBu 1b-2 Me 2a	3b-4	53
11	Bn 1b-3	3b-5	77
12	Allyl 1b-4	3b-6	66
13	I Me 1c-1 Me 2a C	3c-1	73
14	<i>i</i> Pr 2b	3c-2	50
15	Bn 2 c	3c-3	65
16	<i>t</i> Bu 1c-2 Me 2a	3c-4	37
17	Bn 1c-3	3c-5	77
18	Allyl 1c-4	3c-6	78

^[a] The Z purity was >98% based on the ¹H NMR spectra.

To extend the scope, a dehydration-type reaction using methyl α -sulfonyloxyester substrates 4a and 4b (TsO-, TfO-) was examined. Table 2 lists the successful results, and the salient features are as follows. (i) Moderate to good yield with nearly perfect (Z)-selectivity was obtained in all cases examined under the finely tuned optimized conditions (Methods E and F). (ii) Two sets of (Z)- β -alkoxy- α sulfonyloxyacrylates, 5a-1~5a-3 and 5b-1~5b-3 were successfully obtained. (iii) The reaction using TfOester 4b required smaller amounts of reagents compared with TsO- ester 4a. (iv) Notably, all six acrylates **5a** (x3) and **5b** (x3) bearing unique triple functional groups, are new compounds, which cannot be accessible by hitherto reported methods.

Table	2.	(Z)-	-Selective	dehydratic	on-type		Ti-Cl	aisen
condens	ation	of	$\alpha\text{-sulfoxy}$	substituted	esters 4	ŀ	with	alkyl
formates	s 2							

	0	$TiCl_4 - Et_3N \text{ or } Bu_3N$	R ² O
YO CO ₂ Me		/ CH ₂ Cl ₂	YO CO₂Me
4a ; Y = Ts	(2.5 eq.)	< Method D, E >	5a, 5b
4b ; Y = Tf	2a: R ² = Me		
	20: - /F1 2c: = Bn		

Method **D**: TiCl₄ (4.6 eq.) - Et₃N (4.8 eq.), $-45 \,^{\circ}$ C, 1 h. *Method* **E**: TiCl₄ (2.4 eq.) - Bu₃N (2.6 eq.), $-78 \,^{\circ}$ C, 10 min and 0 - 5 $^{\circ}$ C, 1 h.

Entry	Sulf	onyl- ester	For	mate	Method	Product	Yield / % ^[a]
	Ny N	ester	D ²				
	Ŷ		K²				
1	Ts	4a	Me	2a	D	5a-1	70
2			iPr	2b		5a-2	72
3			Bn	2c		5a-3	71
4	Tf	4b	Me	2a	E	5b-1	70
5			iPr	2b		5b-2	65
6			Bn	2c		5b-3	71

^[a] The Z purity was >98% based on the ¹H NMR spectra.

Following these successful outcomes (Tables 1 and 2), we investigated the utility of obtained (*Z*)- β -alkoxy- α -(halo)- and (sulfonyloxy)-acrylates **3** and **5** bearing α -heteroatom-leaving groups (X, TsO, TfO) as (*E*)-stereoretentive cross-coupling partners (Note: due to the sequence rule, *E*-geometry is indicated for the setereoretentive reactions). While specific Pd-catalyzed Stille,^[15b] Suzuki-Miyaura,^[15c] and Negishi^[15c] cross-couplings using **3b** or **3c** have been reported, they required harsh conditions and/or long reaction periods and produced only low to moderate yields.

To address this problem, we first investigated a (Z)-stereoretentive Suzuki-Miyaura cross-coupling

reaction. Table 3 exhibits the successful result of the production of variety of (E)- α -aryl- β а methoxyacrylates **6**. The salient features are as follows. (i) The optimized conditions depended on the leaving groups (Cl, Br, I, OTf) in 3 and 5 (Methods A-C) among $Pd(OAc)_2$ -PCy₃, $Pd(PPh_3)_4$, Pd(PPh₃)₂Cl₂, Pd(dppe)Cl₂, Pd(dppp)Cl₂, Pd(dppb)Cl₂, $Pd(dppf)Cl_2$ catalysts (details, ESI). (ii) $PhB(OH)_2$ smoothly coupled with 3a, 3b, 3c, and 5b in good to excellent yield with nearly perfect (E)-stereoretention (Entries 1–3, 5). But, α -(TsO)-acrylate **5a** resulted in no reaction (Entry 4). (iii) Almost all of the reactions using several ArB(OH)₃ produced satisfactory results with regard to yield and (E)-stereoretention. (i) (Entries 6–13, 15–17, 19). (iv) The use of α -(Cl)acrylate **3a** with $C_6H_4(p-Cl)$ and $C_6H_4(o-Cl)$ nucleophiles afforded disappointing results probably due to undesirable further cross-coupling^[16] and/or no reactions with p-Cl and o-Cl groups (Entries 14 and 18).

Table 3. (*E*)-Stereoretentive Suzuki-Miyaura crosscoupling using α -haloacrylates **3** and α -sulfonyloxy acrylates **5**.

Method A: Pd(OAc)₂ (5 mol%), PCy₃ (10 mol%), K₂CO₃ (3.0 equiv) / THF-H₂O (10:1), reflux, 2 h.

Method **B**: Pd(PPh₃)₂Cl₂ (5 mol%), K_2CO_3 (3.0 equiv) / *i*PrOH, reflux, 2 h.

Method C: $Pd(dppe)Cl_2$ (5 mol%), K_2CO_3 (3.0 equi	v) ,
<i>i</i> PrOH-H ₂ O (10:1), reflux, 2 h.	

Entry	X or Y	Ar	Method	Product	Yield / % ^[a]
1	Cl	Ph	A	6a	93
2	Br		B		88
3	Ι		С		89
4	Ts		B		NR
5	Tf		B		88
6	Cl	$C_6H_4(p-Me)$	A	6b	91
7	Br		B		70
8	Ι		С		99
9	Tf		B		94
10	Cl	$C_6H_4(p-OMe)$	A	6c	94
11	Br		B		74
12	Ι		С		93
13	Tf		B		92

14	Cl	$C_6H_4(p-Cl)$	A	6d	Complex mixtures
15	Br		B		79
16	Ι		С		80
17	Tf		B		93
18	Cl	C ₆ H ₄ (o-Cl)	A	6e	NR
19	Br		B		77
20	Ι		С		42
21	Tf		B		83

^[a] The Z purity was >98% based on the ¹H NMR spectra.

Next, our attention was focused on an application of the Negishi cross-coupling reaction. Table 4 lists the successful results, and the salient features are as follows. (i) All seven catalysts examined in Suzuki-Miyaura couplings, afforded disappointing results when using α -haloacrylates **3a-3c** (Entries 1–3). (ii) On the other hand, sulfonyloxyacrylates 5a and 5b underwent the reaction smoothly to furnish the desired products **6a-6e** using the Pd(dppp)Cl₂ catalyst in good to excellent yield with nearly perfect (E)stereoretention (Entries 4–11). (iii) Only Pd(dppp)Cl₂ exhibited remarkable effects, compared with the other six catalysts, which resulted in very low yield. (iv) Even the less reactive $C_6H_4(o-Cl)$ nucleophile gave positive results using **5b** (Entry 13).

Table 4. (*E*)-Stereoretentive Negishi cross-coupling using α -haloacrylates **3** and α -sulfonyloxyacrylates **5**.

MeO、	5	ArZnCl (6.0 e Pd(dppp)Cl ₂ (6 r	q.), nol%) Me	0	
X or YO	∬ CO₂Me	/ THF, 40 – 45 °	≻ C, 2 h ≠		
3a 3b 3c 5a	: X = CI : = Br : = I : Y = Ts	< Condition	A >	6a-6e	
MeO、	<u>٦</u>	ArZnCl (4 eq Pd(dppp)Cl ₂ (4 n	.), nol%)	60.60	
TfO	CO ₂ Me	/ THF, 40 – 45 °	C, 2 h	0a-0e	
5k)	< Condition	B >		
Entry	X or Y	Ar	Condition	Product	Yield / % ^[a]
1	Cl	Ph	A	6a	NR
2	Br		A		NR
3	Ι		A		29
4	Ts		A		72
5	Tf		B		85
6	Ts	$C_6H_4(p-Me)$	A	6b	88
7	Tf		B		99
8	Ts	$C_6H_4(p-OMe)$	A	6c	69
9	Tf		В		92
10	Ts	$C_6H_4(p-Cl)$	A	6d	87
11	Tf		В		>99
12	Ts	$C_6H_4(o-Cl)$	A	6e	NR

13TfB56[a] The Z purity was >98% based on the ^{1}H NMR spectra.

The Sonogashira cross-coupling reaction was also investigated, and the results are shown in Table 6. The salient features are as follows. (i) Although α -(Cl)-acrylate **3a** did not undergo the reaction, α -(Br)and α -(I)-acrylates **3b**, **3c** afforded positive results to produce the desired α -alkynyl acrylate 7a in good yield using the $Pd(PPh_3)_2Cl_2$ catalyst (Method A) (Entries 1-3). (ii) α -(TfO)-acrylate **5b** afforded the best results with the Pd(dppf)Cl₂ catalyst (*Method B*); The desired α -alkynyl acrylates **7a-7d** were produced yield with nearly in excellent perfect Estereoretention (Entries 4 - 8).

Table 5. (*E*)-Stereoretentive Sonogashira cross-coupling using α -haloacrylates **3** and α -sulfonyloxyacrylates **5**.

Method A: $Pd(PPh_3)_2Cl_2$ (5 mol%), CuI (15 mol%), *i*Pr₂NEt (1.5 equiv) / THF, reflux, 2 h.

Method **B**: Pd(dppf)Cl₂ (5 mol%), CuI (15 mol%), iPr_2NEt (1.5 equiv) / THF, reflux, 2 h.

