

Cite This: J. Nat. Prod. XXXX, XXX, XXX–XXX

Article pubs.acs.org/jnp

Isolation, Structural Elucidation, Optical Resolution, and Antineuroinflammatory Activity of Phenanthrene and 9,10-Dihydrophenanthrene Derivatives from *Bletilla striata*

Di Zhou,^{†,§} Gang Chen,[†] Yue-Ping Ma,[†] Cun-Gang Wang,[†] Bin Lin,[‡] Yan-Qiu Yang,^{\perp} Wei Li,^{†,§}[®] Kazuo Koike,[§] Yue Hou,^{*, \perp} and Ning Li^{*,†,||}[®]

[†]School of Traditional Chinese Materia Medica and [‡]School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China

[§]Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan

¹College of Life and Health Sciences, Northeastern University, Shenyang 110004, People's Republic of China

^{II}State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People's Republic of China

S Supporting Information

ABSTRACT: A phytochemical investigation of the aqueous EtOH extract of *Bletilla striata* tubers afforded 34 phenanthrene and 9,10-dihydrophenanthrene derivatives, including four new compounds, 1–4. These compounds were identified using physicochemical analyses and various spectroscopic methods. Twelve of these compounds were resolved into their enantiomers, and the absolute configurations were determined by comparison of experimental and calculated ECD spectra. The antineuroinflammatory activities were evaluated by measuring the inhibition of nitric oxide production in lipopolysaccharide-stimulated BV-2 microglial cells. Compounds 7, 32, and 33 displayed inhibitory activities, with IC₅₀ values of 1.9, 5.0, and 1.0 μ M, respectively, suggesting that they should be subjected to development as potential inhibitors of neuroinflammation.

P henanthrenes and 9,10-dihydrophenanthrenes are a class of natural products with limited distribution in the Orchidaceae, Dioscoreaceae, Juncaceae, and Combretaceae families.¹ These compounds display diverse and promising biological activities, including anti-inflammatory, antiproliferative, antimicrobial, spasmolytic, antiplatelet aggregative, antioxidant, and antiallergic activities.²

Bletilla striata (Thunb.) Reichb. f. (Orchidaceae) is a perennial herbaceous plant that is widely distributed in East Asia. The tubers have been applied in traditional Chinese medicine to relieve swelling, hematemesis, and traumatic bleeding, as well as to treat skin diseases, such as ulcers, sores, and chapped skin.³ According to previous phytochemical studies, phenanthrenes and 9,10-dihydrophenanthrenes are characteristic constituents of *B. striata* that possess anti-inflammatory, antiproliferative, and antimicrobial activities.²

As part of our ongoing investigations aiming at discovery of natural inhibitors of neuroinflammation,^{4,5} it was found that an extract from the tubers of *B. striata* exerted significant antineuroinflammatory activities on overactivated microglial cells. Thus, a chemical investigation was conducted and resulted in the isolation and structural elucidation of phenanthrene and 9,10-dihydrophenanthrene derivatives (1-34), including four new compounds (1-4). Twelve of these compounds were resolved into their enantiomers, and the absolute configurations were determined using experimental and calculated ECD data. The antineuroinflammatory activities of the isolated compounds were evaluated by measuring the inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. The structure–activity relationship is also discussed.

Received: March 29, 2019

RESULTS AND DISCUSSION

The tubers of *B. striata* were extracted by refluxing in 95% aqueous EtOH. The extract was concentrated and sequentially leached with petroleum ether, EtOAc, and *n*-BuOH. The EtOAc fraction, which was enriched in phenanthrenes and 9,10-dihydrophenanthrenes, significantly decreased NO accumulation in LPS-stimulated BV-2 microglial cells (IC_{50} 72.7 μ g/mL). Further isolation and purification were performed using multiple chromatographic methods to afford 34 compounds. The structures of the following known compounds were identified using comparison of observed and reported physicochemical data: shanciol H (5),⁶ 3-(4-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol (6),⁷ phochinenin K (7),⁸ bletilol C (8),⁹ bletilol B (9),⁹ pleionesin C (10),¹⁰ (2,3-*trans*)-2-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-10-methoxy-2,3,4,5-tetrahydrophenanthro[2,1-*b*]furan-7-ol (11),¹¹ cyrtonesin B (12),¹² 1,4,7-trihydroxy-2-methoxy-9,10-

