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The catalytic in situ generation of metal enolates and
enamines from donor substrates in asymmetric carbon–
carbon bond-forming reactions has recently received much
attention.[1] Although tremendous progress has been made in
this area in the last five years with various metal catalysts and
organocatalysts,[2] room for improvement remains. For exam-
ple, in metal catalysis, the donor substrates are mostly limited
to ketones.[3,4] The use of donor substrates with the oxidation
state of carboxylic acid is still a formidable task since the pKa

value of the a proton in carboxylic acid derivatives is much
higher than that in ketones. A few landmark studies address-
ing this issue were recently reported.[5] In particular, Evans

et al. achieved a highly enantioselective aldol reaction utiliz-
ing N-acyl thiazolidinethione donors and a chiral Ni cata-
lyst.[5a] The reaction proceeded with excellent yield and
selectivity; however, stoichiometric amounts of the silylating
reagent and amine base were required to facilitate catalyst
turnover. The development of a suitable ester-equivalent
donor and/or a new asymmetric catalyst to achieve both high
enantioselectivity and conversion without additional stoichio-
metric reagents is desirable. Herein, we report that an N-
acylpyrrole moiety is an effective achiral template for the in
situ generation of metal enolates. New complexes composed
of In(OiPr)3 and (S,S)-linked-binol 1were used to catalyze the

asymmetric Mannich-type reaction of N-(2-hydroxyacetyl)-
pyrrole and ortho-tosylimines, which proceeded through
simple proton transfer to give b-amino-a-hydroxy carboxylic
acid derivatives in high enantioselectivity (91–98% ee, major
diastereomer) and good yield (65–98%).

We selected N-acylpyrrole as a donor substrate for
investigation and as an achiral template for the following
reasons. Evans et al. reported the unique properties of N-
acylpyrrole.[6] We subsequently demonstrated the utility of
the N-acylpyrrole moiety as an ester surrogate in catalytic
asymmetric conjugate additions, in which an a,b-unsaturated
N-acylpyrrole substrate was used as an activated, monoden-
tate electrophile.[7] Because the lone pair on the nitrogen
atom in the pyrrole ring is delocalized in an aromatic system,
the properties of the carbonyl group are similar to those of a
phenyl ketone. We supposed thatN-acylpyrrole would also be
useful as an ester-equivalent donor because the aromaticity
would assist enolate formation. Since the coordination mode
of the N-acylpyrrole donor is similar to that of an aromatic
ketone, the chiral environment optimized for ketone donors
would be applicable for N-acylpyrrole. Based on our previous
report that the complex Et2Zn/linked-binol 1a is suitable for
the formation of an enolate from an aromatic hydroxyketo-
ne,[2c] we used N-(2-hydroxyacetyl)pyrrole 2 (Figure 1) and
complexes composed of a metal and linked-binol 1a in the
preliminary evaluations of the potential of the N-acylpyrrole
moiety for the catalytic in situ generation of metal enolates.

The results of the initial screening in the Mannich-type
reaction with 2 are shown in Table 1. When the Et2Zn/1a

Figure 1. Structure and properties of N-acylpyrrole (2).
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complex was used for para-tosyli-
mine 3a, a Mannich adduct was
obtained in only low yield (Table 1,
entry 1, 11%), probably due to the
low Brønsted basicity of the Zn
catalyst in the formation of the zinc
enolate from 2. Screening of other
metal sources revealed that In-
(OiPr)3 was the most effective.[16]

When a 2:1 complex of In(OiPr)3
and 1a was used, the reaction of 2
and 3a in THF proceeded at room
temperature to give the Mannich
adduct in 61% yield and 93% ee
(Table 1, entry 2). The reaction of
ortho-tosylimine 4a under the
same conditions gave 6a with
improved yield (94%), diastereo-
selectivity (syn/anti= 91:9), and
enantioselectivity (96% ee (syn);
Table 1, entry 3).[8,9] In this reac-
tion, we assumed that either an
indium alkoxide or an indium
phenoxide functions as a Brønsted
base and deprotonates 2 at the a

position to form the indium eno-
late in situ. Although there are
many reports on Lewis acidic
indium catalysts (In(OTf)3, InCl3,
InBr3, etc.),