Entry	X or Y	R	Method	Product	Yield / % ^[a]
1	Cl	Ph	A	7a	NR
2	Br		A (B)		62 (10)
3	Ι		A (B)		81 (20)
4	Ts		В		72
5	Tf		В		>99
6	Tf	$\mathcal{H}_{5}^{\mathcal{X}_{2}}$	В	7b	89 ^[b]
7	Tf	<i>t</i> Bu	В	7c	80 ^[b]
8	Tf	TBS	В	7d	83

^[a] The Z purity was >98% based on the ¹H NMR spectra. ^[b] Cul (30 mol%) was used.

Scheme 5 shows two plausible mechanisms for the dehydration-type Ti-Claisen condensation, exemplified by α -haloacrylate **1**. [*Type I*]: **1** is converted to ester enolate **A** via a push-pull pathway by the actions of TiCl₄ and R₃N. **A**, in turn, attacks formate **2**, which is activated by another TiCl₄ (double activation). Through the six-membered cyclic transition state **B**, (*Z*)- α -alkoxy- α -haloacrylates **3** is produced, wherein the R²O- group locates at an

equatorial position and the R¹O- group and X- atom locate at axial positions. [*Type II*]: Massanet's group proposed a related mechanism for the reaction between simple acetates and ethyl formate.^[11] Following their speculation, **1** is transformed through bimetallic transition states **C**, **D**, and **E** to produce **3**.

The thermodynamic stabilities of Z-3 and the isomer E-3 were calculated using Gaussian 16 [B3LYP/6-31+G(d)](the reference in ESI). exemplified by 3b-1 and 5b-1, to obtain fundamental insight into the E and Z selectivity.^[17] The total energies of these two sets of compounds were similar [(Z)-3a-1: 80.68 kcal/mol, (E)-3a-1: 80.50 kcal/mol, and (Z)-5b-1: 103.19 kcal/mol, (E)-5b-1: 102.93 This finding implies that Zkcal/mol]. stereoselectivity does not depend on the stability of the products, but rather on the kinetic pathway.

Scheme 5. Proposed mechanism of (*Z*)-dehydration-type Ti-Claisen condensation.

Stereodefined α -dienyl- β -methoxyacrylates comprise a common structural component for agrochemically important natural and unnatural fungicides, as exemplified by strobilurin families.^[14] As a final note, application to concise and convergent synthesis of strobilurin A was performed as depicted in Scheme 6, wherein a couple of the present reaction sequences (carbonhomologation and cross-coupling) were involved.

Total syntheses of strobilurins A and B were disclosed utilizing the Peterson reaction (Clough and Beautement)^[18] and the Stille cross-coupling (Coleman and Lu)^[19] as key steps. Our synthetic strategy entails more accessible and stereoretentive Suzuki-Miyaura cross-coupling between highly reactive (*Z*)- β -methoxy- α -(TfO)-acrylate **5b** and (*Z*,*E*)-dienylboronate **9**.

A one-pot α -methyliodoethylenation of cinnamaldehyde gave dienyl iodide **8** in 70% yield (*E* : *Z* = 4 : 96).^[20] Iodide **8** was converted to **9** in 56% yield by B(pin)₂/Pd(dppf)Cl₂/KOH catalysis (Miyaura-Ishiyama borylation) with stereoretention

of the diene moiety.^[21] As a final key step, Suzuki-Miyaura cross-coupling of boronate 9 with α -(TfO)acrylate 5b smoothly proceeded to afford strobilurin A in 79% yield with nearly perfect stereocontrol of the three consecutive (2E, 3Z, 5E) olefins (total 3 steps with overall 31% yield). Compared with the previously reported methods, the present convergent approach is more concise and straightforward.

Scheme 6. Synthetic application to strobilurin A utilizing β -methoxy-α-(TfO)-acrylate **5b**.

Experimental Section

Octyl (E)-2-methoxyacrylate (8)

Et₃N (6.66 mL, 48 mmol) and TiCl₄ (4.39 mL, 40 mmol) were successively added to a stirred solution of octyl acetate (3.45 g, 20 mmol) and HCO₂Me (3.60 g, 60 mmol) in CH₂Cl₂ (40 mL) at -45 °C under an Ar atmosphere, and the mixture was stirred at the same temperature for 2 h. Then, the mixture was poured into ice-water, which was extracted twice with AcOEt. The organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained crude oil was purified by distillation to give the desired product (8; 2.75 g, 64%).

Colorless oil; bp 130 - 135 °C / 11 _CO₂(1-Oct) MeO mmHg; ¹H NMR (500 MHz, CDCl₃) $\delta = 0.88$ (t, J = 7.5 Hz, 3H), 1.22–1.41 (m, 10H), 1.64 (quin, J = 7.5 Hz, 2H), 3.69 (s, 3H), 4.10 (t, J = 7.5 Hz, 2H), 5.19 (d, J = 12.6 Hz, 1H), 7.63 (d, J = 12.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ = 13.8, 22.4, 25.8, 28.6, 28.97, 29.02, 31.6, 56.8, 63.7, 95.7, 162.7, 167.4; IR (neat): $v_{max} = 1711, 1626, 1456, 1327, 1283, 1244, 1219, 1128;$ HRMS (ESI): m/z calcd for C₁₂H₂₂O₃ [M + Na]⁺ 237.1467; found: 237.1464.

A typical procedure for the synthesis of methyl (Z)-2chloro-3-methoxyacrylate (3a-1)^[15a] [Method A]

Bu₃N (11.4 mL, 48 mmol) and TiCl₄ (3.29 mL, 30 mmol) were successively added to a stirred solution of a methyl chloroacetate (1a-1; 2.17 g, 20 mmol) and methyl formate (2a; 3.60 g, 60 mmol) in CH₂Cl₂ (40 mL) at -78 °C under an Ar atmosphere, and the mixture was stirred at the same temperature for 10 min. The mixture was warmed up to 0 - 5 °C, followed by being stirred at the same temperature for 1 h. Then, the mixture was poured

Conclusion

We developed a highly (Z)-stereoselective dehydration-type Ti-crossed-Claisen condensation (carbonhomologation) using α-halo and αsulfonyloxy (Cl, Br, I, TsO, TfO)-substituted acetates with alkyl formates to produce a variety of alkyl (Z)- β -alkoxy- α -halo *or* sulfonyloxy-substituted acrylates.

The obtained (E)- β -methoxy- α -hetero-substituted acrylates serve as efficient cross-coupling partners for (E)-stereoretentive cross-couplings (Suzuki-Miyaura, Negishi, and Sonogashira): (a) Suzuki-Miyaura for Cl, Br, I, and TfO substrates, (b) Negishi for TsO and TfO substrates, and (c) Sonogashira for Br, I, TsO, and TfO substrates. These cross-couplings provided a number of α -aryl and α -ethynyl-(Z)- β methoxyacrylates.

As a synthetic application, we performed a concise and straightforward synthesis of strobilurin A, a representative fungicide.

The present method provides a new avenue for the synthesis of (Z)-stereodefined α -substituted β alkoxyacrylates in the fields of natural product synthesis and process chemistry.

into ice-water, which was extracted twice with Et₂O. The combined organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO2-column chromatography (hexane-AcOEt = $30:1 \sim 10:1$) to give the desired product 3a-1 (2.91 g, 97%).

MeO.	Yellow oil; ¹ H N
	$\delta = 3.80$ (s, 3H
CI CO ₂ Me	1H); ¹³ C NMR
-	52 3 62 3 102 6

MR (300 MHz, CDCl₃): (), 3.98 (s, 3H), 7.64 (s, (75 MHz, CDCl₃): δ = 6, 157.2, 163.9.

A typical procedure for the synthesis of methyl (Z)-2bromo-3-methoxyacrylate (3b-1)^[15a] [Method B]

Et₃N (3.33 mL, 24 mmol) and TiCl₄ (1.64 mL, 15 mmol) were successively added to a stirred solution of a methyl bromoacetate (1b-1; 1.53 g, 10 mmol) and methyl formate (2a; 1.80 g, 30 mmol) Et₃N (3.33 mL, 24 mmol) and TiCl₄ (1.64 mL, 15 mmol) were successively added to a stirred solution of a 2-bromopropanoic ester (1b; 10 mmol) and an alkyl formate (2; 30 mmol) in CH₂Cl₂ (20 mL) at -40 °C under an Ar atmosphere, and the mixture was stirred at the same temperature for 10 min. The mixture was warmed up to 0 - 5 °C, followed by being stirred at the same temperature for 1 h. Then, the mixture was poured into ice-water, which was extracted twice with Et₂O. The combined organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane-AcOEt = $30:1 \sim 10:1$) to give the desired product 3b-1 (1.19 g, 73%).

MeO. Yellow oil; ¹H NMR (300 MHz, CDCl₃) $\delta = 3.80$ (s, 3H), 3.97 (s, 3H), 7.64 (s, Br CO₂Me 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 52.4, 62.4, 102.8, 157.3, 164.0.

A typical procedure for the synthesis of methyl (Z)-2iodo-3-methoxyacrylate $(3c-1)^{[19]}$ [Method C]

Et₃N (3.33 mL, 24 mmol) and TiCl₄ (1.64 mL, 15 mmol) were successively added to a stirred solution of a methyl iodoacetate (**1c-1**; 2.00 g, 10 mmol) and methyl formate (**2a**; 1.80 g, 30 mmol) in CH₂Cl₂ (20 mL) at -78 °C under an Ar atmosphere, and the mixture was stirred at the same temperature for 10 min. The mixture was warmed up to 0 – 5 °C, followed by being stirred at the same temperature for 1 h. Then, the mixture was poured into ice-water, which was extracted twice with Et₂O. The combined organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane-AcOEt = 30:1 ~ 10:1) to give the desired product **3c-1** (1.70 g, 70%).

