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Abstract: The results of PPL catalysed monohydrolysis of a series of 2-substituted-1,3-
diacetoxypropanes showed that alkinyl and (E) alkenyl substituents led to improvement of yield
and enantioselectivity, compared to their saturated analogues. On the contrary, (Z) alkenyl
substituents provoked a net reversal of asymmetric induction.

There is a notable interest in the use of enzymes as catalysts in the enantioselective synthesis of optically
active compounds. However, although the synthetic utility of this methodology is amply demonstrated by the
increasing number of reports in this field, rationalization of the results still proves challenging, since subtle
changes in the substrate structure can often bring about great alterations in the enantiomeric excesses or in the
chemical yields.! This fact can constitute sometimes a limit to an even wider application of this strategy and thus
any information on the structure-stereospecificity relationship can give an useful contribution to the understanding
of the active site topography.

Recently a few results obtained by us2 and others#:3 suggested that the presence of an unsaturation near
the prochiral centre could play an important role in determining the enantioselectivity in monohydrolysis of
prochiral diesters by means of hydrolytic enzymes.# Thus, in order to uncover the effect of different type of
unsaturation near the prochiral centre we have now carried out a systematic study on the PPL catalysed
monohydrolysis of 1,3-diacetoxypropanes substituted in 2 with alkyl, alkenyl, or alkinyl groups. This study
would also be useful in establishing the best way for the obtainment of enantiomerically pure asymmetrized 1,3-
propanediols substituted in 2 with hydrocarbon chains, to be used as new chiral building blocks,’ and would
greatly help the design of an empirical model for the quantitative and qualitative prediction, and for the explanation
of induction in PPL-catalysed reactions.$

For this purpose we prepared a series of diacetates 12-10a7:8:16 and examined their behaviour in PPL
catalysed monohydrolyses. The Table shows the results obtained, displaying not only the enantiomeric excesses,
but also other relevant features, like the percentage of monoacetate on the overall recovery of monoacetate +
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TABLE: PPL catalysed hydrolysis of diacetates 1a-10a*

Entry Substrate Solvent® | Initial rate/ | % Mono- | Yiek® | lakf | e.e8 | Configu-
Final rate® | acetated rationht

1| 4a H30 1.49 66% 49% | -17.3 | 84%

9 /\/\/\J/\/ ae | H2O/iPRO [ 217 66% | 63% | 218 | 95%

3 H0/t-BuOH 2.22 66% 59% | -198 | 93%

H;0 5.26 78% 70% | -23.2 | 90%
H,0/i-Pr,0 20 84% 75% | -253 | 97%
Hy0/t-BuOH 25 85% 1% | -23.2 | 88%

c
7 /\/\/\/E/ Ac H20 /i-Pry0 1.61 65% 56% | -7.87 | 70% S
c
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H30 /i -Pr0 2 59% 47% | -8.56 | 2% S
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10 \/\/_—=<: H30 /i-Pry0 1.27 56% 50% | -10.2 | 80%
11 OAc | H,O/t-BuOH 1.89 67% 61% | -10.8 | 82%
: :0Ac H0 2.70 79% 67% | -10.0 | 82%
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13 Hy0/iPr0 |  4.17 80% 65% | -104 { 85% s