[10] the Brønsted basic
property of indium chiral catalysis
was utilized for the first time in
organic synthesis. Furthermore, the
present reaction using an a-hy-
droxy-substituted donor comple-
ments the reports by Evans and
Shair,[5] in which a-alkyl-substituted donors were used.[11]

The substrate scope of the present reaction is summarized
in Tables 2 and 3. The diastereomeric ratio depended on the
imines used. As shown in Table 2, alkenyl imines 4a–d

afforded syn adducts in good diastereoselectivity (88:12–91:9)
and high enantioselectivity (93–97% ee (syn) Table 2,
entries 1–4). The syn selectivity of the reactions of imines
4e and 4 f, which have an unsubstituted and para-substituted
aromatic ring, respectively, was only modest (Table 2,
entries 5 and 6).[12] At present, this reaction with the In-
(OiPr)3/(S,S)-linked-binol complex is limited to sp2-hybri-
dized imines; however, subsequent functionalization of the
C–C double bond in the Mannich adducts obtained from
alkenyl imines 4a–d can afford b-alkyl-substituted b-amino-
a-hydroxy carboxylic acid derivatives (see below). Further
trials to expand the substrate scope of the reaction to aliphatic
imines are ongoing. On the other hand, imines 4g–k, which
contain ortho-substituted aromatic rings, and cyclopropyl
imine 4 l gave products with anti selectivity[8] in high ee (92–
98% ee, anti ; Table 3). Both electron-withdrawing (Cl, Br)
and electron-donating substituents (Me, MeO) on the aro-

matic ring were applicable. For less reactive substrates, an
increased amount of the chiral ligand (15 mol%) was
required to obtain products in good yield (Table 3, entries 1,
2, and 5–7). Use of a modified linked-binol ligand 1b resulted

Table 1: Direct catalytic asymmetric Mannich-type reaction of N-(2-
hydroxyacetyl)pyrrole (2).[a]

Entry Imine Metal
(x mol%)

Prod. t [ h] Yield [%] syn/anti ee [%]

1 3a Et2Zn
(40)

5a 96 11 40:60 –

2 3a In(OiPr)3
(20)

5a 96 61 86:14 93

3 4a In(OiPr)3
(20)

6a 96 94 91:9 96

[a] PG=protecting group, MS 5C=molecular sieves 5 C, RT= room
temperature.

Table 2: Mannich-type reaction of imines 4a–f with 2.

Entry 4, R Lig. 1a
[x mol%]

Prod. t [ h] Yield [%] d.r.
syn/anti

ee [%]
syn, anti

1 4a, (E)-PhCH=CH- 10 6a 96 94[a] 91:9 96, 83
2 4b, (E)-p-tol-CH=CH- 10 6b 97 86[a] 89:11 95, 76
3 4c, (E)-p-Cl-C6H4-CH=CH- 10 6c 97 79[a] 88: 12 93, 71
4 4d, (E)-2-furyl-CH=CH- 10 6d 99 80 90:10 97, 81
5 4e, Ph 10 6e 111 98 61:39 91, 91
6 4 f, p-Cl-C6H4- 10 6 f 89 97 59:41 96, 94

[a] Yield of isolated product after conversion into the corresponding benzoate.

Table 3: Mannich-type reaction of 4g–l with 2.