 $\begin{array}{c|c} \mbox{MeO} & Yellow \ oil; \ ^1\mbox{H} \ NMR \ (300 \ MHz, \ CDCl_3) \\ & \delta \ 3.79 \ (s, \ 3H), \ 4.00 \ (s, \ 3H), \ 7.68 \ (s, \ 1H); \\ \ ^{13}\mbox{C} \ NMR \ (75 \ MHz, \ CDCl_3) \ \delta \ 52.8, \ 62.0, \\ 64.8, \ 164.2, \ 164.3. \end{array}$

The (Z)-configuration of 3a, 3b, 3c was unambiguously assigned based on ¹H and ¹³C NMRs of the known compounds.

Methyl (Z)-2-chloro -3-isopropoxyacrylate (3a-2)

Following the procedure for the preparation of **3a-1**, the reaction of methyl chloroacetate (**1a-1**; 109 mg, 1.0 mmol) with isopropyl formate (**2b**; 264 mg, 3.0 mmol), using Bu₃N (571 μ L, 2.4 mmol) and TiCl₄ (165 μ L, 1.5 mmol) in CH₂Cl₂ (2 mL) gave the desired product **3a-2** (144 mg, 81%).

^{*i*}PrO Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ = 1.38 (d, *J* = 6.2 Hz, 6H), 3.80 (s, 3H), Cl CO₂Me 4.32 (sept, *J* = 6.2 Hz, 1H), 7.75 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 28.0 (2C), 62.1, 82.0, 104.2, 156.3, 162.4; IR (neat): v_{max} = 2981, 1724, 1630, 1437, 1376, 1282, 1211, 1139 cm⁻¹; HRMS (ESI): *m/z* calcd for C₇H₁₁O₃Cl [*M* + Na]⁺ 201.0294; found: 201.0294.

Methyl (Z)-2-chloro-3-benzyloxyacrylate (3a-3)

Following the procedure for the preparation of **3a-1**, the reaction of methyl chloroacetate (**1a-1**; 109 mg, 1.0 mmol) with benzyl formate (**2c**; 408 mg, 3.0 mmol), using Bu₃N (571 μ L, 2.4 mmol) and TiCl₄ (165 μ L, 1.5 mmol) in CH₂Cl₂ (2 mL) gave the desired product **3a-3** (192 mg, 98%).

tert-Butyl (Z)-2-chloro-3-methoxyacrylate (3a-4)

Following the procedure for the preparation of **3a-1**, the reaction of *tert*-butyl chloroacetate (**1a-2**; 151 mg, 1.0 mmol) with methyl formate (**2a**; 180 mg, 3.0 mmol), using Bu₃N (571 μ L, 2.4 mmol) and TiCl₄ (165 μ L, 1.5 mmol) in

 CH_2Cl_2 (2 mL) gave the desired product **3a-4** (113 mg, 59%).

Benzyl (Z)-2-chloro-3-methoxyacrylate (3a-5)

Following the procedure for the preparation of **3a-1**, the reaction of benzyl chloroacetate (**1a-3**; 185 mg, 1.0 mmol) with methyl formate (**2a**; 180 mg, 3.0 mmol), using Bu₃N (571 μ L, 2.4 mmol) and TiCl₄ (165 μ L, 1.5 mmol) in CH₂Cl₂ (2 mL) gave the desired product **3a-5** (198 mg, 87%).

Allyl (Z)-2-bromo-3-methyoxyacrylate (3a-6)

Following the procedure for the preparation of **3a-1**, the reaction of allyl chloroacetate (**1a-4**; 135 mg, 1.0 mmol) with methyl formate (**2a**; 180 mg, 3.0 mmol), using Bu₃N (571 μ L, 2.4 mmol) and TiCl₄ (165 μ L, 1.5 mmol) in CH₂Cl₂ (2 mL) gave the desired product **3a-6** (144 mg, 82%).

MeO Yellow oil; ¹H NMR (300 MHz, CDCl₃) $\delta = 3.98$ (s, 3H), 4.64–4.72 (m, 2H), Cl CO₂Allyl 5.26 (dd, J = 1.4, 10.3 Hz, 1H), 5.35 (dd, J = 1.4, 17.2 Hz, 1H), 5.94 (ddt, J = 5.9, 10.3, 17.2 Hz, 1H), 7.67 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 62.3$, 65.7, 102.6, 118.3, 131.7, 157.2, 163.0; IR (neat): v_{max} = 3649, 2945, 1715, 1627, 1445, 1363, 1270, 1228 cm⁻¹; HRMS (ESI): m/z calcd for C₇H₉O₃Cl [M + Na]⁺ 199.0138; found: 199.0137.

Methyl (Z)-2-bromo-3-isopropoxyacrylate (3b-2)

Following the procedure for the preparation of **3b-1**, the reaction of methyl bromoacetate (**1b-1**; 153 mg, 1.0 mmol) with isopropyl formate (**2b**; 264 mg, 3.0 mmol), using Et₃N (333 μ L, 2.4 mmol) and TiCl₄ (165 μ L, 1.5 mmol) in CH₂Cl₂ (2 mL) gave the desired product **3b-2** (180 mg, 81%).

iPrO	Yellow oil; ¹ H NMR (300 MHz, CDCl ₃)
	$\delta = 1.38$ (d, $J = 6.2$ Hz, 6H), 3.79 (s, 3H),
Br CO ₂ Me	4.31 (sept, $J = 6.2$ Hz, 1H), 7.91 (s, 1H);
2. 0.020	¹³ C NMR (75 MHz, CDCl ₃) $\delta = 22.4$

(2C), 52.4, 78.9, 90.9, 157.3, 164.1; IR (neat): $v_{max} = 2951$, 1731, 1541, 1436, 1414, 1265, 1143, 1094 cm⁻¹; HRMS (ESI): m/z calcd for C₇H₁₁O₃Br [M + Na]⁺ 244.9789; found: 244.9785.

Methyl (Z)-2-bromo-3-benzyloxyacrylate (3b-3)

Following the procedure for the preparation of **3b-1**, the reaction of methyl bromoacetate (**1b-1**; 153 mg, 1.0 mmol) with benzyl formate (**2c**; 408 mg, 3.0 mmol), using Et₃N (333 μ L, 2.4 mmol) and TiCl₄ (165 μ L, 1.5 mmol) in CH₂Cl₂ (2 mL) gave the desired product **3b-3** (236 mg, 87%].

 $\begin{array}{c|c} & \mbox{Yellow oil; }^{1}\mbox{H NMR (300 MHz, CDCl_3)} \\ & \delta = 3.77 \ (s, 3H), \ 5.17 \ (s, 2H), \ 7.33-7.44 \\ & \mbox{(m, 5H)}, \ 7.90 \ (s, 1H); \, ^{13}\mbox{C NMR (75 MHz, CDCl_3)} \\ & \mbox{CDCl}_3 \ \delta = 52.6, \ 76.4, \ 92.3, \ 127.5 \ (2C), \ 128.8 \ (3C), \ 135.1, \\ & \ 157.9, \ 163.8; \ IR \ (neat): \ v_{max} = 2949, \ 1717, \ 1627, \ 1455, \\ & \ 1436, \ 1379, \ 1267, \ 1158 \ cm^{-1}; \ HRMS \ (ESI): \ m/z \ calcd \ for \\ & \ C_{11}H_{11}O_3Br \ [M + Na]^+ \ 292.9789; \ found: \ 292.9796. \\ \end{array}$

tert-Butyl (Z)-2-bromo-3-methoxyacrylate (3b-4)

Following the procedure for the preparation of **3b-1**, the reaction of *tert*-butyl bromoacetate (**1b-2**; 195 mg, 1.0 mmol) with methyl formate (**2a**; 180 mg, 3.0 mmol), using Et₃N (333 μ L, 2.4 mmol) and TiCl₄ (165 μ L, 1.5 mmol) in CH₂Cl₂ (2 mL) gave the desired product **3b-4** (126 mg, 53%].

 $\begin{array}{c|ccccc} \mbox{MeO} & Yellow oil; {}^1\mbox{H} NMR (500 \mbox{ MHz}, CDCl_3) \\ \delta &= 1.51 \ (s, \ 9\mbox{H}), \ 3.96 \ (s, \ 3\mbox{H}), \ 7.66 \ (s, \ 8\mbox{Br} CO_2{}^t\mbox{Bu} \ 1\mbox{H}); {}^{13}\mbox{C} NMR \ (125 \mbox{ MHz}, \ CDCl_3) \ \delta &= 28.1 \ (3\mbox{C}), \ 62.1, \ 82.2, \ 93.9, \ 158.6, \ 162.3; \ I\mbox{IR} \ (neat): \ v_{max} = 2978, \ 1692, \ 1629, \ 1368, \ 1295, \ 1239, \ 1132, \ 1052 \ \mbox{cm}^{-1}; \ \mbox{HRMS} \ (ESI): \ m/z \ calcd \ for \ C_8\mbox{H}_{13}\mbox{O}_3\mbox{Br} \ [M \ + \ Na]^+ \ 258.9946; \ found: \ 258.9949. \end{array}$

Benzyl (Z)-2-bromo-3-methoxyacrylate (3b-5)

Following the procedure for the preparation of **3b-1**, the reaction of benzyl bromoacetate (**1b-3**; 229 mg, 1.0 mmol) with methyl formate (**2a**; 180 mg, 3.0 mmol), using Et₃N (333 μ L, 2.4 mmol) and TiCl₄ (165 μ L, 1.5 mmol) in CH₂Cl₂ (2 mL) gave the desired product **3b-5** (208 mg, 77%).