14 H,0/t-BuOH 5.00 82% 1% | -104 | 88% S

15 H.0 1.52 48% 43% | +13.3 | 50% R

16 /\/\K/[/ H30 /i-Pr;0 1.47 40% 31% | +14.5 | 53% R

17 ¢ | HyO/t-BuOH 2.38 48% 4% | +144 | 55% R

18 H,0 1.79 3% 25% | +4.7 | 21% R

19 H,0 /i-Pry0 L0 2% 20% | +22 | 15% R
9

20 . Hy0/iPr0 | 1.72 33% 29% | -190 | 67% S
1

21 H;0 /i-Pry0 1.0 50% 45% | +0.1 2% -
OAc

NOTES : a) All reactions were performed on 1-2 mmol scale at + 25°C using 110 mg of crude PPL (Sigma) and 7 cc of solvent
for every mmol of diacetate. The pH was maintained constant at 7.00 by continuous addition of IN NaOH from an autoburette.
Reactions were stopped at 50% conversion, after consumption of 1 eq. of NaOH. Actual conversions were checked at !H n.m.r. and
always found in the range 47-53%. Reactions were complete in 1-5 h. b) 0.02-0.05 M phosphate buffer was used; H0 /4Pr0
were in the ratio 85:15; H20/-BuOH were in the ratio 9:1. c) Determined by the rate of NaOH consumption. d) Molar percentage
of monoacetate on the total recovery of monoacetate, diacetate, and diol, determined by !H n.m.r. of crude product or by weight of
isolated products. e) Isolated yield after silica gel chromatography (see note 16). f) ¢ 2, CHCl3. g) Determined at IH n.m.r. in the
presence of Eu(hfc)s, by integration of C H3C=0 signals. h) Determined as described in note 15. i) These reactions were scaled up
to 30-40 mmol without appreciable differences in yields and e.e.s.

diacetate + diol, and the initial rate/final rate ratio. These two data are closely related to the substrate selectivity and
thence to the chemical yield.

The importance of the presence on an (E ) double bond for the achievement of high enantioselection is
evident by comparison of entries 2-7 and 15-18 a sensible decrease of e.e. is observed on passing from the
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unsaturated to the saturated compounds. The improvement of asymmetric induction is not peculiar of the (E)
alkenyl derivatives. Also the alkynyl compounds Sa and 6a (entries 9-14) afforded the corresponding
monoacetates in higher e.e.s than the saturated analogues 3a and 4a. These results are furtherly confirmed by
the dramatic difference in enantioselection between 9a and 10a (entries 20 and 21).

On the other hand, the examination of (Z) alkenyl diacetates 7a and 8a (entries 15-19) showed that the
configuration at the double bond has a dramatic influence on both yield and stereoselectivity. The mere change of
configuration from (E) to (Z) causes a reversal of enantioselection , as well as a decreasc in substrate
selectivity, initial to final rate ratio, and yield. To our knowledge this is the first example of such a dramatic effect
on the enantioselectivity on changing the double bond configuration in an enzyme catalysed hydrolysis. Also the
hydrolysis of compound 9a, which possesses two identical substituents in cis and trans positions, proceeded
with diminished substrate selectivity and stereoselectivity; in this case the preference for (S) isomer was
maintained, although the e.e. was remarkably lower than for 1a and 2a (entry 20).

We have also studied the effect of added cosolvent: the addition of 15% i-Pr20 furnished the best
results in terms of yield and enantioselection for the (E) alkenyl derivatives, while for the alkynyl compounds
best results were obtained in HyO : ¢-BuOH 9:1. Interestingly the addition of i-PryO, which was beneficial in
the case of 1a, 2a, 5a, and 6a, increasing the percentage of (S) isomer and the yield, is detrimental for the (Z)
alkenyl diacetates 7a and 8a, lowering the yield and, in the case of 8a, again increasing the amount of minor (S)
monoacetate.

Finally the Table allows a comparison between compounds where the double or triple bond bear different
substituents. In the hydrolyses of (E) alkenyl and alkinyl diacetates the branched derivatives 2a and 6a proved
to be superior to the straight chain analogues 1a and 5a: a slight increase in the enantioselection is accompanied
by a marked improvement in substrate selectivity and yield, as well as in the initial to final rate ratio. In the case of
2a (entries 5 and 6), the reaction proceeds with high substrate selectivity, almost stopping at 50% conversion.14
Once again the effect of a branched substituent is opposite for the (Z) compounds, furtherly decreasing yield
and e.e..

In regard to the synthesis of asymmetrized 2-substituted 1,3-propanediols, we may conclude that PPL
catalysed monohydrolysis is a convenient method for  obtaining directly 2-(E) alkenyl and 2-alkinyl
derivatives. Although 2-alkyl and 2-(Z )-alkenyl compounds seem to be not directly accessible in satisfactory
e.e.s from PPL catalysed hydrolysis, it should be pointed out that they are indeed easily accessible through hy-
drogenation of triple or { E) double bonds.13 Application of 2-substituted asymmetrized 1,3-propanediols to the
enantioselective synthesis of biologically active substances is in progress.

We wish to thank Chiara Ghiron for her collaboration in this work, and M.U.R.S.T. and C.N.R. for
financial assistance.
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