Entry 4, R Ligand
(x mol%)

Prod. t [h] Yield [%] d.r.
anti/syn

ee [%]
anti, syn

1 4g, 1-naphthyl 1a (15) 6g 99 86 72:28 90, 87
2 4g, 1-naphthyl 1b (15) 6g 99 87 77:23 94, 89
3 4h, o-Cl-C6H4 1a (10) 6h 76 87 83:17 93, 81
4 4 i, o-Br-C6H4 1a (10) 6 i 89 68 86:14 95, 90[a]

5 4 j, o-Me-C6H4 1a (15) 6 j 92 76 76:24 93, 85[a]

6 4k, o-MeO-C6H4 1a (15) 6k 93 70 77:23 89, 81
7 4k, o-MeO-C6H4 1b (15) 6k 93 74 77:23 92, 86
8 4 l, cyclopropyl 1a (10) 6 l 65 83 63:37 96, 91
9 4 l, cyclopropyl 1b (10) 6 l 65 86 75:25 98, 90

[a] The enantiomeric excess was determined after conversion of the product into the triethylsilyl ether.
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in slightly better stereoselectivity in some cases (Table 3,
entries 1, 6, and 8 vs. 2, 7, and 9).

In all entries in Tables 2 and 3, the syn and the anti adducts
were obtained with the same absolute configuration at the
b position (S), implying that selection of the imine enantio-
face is identical.[8] Proposed models of the acyclic anti-
periplanar transition state are shown in Figure 2. Imines 4a–f

with a planar configuration would favor the TS-1 to minimize
gauche interactions. On the other hand, imines 4g–l have a
twisted configuration due to steric (4g–k) and stereoelec-
tronic (4 l) effects. Thus, steric repulsion between imine
substituents R and the pyrrole ring of the indium enolate
would become more predominant, and the anti-periplanar
TS-2 would be more favorable than TS-1. For a more precise
understanding of the diastereoselectivity evidenced in Table 2
and Table 3 and the effects of the modified ligand 1b, further
mechanistic studies including clarification of the structure of
the complex of In(OiPr)3 and (S,S)-linked-binol 1 are
required.

Finally, the utility of the N-acylpyrrole unit as an ester
surrogate was demonstrated through several transformations
of Mannich adducts (Scheme 1).[13] The N-acylpyrrole unit of
6a was readily transformed into an ethyl ester unit by
treatment with NaOEt at room temperature for 5 min,
affording 7 in quantitative yield. Hydrogenation of the C�C
double bond in 7 gave 8 in 92% yield, which corresponds to
the b-amino-a-hydroxy ester accessible from an aliphatic
imine. Substitution with amine also proceeded smoothly.
Amide 9 was obtained in quantitative yield by the treatment
of Mannich adduct 6e with pyrrolidine and DBU at 40 8C for
1 h. Neither epimerization nor racemization was observed
during substitution. After conversion of 9 into the cyclic
carbamate (94% yield), the o-Ts group was removed under
mild reduction conditions (Mg powder, room temperature,
20 min)[14] to give 10 in 81% yield. In addition to substitution
reactions with alcohols and amines, reaction of 6e with a
lithium enolate followed by treatment with DBU provided
keto ester 12 in 62% yield. Protection with a triethylsilyl
(TES) group followed by reduction with LiBH4 afforded the
pyrrole carbinol 13 as a stable intermediate. Under Masa-
mune–Roush conditions,[15] the aldehyde moiety was gener-

ated in situ from the crude pyrrole carbinol 13, and the a,b-
unsaturated ester 14 was obtained in 67% yield (in two steps
from the TES-protected Mannich adduct).

In summary, we have demonstrated the utility of N-
acylpyrrole 2 as an ester-equivalent donor in a direct
Mannich-type reaction. A catalytic amount of a chiral
complex composed of In(OiPr)3 and the (S,S)-linked-binol 1
was effective in generating the indium enolate in situ from 2.
The reaction is formally a simple proton transfer, and high
enantioselectivity (up to 98% ee) was achieved at ambient
temperature. Mechanistic studies of indium catalysis, trials to
improve the unsatisfactory reaction rate and diastereoselec-
tivity, and further application of the N-acylpyrrole moiety as
an ester-equivalent donor in other reactions are ongoing.
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