 $\begin{array}{c|c} \mbox{MeO} & Yellow oil; \ ^1\mbox{H} NMR \ (500 \ MHz, \ CDCl_3) \\ \hline & \delta = 3.97 \ (s, \ 3H), \ 5.24 \ (s, \ 2H), \ 7.30-7.43 \\ \mbox{Br} & CO_2\mbox{Bn} & (m, \ 5H), \ 7.78 \ (s, \ 1H); \ ^{13}\mbox{C} NMR \ (125 \ MHz, \ CDCl_3) \ \delta = 62.1, \ 67.0, \ 91.6, \ 127.9 \ (2C), \ 128.1, \ 128.4 \\ \ (2C), \ 135.5, \ 159.6, \ 163.0; \ IR \ (neat): \ v_{max} = 2977, \ 1691, \ 1629, \ 1368, \ 1295, \ 1239, \ 1132, \ 1053; \ cm^{-1}; \ HRMS \ (ESI): \ m/z \ calcd \ for \ C_{11}H_{11}O_3\mbox{Br} \ [M + \ Na]^+ \ 292.9789; \ found: \ 292.9785. \end{array}$

Allyl (Z)-2-bromo-3-methyoxyacrylate (3b-6)

Following the procedure for the preparation of **3b-1**, the reaction of allyl bromoacetate (**1b-4**; 179 mg, 1.0 mmol) with methyl formate (**2a**; 180 mg, 3.0 mmol), using Et₃N (333 μ L, 2.4 mmol) and TiCl₄ (165 μ L, 1.5 mmol) in CH₂Cl₂ (2 mL) gave the desired product **3b-6** (146 mg, 66%).

MeO Yellow oil; ¹H NMR (300 MHz, CDCl₃) $\delta = 4.00$ (s, 3H), 4.64–4.81 (m, 2H), 5.26 Br CO₂Allyl (dd, J = 1.4, 10.3 Hz, 1H), 5.36 (dd, J = 1.4, 17.2 Hz, 1H), 5.96 (ddt, J = 5.5, 10.3, 17.2 Hz, 1H), 7.81 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 62.3$, 66.0, 91.6, 118.3, 131.7, 159.6, 163.0; IR (neat): $v_{max} = 3649$, 2945, 1715, 1627, 1445, 1363, 1270, 1228 cm⁻¹; HRMS (ESI): m/z calcd for C₇H₉O₃Br $[M + Na]^+$ 242.9633; found: 292.9624.

Methyl (Z)-2-iodo-3-isopropoxyacrylate (3c-2)

Following the procedure for the preparation of **3c-1**, the reaction of methyl iodoacetate (**1c-1**; 300 mg, 1.5 mmol) with isopropyl formate (**2b**; 396 mg, 4.5 mmol), using Et₃N (499 μ L, 3.6 mmol) and TiCl₄ (246 μ L, 2.3 mmol) in CH₂Cl₂ (3 mL) gave the desired product **3c-2** (202 mg, 50%).

Y

*i*PrO、

Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ

= 1.39 (d, J = 6.2 Hz, 6H), 3.78 (s, 3H), CO₂Me 4.40 (sept, J = 6.2 Hz, 1H), 7.78 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 22.3$ (2C), 52.5, 64.2, 78.5, 161.9, 164.3; IR (neat): $v_{max} = 2978$, 2349, 1710, 1610, 1433, 1376, 1265, 1203 cm⁻¹; HRMS (ESI): m/z calcd for C₇H₁₁O₃I [M + Na]⁺ 292.9651; found: 292.9651.

Methyl (Z)-2-iodo-3-benzyloxyacrylate (3c-3)

Following the procedure for the preparation of **3c-1**, the reaction of methyl iodoacetate (**1c-1**; 300 mg, 1.5 mmol) with benzyl formate (**2c**; 613 mg, 4.5 mmol), using Et₃N (499 μ L, 3.6 mmol) and TiCl₄ (246 μ L, 2.3 mmol) in CH₂Cl₂ (3 mL) gave the desired product **3c-3** (309 mg, 65%).

BnO Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ = 3.61 (s, 3H), 5.04 (s, 2H), 7.17–7.31 (m, 5H), 7.70 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 52.6, 65.7, 75.9, 127.2 (2C), 128.46, 128.53 (2C), 135.0, 162.6, 164.0; IR (neat): v_{max} = 2950, 2649, 1708, 1613, 1454, 1433, 1377, 1257 cm⁻¹; HRMS (ESI): *m*/*z* calcd for C₁₁H₁₁O₃I [*M* + Na]⁺ 340.9651; found: 340.9661.

tert-Butyl (Z)-2-iodo-3-methoxyacrylate (3c-4)

Following the procedure for the preparation of **3c-1**, the reaction of *tert*-butyl iodoacetate (**1c-2**; 484 mg, 2.0 mmol) with methyl formate (**2a**; 360 mg, 6.0 mmol), using Et₃N (666 μ L, 4.8 mmol) and TiCl₄ (329 μ L, 3.0 mmol) in CH₂Cl₂ (4 mL) gave the desired product **3c-4** (212 mg, 37%).

MeO Yellow oil; ¹H NMR (300 MHz, CDCl₃) $\delta = 1.49$ (s, 9H), 3.97 (s, 3H), 7.56 (s, CO₂^tBu 1H); ¹³C NMR (75 MHz, CDCl₃) $\delta =$ 28.0 (3C), 61.8, 68.5, 82.0, 162.7, 163.3; IR (neat): v_{max} = 2977, 2349, 1702, 1616, 1455, 1367, 1235, 1130 cm⁻¹; HRMS (ESI): *m*/*z* calcd for C₈H₁₃O₃I [*M* + Na]⁺ 306.9807; found: 306.9815.

Benzyl (Z)-2-iodo-3-methoxyacrylate (3c-5)

Following the procedure for the preparation of **3c-1**, the reaction of benzyl iodoacetate (**1c-3**; 414 mg, 1.5 mmol) with methyl formate (**2a**; 270 mg, 4.5 mmol), using Et₃N (499 μ L, 3.6 mmol) and TiCl₄ (246 μ L, 2.3 mmol) in CH₂Cl₂ (3 mL) gave the desired product **3c-5** (366 mg, 77%).

 $\begin{array}{ccc} \text{MeO} & \text{Yello} \\ & = 3.9 \\ \text{I} & \text{CO}_2 \text{Bn} & 5\text{H}), \end{array}$

Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ = 3.99 (s, 3H), 5.23 (s, 2H), 7.31–7.43 (m, 5H), 7.69 (s, 1H); ¹³C NMR (125 MHz,

CDCl₃) δ = 62.0, 65.4, 67.5, 128.0 (2C), 128.1, 128.5 (2C), 135.7, 163.6, 164.4; IR (neat): v_{max} = 2942, 2349, 1705, 1615, 1497, 1454, 1376, 1225; cm⁻¹; HRMS (ESI): *m/z* calcd for C₁₁H₁₁O₃I [*M* + Na]⁺ 340.9651; found: 340.9656.

Allyl (Z)-2-iodo-3-methyoxyacrylate (3c-6)

Following the procedure for the preparation of **3c-1**, the reaction of allyl iodoacetate (**1c-4**; 339 mg, 1.5 mmol) with methyl formate (**2a**; 270 mg, 4.5 mmol), using Et₃N (499 μ L, 3.6 mmol) and TiCl₄ (246 μ L, 2.3 mmol) in CH₂Cl₂ (3 mL) gave the desired product **3c-6** (314 mg, 78%).

MeO Vellow oil; ¹H NMR (300 MHz, CDCl₃) $\delta = 4.01$ (s, 3H), 4.66–4.73 (m, 2H), 5.26 (dd, J = 1.4, 10.3 Hz, 1H), 5.37 (dd, J = 1.4, 17.2 Hz, 1H), 5.95 (ddt, J = 5.9, 10.3, 17.2 Hz, 1H), 7.70 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 62.0$, 65.1, 66.2, 118.1, 131.8, 163.3, 164.3; IR (neat): $v_{max} = 2942$, 2349, 1708, 1615, 1442, 1361, 1224, 1132 cm⁻¹; HRMS (ESI): m/z calcd for C₇H₉O₃I [M + Na]⁺ 290.9494; found: 290.9500.

Methyl tosyloxyacetate (4a)^[22]

TsCl (8.56 g, 45 mmol) in CH₂Cl₂ (20.0 mL) was added to a stirred solution of methyl glycolate (2.70 g, 30 mmol), NMI (493 mg, 6 mmol), and Et₃N (4.55 g, 45 mmol) in CH₂Cl₂ (40.0 mL) at 20 – 25 °C, followed by being stirred for 1 h at that temperature. Water was added to the stirred mixture, which was extracted twice with EtOAc. The organic phase was washed with water, brine, dried (Na₂SO₄) and consentrated. The obtained crude solid was washed with hexane-Et₂O (20:1, 10 mL) to give the desired product (**4a**; 6.20 g, 85%).

TsoPale yellow crystals; mp 59 - 61 °C; ¹HNMR (300 MHz, CDCl₃) δ = 2.46 (s,3H), 3.73 (s, 3H), 4.59 (s, 2H), 7.33-7.39 (m, 2H), 7.80-7.86 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = 21.6, 52.5,64.5, 128.1 (2C), 129.9 (2C), 132.5, 145.3, 166.4.

A typical procedure for the synthesis of methyl (Z)-3methoxy-2-(tosyloxy)acrylate (5a-1) [Method D]

Et₃N (13.3 mL, 96 mmol) and TiCl₄ (9.90 mL, 90 mmol) were successively added to a stirred solution of methyl tosyloxyacetate (**4a**; 4.90 g, 20 mmol) and methyl formate (**2a**; 3.00 g, 50 mmol) in CH₂Cl₂ (80 mL) at -45 °C under an Ar atmosphere, and the mixture was stirred at the same temperature for 1 h. Then, the mixture was poured into ice-water, which was extracted twice with Et₂O. The organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane-AcOEt = $6:1 \sim 3:1$) to give the desired product **5a-1** (4.00 g, 70%).

(ESI): m/z calcd for C₁₂H₁₄O₆S [M + Na]⁺ 309.0409; found: 309.0399.

Methyl (Z)-3-isopropoxy-2-(tosyloxy)acrylate (5a-2)

Following the procedure for the preparation of **5a-1**, the reaction of methyl tosyloxyacetate (**4a**; 244 mg, 1.0 mmol) with isopropyl formate (**2b**; 264 mg, 2.5 mmol), using Et₃N (665 μ L, 4.8 mmol) and TiCl₄ (504 μ L, 4.6 mmol) in CH₂Cl₂ (4 mL) gave the desired product **5a-2** (226 mg, 72%).

ⁱ PrO	Yellow oil; ¹ H NMR (500 MHz, CDCl ₃)
	$\delta = 1.20$ (d, $J = 6.3$ Hz, 6H), 2.45 (s, 3H).
TsO CO ₂ Me	3.69 (s, 3H), 4.16 (sept, $J = 6.3$ Hz, 1H),
	7.30-7.34 (2H, m), 7.36 (s, 1H), 7.86-

7.90 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = 21.3, 21.8 (2C), 51.5, 79.0, 120.8, 128.2 (2C), 129.1 (2C), 133.9, 144.7, 150.2, 163.3; IR (neat): v_{max} = 1728, 1657, 1595, 1435, 1393, 1369, 1298, 1233, 1180 cm⁻¹; HRMS (ESI): *m*/*z* calcd for C₁₄H₁₈O₆S [*M* + Na]⁺ 337.0722; found: 337.0713.

Methyl (Z)-3-(benzyloxy)-2-(tosyloxy)acrylate (5a-3)

Following the procedure for the preparation of **5a-1**, the reaction of methyl tosyloxyacetate (**4a**; 244 mg, 1.0 mmol) with benzyl formate (**2c**; 340 mg, 2.5 mmol), using Et₃N (665 μ L, 4.8 mmol) and TiCl₄ (504 μ L, 4.6 mmol) in CH₂Cl₂ (4 mL) gave the desired product **5a-3** (257 mg, 71%).

BnO Yellow crystals; ¹H NMR (300 MHz, CDCl₃) $\delta = 2.40$ (s, 3H), 3.78 (s, 3H), TsO CO₂Me 4.98 (s, 2H), 7.20–7.31 (m, 3H), 7.34– 7.44 (m, 4H), 7.81–7.90 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 21.5$, 51.8, 76.6, 121.5, 127.6 (2C), 128.2 (2C), 128.6 (2C), 128.7, 129.2 (2C), 133.8, 134.7, 144.8, 151.1, 163.2; IR (neat): v_{max} = 2953, 1728, 1658, 1371, 1174, 1090, 723, 664 cm⁻¹; HRMS (ESI): m/z calcd for C₁₈H₁₈O₆S [M + Na]⁺ 385.0722; found: 385.0720.

Methyl trifluoromethylsulfonyloxy acetate (4b)^[23]

Tf₂O (10.0 g, 35 mmol) was added to a stirred solution of methyl glycolate (2.66 g, 30 mmol) and *i*Pr₂NEt (4.58 g, 35 mmol) in CH₂Cl₂ (15 mL) at -20 °C, followed by being stirred for 1 h. Water was added to the stirred mixture, which was extracted twice with EtOAc. The organic phase was washed with 1 M-HCl aq., sat. NaHCO₃ aq., brine, dried (Na₂SO₄) and consentrated. The obtained crude product was purified by SiO₂-columun chromatography (hexane-AcOEt = 6:1) to give the desired product (**4b**; 6.1 g, 93%).

Tro CO_2Me Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ = 3.88 (s, 3H), 4.92 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = 52.9, 68.9, 118.4 (q, J_{C-F} = 323 Hz), 165.0.

A typical procedure for the synthesis of methyl (Z)-3methoxy-2-(((trifluoromethyl)sulfonyl)oxy)acrylate (5b-1) [Method E]

Bu₃N (6.20 mL, 26 mmol) and TiCl₄ (2.60 mL, 24 mmol) were successively added to a stirred solution of a methyl trifluoromethylsulfonyloxyacetate (**4b**; 2.20 g, 10

mmol) and methyl formate (2a; 1.50 g, 25 mmol in CH₂Cl₂ (20 mL) at -78 °C under an Ar atmosphere, and the mixture was stirred at the same temperature for 10 min at that temperature. The mixture was warmed up to 0-5 °C, followed by being stirred at the same temperature for 1 h. Then, the mixture was poured into ice-water, which was extracted twice with Et₂O. The organic phase was washed with water, 1 M-HCl aq., sat. NaHCO3 aq., brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane-AcOEt = $30:1 \sim 6:1$) to give the desired product **5b-1** (1.80 g, 70%).

MeO TfO CO₂Me

 $\delta = 3.82$ (s, 3H), 3.97 (s, 3H), 7.38 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 52.0, 63.1, 118.4 (q, $J_{C-F} = 320$ Hz),

Yellow oil; ¹H NMR (300 MHz, CDCl₃)

121.7, 153.0, 161.6; IR (neat): $v_{max} = 1666$, 1419, 1261, 1202, 1137, 1103, 976, 896, 729 cm⁻¹; HRMS (ESI): m/z calcd for C₆H₇F₃O₆S $[M + Na]^+$ 286.9813; found: 286.9805.

Methyl (Z)-3-isopropoxy-2-(((trifluoromethyl)sulfonyl)oxy)acrylate (5b-2)

Following the procedure for the preparation of **5b-1**, the reaction of methyl trifluoromethylsulfonyloxy acetate (4b; 222 mg, 1.0 mmol) with isopropyl formate (2b; 220 mg, 2.5 mmol), using Bu₃N (618 µL, 2.6 mmol) and TiCl₄ (263 μ L, 2.4 mmol) in CH₂Cl₂ (2 mL) gave the desired product 5b-2 (190 mg, 65%).

Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ *i*PrO = 1.38 (d, J = 6.3 Hz, 6H), 3.82 (s, 3H), TfO CO₂Me 4.37 (sept, J = 6.3 Hz, 1H), 7.49 (1H, s); ¹³C NMR (125 MHz, CDCl₃) $\delta = 22.1$

(2C), 52.1, 80.5, 118.4 (q, $J_{C-F} = 320$ Hz), 121.9, 150.4, 162.0; IR (neat): $v_{max} = 1728$, 1661, 1420, 1391, 1381, 1331, 1308, 1217 cm⁻¹; HRMS (ESI): m/z calcd for $C_8H_{11}F_3O_6S [M + Na]^+ 315.0126$; found: 315.0121.

Methyl

(Z)-3-(benzyloxy)-2-(((trifluoromethyl)sulfonyl)oxy)acrylate (5b-3)

Following the procedure for the preparation of 5b-1, the reaction of methyl trifluoromethylsulfonyloxy acetate (4a; 111 mg, 0.5 mmol) with benzyl formate (2c; 177 mg, 1.3 mmol), using Bu₃N (309 μ L, 1.3 mmol) and TiCl₄ (132 μ L, 1.2 mmol) in CH₂Cl₂ (1 mL) gave the desired product 5b-3 (122 mg, 71%).

Pale yellow oil; ¹H NMR (300 MHz, BnO CDCl₃) $\delta = 3.79$ (s, 3H), 5.15 (s, 2H), CO₂Me 7.28–7.47 (m, 5H), 7.49 (1H, s); ¹³C NMR (75 MHz, CDCl₃) δ = 52.0, 77.4, 118.4 (q, J_{C-F} = 320 Hz), 122.1, 127.8 (2C), 128.7 (2C), 129.0, 134.2, 151.1, 161.5; IR (neat): $v_{max} = 2957, 1731, 1663, 1419, 1202,$ 1136, 1103, 974, 723 cm⁻¹; HRMS (ESI): m/z calcd for $C_{12}H_{11}O_3F_3S [M + Na]^+$ 363.0126; found: 363.0130.

General procedure for the (Z)-stereoretentive Suzuki-Miyaura cross-coupling using halo esters 3 and sulfonyl oxy esters 5

[Method A]

A mixture of an α -chloroacrylate (3a; 0.5 mmol) was added to a stirred suspension of an aryl boronic acid (0.75 mmol), Pd(OAc)₂ (6 mg, 0.025 mmol), PCy₃ (28 mg 0.1 mmol), and K₂CO₃ (207 mg, 1.5 mmol.) in THF / H₂O (10:1) (1.5 mL) at room temperature. The mixture was heated at 110 °C under an Ar atmosphere for 3 h. Water was added to the mixture, which was extracted twice with AcOEt. The combined organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane-AcOEt = $30:1 \sim 10:1$) to give the desired product 6a - 6e.

[Mehod B]

A mixture of **3b**, **5a** or **5b** (0.5 mmol) was added to a stirred suspension of an aryl boronic acid (0.75 mmol), Pd(PPh₃)₂Cl₂ (18 mg, 0.025 mmol), and K₂CO₃ (207 mg, 1.5 mmol) in *i*PrOH (1.5 mL) at room temperature. The mixture was heated at 90 °C under an Ar atmosphere for 2 h. Water was added to the mixture, which was extracted twice with AcOEt. The combined organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane-AcOEt = $30:1 \sim 10:1$) to give the desired product 6a - 6e.

[Mehod C]

A mixture of α -iodoacrylate (3c; 0.5 mmol) was added to a stirred suspension of an aryl boronic acid (0.75 mmol), Pd(dppe)Cl₂ (15 mg, 0.025 mmol), and K₂CO₃ (207 mg, 1.5 mmol) in *i*PrOH (1.5 mL) at room temperature. The mixture was heated at 90 °C under an Ar atmosphere for 3 Water was added to the mixture, which was extracted h. twice with AcOEt. The combined organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane-AcOEt = $30:1 \sim 10:1$) to give the desired product 6a - 6e.

General procedure for the (Z)-stereoretentive Negishi cross-coupling using halo esters 3 and sulfonyloxy esters 5

[Method A]

An ArMgBr (3.0 mmol) in THF was added to a stirred solution of ZnCl₂ (408 mg, 3.0 mmol) in THF (2.0 mL) at 0 -5 °C under an Ar atmosphere, and the mixture was stirred at the same temperature for 0.5 h. α -Tosyloxy ester 5a (0.5 mmol) and Pd(dppp)Cl₂ (18 mg, 0.03 mmol) were successively added to the mixture, followed by being stirred at 40 - 45 °C for 2 h. 1M-HCl aq. solution was added to the mixture, which was extracted twice with AcOEt. The obtained organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane-AcOEt = $30:1 \sim 15:1$) to give the desired product 6a - 6e.

[Method B]

An ArMgBr (2.0 mmol) in THF was added to a stirred solution of ZnCl₂ (273 mg, 2.0 mmol) in THF (2.0 mL) at 0 - 5 °C under an Ar atmosphere, and the mixture was stirred same temperature 0.5 at the for h. α-Trifluoromethanesulfonyloxy ester 5b (0.5 mmol) and Pd(dppp)Cl₂ (18 mg, 0.03 mmol) were successively added

to the mixture, followed by being stirred at 40 - 45 °C for 24 h. 1M-HCl aq. solution was added to the mixture, which was extracted twice with AcOEt. The obtained organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane-AcOEt = $30:1 \sim 15:1$) to give the desired product **6a** - **6e**.

Methyl (E)-2-phenyl-3-methoxy-2-propeonate (6a)^[19]

Following the procedure for Suzuki-Miyaura crosscoupling (Method A), the reaction of methyl (*Z*)-2-chloro-3-methoxyacrylate (**3a-1**; 75 mg, 0.5 mmol) with phenylboronic acid (91 mg, 0.75 mmol), using Pd(OAc)₂ (6 mg, 0.025 mmol), PCy₃ (28 mg, 0.05 mmol) and K₂CO₃ (207 mg, 1.5 mmol) in THF / H₂O (10 : 1) (1.5 mL) gave the desired product **6a** (89 mg, 93%) (Table 3, entry 1).

126.9, 127.6 (2C), 130.0 (2C), 132.4, 159.5, 168.0.

Methyl (*E*)-2-(4-methylphenyl)-3-methoxy-2propeonate (6b)^[15a]

Following the procedure for Suzuki-Miyaura crosscoupling (Method *C*), the reaction of methyl (*Z*)-2-iodo-3methoxyacrylate (**3c-1**; 61 mg, 0.25 mmol) with 4methylphenylboronic acid (51 mg, 0.38 mmol), using Pd(dppe)Cl₂ (7 mg, 0.013 mmol) and K₂CO₃ (104 mg, 0.75 mmol) in *i*PrOH (0.75 mL) gave the desired product **6b** (89 mg, 93%) (Table 3, entry 8).

 $\begin{array}{c} \mbox{MeO} & Yellow \ oil; \ ^1H \ NMR \ (500 \ MHz, \\ CDCl_3) \ \delta = 2.34 \ (s, \ 3H), \ 3.73 \ (s, \ 3H), \\ 3.84 \ (s, \ 3H), \ 7.13-7.19 \ (m, \ 2H), \\ 7.20-7.24 \ (m, \ 2H), \ 7.53 \ (s, \ 1H); \ ^{13}C \\ NMR \ (125 \ MHz, \ CDCl_3) \ \delta = 21.1, \ 51.4, \ 61.8, \ 111.4, \ 128.5 \\ (2C), \ 129.4, \ 129.9 \ (2C), \ 136.7, \ 159.4, \ 168.2. \end{array}$

Methyl (*E*)-2-(4-methoxylphenyl)-3-methoxy-2propeonate (6c)^[19]

Following the procedure for Suzuki-Miyaura crosscoupling (Method A), the reaction of methyl (Z)-2-chloro-3-methoxyacrylate (**3a-1**; 75 mg, 0.5 mmol) with 4methoxyphenylboronic acid (114 mg, 0.75 mmol), using Pd(OAc)₂ (6 mg, 0.025 mmol), PCy₃ (28 mg, 0.05 mmol) and K₂CO₃ (207 mg, 1.5 mmol) in THF / H₂O (10 : 1) (1.5 mL) gave the desired product **6c** (104 mg, 94%) (Table 3, entry 10).

Yellow crystals; mp 58 – 62 °C; ¹H NMR (300 MHz, MeO CDCl₃) δ = 3.72 (s, 3H), 3.79 (s, 3H), 3.82 (s, 3H), 6.81–6.94 (m, 2H), 7.18– 7.31 (m, 2H), 7.51 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 51.5, 55.1, 61.8, 111.0, 113.2 (2C), 124.7, 131.2 (2C), 158.5, 159.1, 168.3.

Methyl (E)-2-(4-chlorophenyl)-3-methoxy-2-propeonate $(6d)^{[24]}$

Following the procedure for Suzuki-Miyaura crosscoupling (Method *B*), the reaction of methyl (*Z*)-3methoxy-2-(((trifluoromethyl)sulfonyl)oxy)acrylate (**5b-1**; 396 mg, 1.5 mmol) with 4-chlorophenylboronic acid (352 mg, 2.25 mmol), using Pd(PPh₃)₂Cl₂ (53 mg, 0.075 mmol) and K₂CO₃ (622 mg, 4.5 mmol) in *i*PrOH (4.5 mL) gave the desired product **6d** (316 mg, 93%) (Table 3, entry 17).

Yellow crystals; mp 61 – 62 °C(lit.^[24] 61 – 62 °C); ¹H NMR (300 MHz, CDCl₃) δ = 3.73 (s, 3H), 3.85 (s, 3H), 7.25–7.31 (m, 4H), 7.56 (s, 1H); ¹³C

NMR (75 MHz, CDCl₃) δ = 51.6, 62.0, 110.4, 127.9 (2C), 130.9, 131.4 (2C), 132.8, 159.8, 167.6.

Methyl (*E*)-2-(2-chlorophenyl)-3-methoxy-2-propeonate (6e)^[25]

Following the procedure for Suzuki-Miyaura crosscoupling (Method *B*), the reaction of methyl (*Z*)-3methoxy-2-(((trifluoromethyl)sulfonyl)oxy)acrylate (**5b-1**; 396 mg, 1.5 mmol) with 2-chlorophenylboronic acid (59 mg, 0.375 mmol), using Pd(PPh₃)₂Cl₂ (9 mg, 0.013 mmol) and K₂CO₃ (104 mg, 0.75 mmol) in *i*PrOH (0.75 mL) gave the desired product **6e** (47 mg, 83%) (Table 3, entry 21).

Yellow crystals; mp 55 – 56 °C (lit.^[25] 61 – 62 °C); ¹H NMR (300 MHz, CDCl₃) δ = 3.71 (s, 3H), 3.85 (s, 3H), 7.20–7.51 (m, 4H), 7.57 (s, 1H); ¹³C NMR (75 MHz,

CDCl₃) $\delta = 51.6, 62.0, 109.7, 126.3, 128.9, 129.2, 131.9, 132.2, 134.4, 160.3, 167.5.$

General procedure for the (Z)-stereoretentive Sonogashira cross-coupling using 3 or 5

An alkyne (1.0 mmol) and lPr_2NEt (0.25 mL, 1.47 mmol) were added to a stirred solution of α -trifluoromethanesulfonyloxy ester **5b** (0.25 mmol), CuI (7 mg, 0.38 mmol), and Pd(dppf)Cl₂ (9 mg, 0.13 mmol) in THF (0.25 mL) at c.a. 80 °C under an Ar atmosphere, and the mixture was stirred at same temperature for 14 h. Water was added to the mixture, which was extracted with AcOEt. The combined organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane-AcOEt = 30:1 ~ 25:1) to give the desired product **7a - 7d**.

Methyl (*E*)-3-methoxy-2-phenylethynyl-2-propeonate (7a)

Following the procedure for Sonogashira cross-coupling (Method *B*), the reaction of methyl (*Z*)-3-methoxy-2-(((trifluoromethyl)sulfonyl)oxy)acrylate (**5b-1**; 198 mg, 0.75 mmol) with ethynylbenzene (306 mg, 3.0 mmol), using Pd(PPh₃)₂Cl₂ (27 mg, 0.04 mmol) and CuI (21 mg, 0.11 mmol) in THF (0.75 mL) / *i*Pr₂NEt (0.75 mL) gave the desired product **7a** (162 mg, 99%) (Table 5, entry 5).

 $\begin{array}{c} {}^{\text{MeO}} & \text{Brown crystals; } {}^{1}\text{H} \ \text{NMR} \ (300 \ \text{MHz}, \\ \text{CDCl}_3) \ \delta = 3.72 \ (\text{s}, \ 3\text{H}), \ 3.91 \ (\text{s}, \ 3\text{H}), \\ \text{CDCl}_3) \ \delta = 3.72 \ (\text{s}, \ 3\text{H}), \ 3.91 \ (\text{s}, \ 3\text{H}), \\ \text{CDCl}_3) \ \delta = 3.72 \ (\text{s}, \ 3\text{H}), \ 7.35-7.50 \ (\text{m}, \ 2\text{H}), \\ \text{7.16-7.28} \ (\text{m}, \ 3\text{H}), \ 7.35-7.50 \ (\text{m}, \ 2\text{H}), \\ \text{7.72} \ (\text{s}, \ 1\text{H}); \ {}^{13}\text{C} \ \text{NMR} \ (75 \ \text{MHz}, \ \text{CDCl}_3) \\ \delta = 52.0, \ 62.6, \ 80.2, \ 95.3, \ 96.0, \ 123.2, \ 128.1 \ (3\text{C}), \ 131.4 \\ (2\text{C}), \ 166.3, \ 166.5; \ \text{IR} \ (\text{neat}): \ v_{\text{max}} = 2949, \ 1713, \ 1614, \\ 1267, \ 1220, \ 1144, \ 1101, \ 756; \ \text{HRMS} \ (\text{ESI}): \ m/z \ \text{calcd for} \\ \text{C}_{13}\text{H}_{12}\text{O}_3 \ [M + \text{Na}]^+ \ 239.0684; \ \text{found:} \ 239.0695. \end{array}$

Methyl (E)-2-tert-butyldimethylsilylethynyl-3-methoxy-2-propeonate (7b)

Following the procedure for Sonogashira cross-coupling (Method B), the reaction of methyl (Z)-3-methoxy-2-(((trifluoromethyl)sulfonyl)oxy)acrylate (5b-1; 66 mg, 0.25 mmol) with (tert-butyl)ethynyldimethylsilane (306 mg, 3.0 mmol), using Pd(PPh₃)₂Cl₂ (9 mg, 0.013 mmol) and CuI (21 mg, 0.11 mmol) in THF (0.25 mL) / *i*Pr₂NEt (0.25 mL) gave the desired product 7b (104 mg, 89%) (Table 5, entry 6).

Yellow crystals; mp 77 – 79 °C; ¹H MeO NMR (300 MHz, CDCl₃) $\delta = 0.15$ (s, CO₂Me 6H), 0.97 (s, 9H), 3.75 (s, 3H), 3.97 (s, TBS 3H), 7.67 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = -4.7 (2C), 16.7, 26.0 (3C), 51.9, 62.5, 95.6, 96.0, 100.1, 166.3, 167.5; IR (neat): $v_{max} = 2952$, 2153, 1710, 1615, 1254, 1116, 909, 731; HRMS (ESI): m/z calcd for $C_{13}H_{22}O_3Si [M + Na]^+ 277.1236$; found: 227.1228.

Methyl (E)-3-methoxy-2-(1-octinyl)-2-propeonate (7c)

Following the procedure for Sonogashira cross-coupling (Method B), the reaction of methyl (Z)-3-methoxy-2-(((trifluoromethyl)sulfonyl)oxy)acrylate (5b-1; 132 mg, 0.5 mmol) with 1-octyne (164 mg, 2 mmol), using Pd(PPh₃)₂Cl₂ (18 mg, 0.025 mmol) and CuI (29 mg, 0.15 mmol) in THF (0.5 mL) / iPr2NEt (0.5 mL) gave the desired product 7c (78 mg, 80%) (Table 5, entry 7).

Brown oil; ¹H NMR (300 MHz, CDCl₃) $\delta = 0.81$ (t, J = 6.5 Hz, 3H), 1.13–1.30 (m, 4H), 1.30-1.42 (m, 2H), 1.43-1.59 (m, 2H), 2.33 (t, J = 6.8 Hz, 2H), 3.67 (s, 3H), 3.87 (s, 3H), 7.54 (s, 1H); ¹³C

NMR (75 MHz, CDCl₃) δ = 13.8, 19.6, 22.3, 28.3, 28.5, 31.1, 51.7, 62.1, 70.9, 95.6, 97.3, 165.6, 166.5; IR (neat): $v_{max} = 2932, 2856, 1714, 1616, 1254, 1192, 1122, 765;$ HRMS (ESI): m/z calcd for C₁₃H₂₀O₃ [M + Na]⁺ 247.1310; found: 247.1322.

Methyl (E)-2-tert-butylethynyl-3-methoxy-2-propeonate (7d)

Following the procedure for Sonogashira cross-coupling (Method B), the reaction of methyl (Z)-3-methoxy-2-(((trifluoromethyl)sulfonyl)oxy)acrylate (5b-1; 132 mg, 0.5 mmol) with 1-octyne (280 mg, 2 mmol), using Pd(PPh₃)₂Cl₂ (18 mg, 0.025 mmol) and CuI (14 mg, 0.075 mmol) in THF (0.5 mL) / iPr₂NEt (0.5 mL) gave the desired product 7d (106 mg, 83%) (Table 5, entry 8).

Colorless crystals; mp 50 - 52 °C; ¹H NMR (300 MHz, CDCl₃) $\delta = 1.30$ (s, 9H), 3.75 (s, 3H), MeO 3.94 (s, 3H), 7.59 (s, 1H); ¹³C NMR (75 CO₂Me MHz, CDCl₃) δ = 28.2, 30.9 (3C), 51.8, tBu 62.2, 69.5, 95.6, 105.4, 165.4, 166.8; IR

(neat): $v_{max} = 2968, 1707, 1612, 1436, 1371, 1241, 1116,$ 999, 766; HRMS (ESI): m/z calcd for C₁₁H₁₆O₃ [M + Na]⁺ 219.0997; found: 219.1006.

((1E,3Z)-4-Iodopenta-1,3-dien-1-yl)benzene (8)^[26]

nBuLi (1.6 M in hexane, 2.09 mL, 3.34 mmol) was added stirred suspension to а of (ethyl)triphenylphosphonium iodide (1.40 g, 3.34 mmol) in THF (17 mL) at $20 - 25^{\circ}$ C, followed by being stirred at the same temperature for 10 min. The mixture was added to a stirred solution of iodine (589 mg, 2.50 mmol) in THF (20 mL) at -78 °C. After stirring at -78 °C for an additional 5 min, the suspension was warmed to 0 °C, then NaHMDS (1 M in THF, 2.50 mL, 2.50 mmol) was added. After stirring at 0-5 °C for an additional 5 min, trans-cinnamaldehyde (210 µL, 1.67 mmol) was added, followed by being stirred at the same temperature for 1 h. The mixture was quenched with sat. NH₄Cl aq., which was filtered through Celite[®]. The obtained filtrate was extracted twice with Et₂O. The combined organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained product crude was purified by SiO₂-column chromatography (hexane) to give the desired product (8; 337 mg, 70%, E / Z = 4 / 96).

Pale yellow crystals; mp 51 – 52 °C; ¹H Ph

NMR (500 MHz, CDCl₃) δ = 2.64 (s, 3H), 6.23 (d, J = 9.7 Hz, 1H), 6.68 (d, J = 15.5

Hz, 1H), 6.82 (dd, J = 9.7, 15.5 Hz, 1H), 7.22–7.27 (m, 1H), 7.30–7.36 (m, 2H), 7.42–7.48 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ = 34.1, 102.5, 126.6 (2C), 127.9, 128.6 (2C), 131.0, 134.3, 134.4, 137.0; IR (neat): $v_{max} = 2901$, 1572, 1485, 1447, 1437, 1427, 1288, 1236; HRMS (ESI): m/z calcd for C₁₁H₁₁I [M + Na]⁺ 292.9803; found: 292.9805.

4,4,5,5-Tetramethyl-2-((2E,4E)-5-phenylpenta-2,4-dien-2-vl)-1,3,2-dioxaborolane (9)

A mixture of dienyl iodide (8; 135 mg, 0.5 mmol) was added to a stirred suspension of bis(pinacolato)diboron (381 mg, 1.5 mmol), Pd(dppf)Cl₂ (37 mg 0.05 mmol), and KOH (42 mg, 0.75 mmol.) in 1,4-dioxane (3.0 mL) at room temperature. The mixture was hearted at reflux under an Ar atmosphere for 2 h. Water was added to the mixture, which was extracted twice with AcOEt. The combined organic phase was washed with water, brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane-AcOEt = 50:1) to give the desired product (9; 76 mg, 56%).

Ph **B**pin Pale yellow crystals; mp 74 – 76 °C; ¹H NMR (500 MHz, CDCl₃) $\delta = 1.33$ (s, 12H), 1.95 (s, 3H), 6.52 (d, J = 15.5 Hz,

1H), 6.76 (d, J = 10.9 Hz, 1H), 7.19–7.24 (m, 1H), 7.29– 7.34 (m, 2H), 7.39–7.44 (m, 1H), 7.65 (dd, J = 10.9, 15.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ = 22.7 (2C), 24.9 (4C), 83.1, 126.5 (2C), 127.3, 128.5 (2C), 129.1, 133.3 (2C), 137.8, 145.4; IR (neat): $v_{max} = 1715$, 1680, 1626, 1599, 1485, 1447, 1371, 1325; HRMS (ESI): m/z calcd for $C_{17}H_{23}O_2B [M + Na]^+ 293.1692$; found: 293.1689.

Methyl (2E,3Z,5E)-2-(methyoxymethylene)-3-methyl-6phenylhexa-3,5-dienoate: strobilurin A^[14c]

A mixture of α -trifluoromethanesulfonyloxy ester **5b** (53) mg, 0.2 mmol) was added to a stirred suspension of dienylborate 9 (54 mg, 0.2 mmol), Pd(PPh₃)₄ (12 mg, 0.01 mmol), and K₂CO₃ (83 mg, 0.6 mmol.) in *i*PrOH (1.2 mL) and H₂O (0.4 mL) at room temperature. The mixture was hearted at reflux under an Ar atmosphere for 2 h. Water was added to the mixture, which was extracted twice with AcOEt. The combined organic phase was washed with

12

water, brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane-AcOEt = 10:1) to give the desired product (**10**; 41 mg, 79%).

Pale yellow oil; ¹H NMR (500 MHz, Ph acetone-6d) $\delta = 1.93$ (d, J = 1.2 Hz, OMe MeO₂C 3H), 3.67 (s, 3H), 3.90 (s, 3H), 6.20 (dq, J = 1.2, 10.3 Hz, 1H), 6.51 (d, J = 16.0 Hz, 1H), 6.72 (dd, J = 10.3, 16.0 Hz, 1H), 7.17-7.22 (m, 1H), 7.27-7.34(m, 2H), 7.38–7.42 (m, 2H), 7.49 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) $\delta = 22.9, 51.3, 62.1, 111.0, 126.9$ (2C), 127.9, 128.0, 129.4 (2C), 130.3, 131.2, 132.5, 138.8, 160.0, 167.6; IR (neat): $v_{max} = 1703$, 1624, 1489, 1433, 1395, 1373, 1234, 1188; HRMS (ESI): m/z calcd for C₁₆H₁₈O₃ [M + Na]⁺ 281.1154; found: 281.1154. Physical properties of the present synthetic strobilurin A exhibited in good agreement with those derived from natural and synthetic specimens (1H and 13C NMRs).[14c]

Acknowledgements

This research was partially supported by Grant-in-Aids for Scientific Research on Basic Areas (B) "18350056", Priority Areas (A) "17035087" and "18037068", (C) 15K05508, and Exploratory Research "17655045" from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). We thank Dr Ryohei Nagase and Mr Hiroshi Nishikado for their assistances throughout the work.

One of the author (Y.T.) offers his warmest congratulations to Professor Ben L. Feringa (University of Groningen, The Netherlands) on being awarded the 2016 Nobel Prize in Chemistry. Dedication to Professor Teruaki Mukaiyama on the celebration of his 90th birthday (Sotuju)

References

- a) C. H. Heathcock, in: Comprehensive Organic Synthesis, Vol 2, (Eds.: B. M. Trost, I. Fleming), Pergamon: Oxford, **1991**, pp 181; b) M. T. Smith, March's Advanced Organic Chemistry, Wiley, 6 th ed., New York, **2007**, pp 624, 1355, 1452; c) J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, Oxford: New York, **2001**, 689; d) R. Mahrwald, Modern Aldol Reactions, Wiley-VCH, Weinheim, **2004**.
- [2] a) E. J. Corey, R. Imwinkelreid, S. Pikul, Y. B. Xiang, J. Am. Chem. Soc. 1989, 111, 5493–5495;
 b) E. J. Corey, S. S. Kim, J. Am. Chem. Soc. 1990, 112, 4976–4977;
 c) E. J. Corey, D. -H. Lee, Tetrahedron Lett. 1993, 34, 1737–1740.
- [3] a) H. C. Brown, K. Ganesan, *Tetrahedron Lett.* 1992, 33, 3421–3424; b) H. C. Brown, K. Ganesan, *J. Org. Chem.* 2002, 67, 5250–5256.
- [4] a) A. Abiko; J.-F. Liu, S. Masamune, J. Org. Chem. 1996, 61, 2590–2591; b) A. Abiko, T. Inoue, S. Masamune, J. Am. Chem. Soc. 2002, 124, 10759– 10764; c) A. Abiko, Acc. Chem. Res. 2004, 37, 387–395.

- [5] a) T. Mukaiyama, K. Banno, K. Narasaka, *Chem. Lett.* **1973**, 1011–1014; *J. Am. Chem. Soc.* **1974**, *96*, 7503–7509. b) T. Mukaiyama, *Organic Reactions*, Wiley, New York, **1982**; Vol. 28, pp 203.
- [6] Self-type: a) Y. Tanabe, *Bull. Chem. Soc. Jpn.* 1989, 62, 1917–1924; b) Tanabe, Y.; Hamasaki, R.; Funakoshi, S. *Chem. Commun.* 2001, 1674–1675; c) Tanabe, Y.; Makita, A.; Funakoshi, S.; Hamasaki, R.; Kawakusu, T. *Adv. Synth. Catal.* 2002, 344, 507–510.
- [7] Crossed-type: a) Ref. 6a; b) S. N. Crane, E. J. Corey, Org. Lett. 2001, 3, 1395–1397; c) T. Misaki, R. Nagase, K. Matsumoto, Y. Tanabe, J. Am. Chem. Soc. 2005, 127, 2854–2855; d) A. Iida, S. Nakazawa, T. Okabayashi, A. Horii, T. Misaki, Y. Tanabe, Org. Lett. 2006, 8, 5215–5218; e) H. Nakatsuji, H. Nishikado, K. Ueno, Y. Tanabe, Org. Lett. 2009, 11, 4258–4261; f) Y. Ashida, S. Kajimoto, H. Nakatsuji, Y. Tanabe, Org. Synth. 2016, 93, 286–305.
- [8] Asymmetric version and its application to asymmetric total synthesis of natural product: a) R. Nagase, Y. Oguni, S. Ureshino, H. Mura, T. Misaki, Y. Tanabe, *Chem. Commun.* 2013, 49, 7001–7003;
 b) M. Sugi, R. Nagase, T. Misaki, H. Nakatsuji, Y. Tanabe, *Eur. J. Org. Chem.* 2016, 4834–4841.
- [9] For selected examples, see: a) Y. Tanabe, N. Matsumoto, T. Higashi, T. Misaki, T. Itoh, M. Yamamoto, K. Mitarai, Y. Nishii, *Tetrahedron* 2002, 58, 8269–8280; b) Y. Tanabe, K. Mitarai, T. Higashi, T. Misaki, Y. Nishii, *Chem. Commun.* 2002, 2542–2543; c) R. Nagase, N. Matsumoto, K. Hosomi, T. Higashi, S. Funakoshi, T. Misaki, Y. Tanabe, *Org. Biomol. Chem.* 2007, 5, 151–159.
- [10] a) M. Periasamy, S. Suresh, and S. S. Ganesan, *Tetrahedron Lett.* 2005, 46, 5521; b) S. Kikuchi, T. Kobayashi, Y. Hashimoto, *Tetrahedron Lett.* 2006, 47, 1973; c) T. Funatomi, S. Nakazawa, K. Matsumoto, R. Nagase, Y. Tanabe, *Chem. Commun.* 2008, 771–773.
- [11] J. M. Álvarez-Calero, Z. D. Jorge, G. M. Massanet, Org. Lett. 2016, 18, 6344–6347.
- [12] a) Y. Tanabe, N. Manta, N. R. Nagase, R. T. Misaki, Y. Nishii, M. Sunagawa, A. Sasaki, Adv. Synth. Catal. 2003, 345, 967–970; b) R. Nagase, H. Gotoh, M. Katayama, N. Manta, Y. Tanabe, Heterocycles 2007, 72, 697–708.
- [13] a) M. Sunagawa, H. Matsumura, T. Inoue, M. Funasaka, M. Kato, *J. Antibiot.* **1990**, *43*, 519–532;
 b) M. Sunagawa, A. Sasaki, *Heterocycles* **2001**, *54*, 497–528.
- [14] Review: a) J. M. Clough, *Nat. Prod. Rep.* 1993, 10, 565–574. Isolation and structure determination: b)
 V. Musílek, F. Nerud, M. Vondráček, *Folia Microbiol. (Prague)* 1969, 14, 377–378; c) G. Schramm, W. Steglich, T. Anke, F. Oberwinkler, *Chem. Ber.* 1978, 8, 2779–2784. d) T. Anke, G.

Schramm, B. Schwalge, B. Steffan, W. Steglich, *Liebigs Ann. Chem.* **1984**, 1616.

- [15] (*E*)- and (*Z*)-mixd α -bromo and α -chloroacrylates: a) Y. A. Paliichuk, B. N. Kozhushko, V. A. Shokol, *Zh. Obshch. Khim.* **1989**, *59*, 307–310; b) Diiodination of propiolate and successive elimination of HI using Et₃N: D. M. Hodgson, J. Witherington, B. A. Moloney, I. C. Richards, J.-L. Brayer, *Synlett* **1995**, 32–34. c) Dibromination of propiolate and successive methoxy substitution using Bu₃OMe leading to (*Z*)- α -bromo acrylate: R. Rossi, F. Bellina, A. Carpita, *Synlett* **1996**, 356– 358.
- [16] A relevant example on undesirable further crosscouplings: Y. Ashida, Y. Sato, T. Suzuki, K. Ueno, K. Kai, H., Nakatsuji, Y. Tanabe, *Chem. Eur. J.* 2015, 21, 5934-5945.
- [17] Stable conformations of two sets of stereoisomers:

- [18] K. Beautement, J. M. Clough, *Tetrahedron Lett.* 1987, 28, 475–478. Cf. Formal synthesis: N. Y. Grigorieva, V. A. Popovsky, A. V. Stepanov, E. D. Lubuzh, *Russ. Chem. Bull. Int. Ed.* 2010, 59, 2086– 2093.
- [19] R. S. Coleman, X. Lu, Chem. Commun. 2006, 423– 425.
- [20] J. Chen, T. Wang, K. Zhao, *Tetrahedron Lett.* **1994**, *35*, 2827–2828.
- [21] a) T. Ishiyama, N. Miyaura, *Chem. Rec.* 2004, *3*, 271–280; b) W. K. Chow, O. Y. Yuen, P. Y. Choy, C. M. So, C. P. Lau, W. T. Wong, F. Y. Kwong, *RSC Adv.* 2013, *3*, 12518–12539.
- [22] J. M. Goff, M. W. Justik, G. F. Koser, *Tetrahedron Lett.* 2001, 42, 5597–5599.
- [23] S. Schafer, W. Frey, A. S. K. Hashmi, V. Cmrecki, A. Luquin, M. Laguna, *Polyhedron* 2010, 29, 1925–1932.
- [24] R. Rossi, F. Bellina, D. Ciucci, A. Carpita, C. Fanelli, *Tetrahedron* **1998**, *54*, 7595–7614.
- [25] M. J. Bushell, K. Beautement, J. M. Glough, P. Defraine, V. M. Anthony, C. R. A. Godfrey, European Patent 0,178,826, April 23, 1986.
- [26] Y. Lian, W. D. Wulff, J. Am. Chem. Soc. 2005, 127, 17162–17163.

MeO TfO CO₂Me (Z)-**5b-1**

Update

Dehydration-type Ti-Claisen Condensation (Carbonhomologation) of α-Heteroatom-substituted Acetates with Alkyl Formates: Utilization as Novel (Z)-Stereodefined Cross-coupling Partners and Application to Concise Synthesis of Strobilurin A

Adv. Synth. Catal. Year, Volume, Page - Page

Hidefumi Nakatsuji,^a* Risa Kamada,^a Hideya Kitaguchi,^a Yoo Tanabe^a*