dihydrophenanthrene (13),¹³ lusianthridin (14),¹⁴ erianthridin (15),¹⁵ coelonin (16),¹⁶ shancigusin G (17),¹⁷ shancidin (18),¹⁸ 1-(4-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol (19),¹⁹ 1-(4-hydroxybenzyl)-4,7-dimethoxy-9,10-dihydrophenanthrene-2,8-diol (20),²⁰ 2,7-dihydroxy-l-(4'-hydroxybenzyl)-9,10-dihydrophenanthrene-4'-O-glucoside (21),⁹ blestriarene B (22),²¹ 4,4'-dimethoxy-9,10-dihydro-(6,10-biphenanthrene)-2,2',7,7'-tetraol (23),¹¹ gymconopin C (24),¹² blestriarene A (25),²¹ flavanthrinin (26),²² 4-methoxybenzyl)-4,7-dimethoxyphenanthrene-2,0 (29),²⁵ 1-(4-hydroxybenzyl)-4,7-dimethoxyphenanthrene-2,8-diol (30),²² 1-(4-hydroxybenzyl)-4,7-dimethoxyphenanthrene-2,8-diol (31),²⁵ bleformin F (32),²⁶ 4,8,4',8'-tetramethoxy-(1,1'-biphenanthrene)-2,7,2',7'-tetrol (33),¹¹ and monbarbatain A (34)¹³ (Figures 1 and 2). Four new compounds (1–4) were named

bletillatins A–D, respectively, and their detailed structures were elucidated as described below.

Figure 2. Structures of the phenanthrene derivatives.

Bletillatin A (1) was isolated as a brownish oil. The molecular rmula $C_{25}H_{24}O_6$ was established based on the ¹³C NMR data

Article

formula $C_{25}H_{24}O_6$ was established based on the ¹³C NMR data and a deprotonated molecular ion $[M - H]^-$ at m/z 419.1477 (calcd 419.1500 for $C_{25}H_{23}O_6$) in the HRESIMS data. The ¹H NMR spectrum displayed characteristic resonances for two methylene groups at δ_H 2.63 (2H, m, $H_{a,b}$ -9) and 2.64 (2H, m, $H_{a,b}$ -10), which revealed the presence of a 9,10-dihydrophenanthrene skeleton (Table 1). A pair of *meta*-coupled aromatic proton resonances at δ_H 6.31 (1H, d, J = 2.3 Hz, H-1) and δ_H 6.40 (1H, d, J = 2.3 Hz, H-3) was assigned to the A-ring based on the HMBC correlations from H-1 to C-10 and C-4a and from H-3 to C-4a (Figure 3). A pair of aromatic proton resonances at δ_H 6.67 (1H, s, H-8) and 8.06 (1H, s, H-5) was assigned to the tetrasubstituted B-ring based on the HMBC correlations from H-5 to C-4a and C-8a and from H-8 to C-5a and C-9. In addition, a set of ABX-type aromatic proton resonances was

Гable 1. ¹ Н (600 MHz) and	¹³ C (150 MHz,	Methanol- d_4)) Data for	Compounds 1–4
---------------------------	--------------	-------------------	----------	-------------------	------------	---------------

	1		2		3		4	
position	$\delta_{ m H} \left(J ext{ in Hz} ight)$	δ_{C}	$\delta_{ m H}~(J~{ m in~Hz})$	δ_{C}	$\delta_{ m H} \left(J ext{ in Hz} ight)$	δ_{C}	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{ m C}$
1	6.31, d (2.3)	108.3		118.1	6.52, s	111.6		116.3
2		157.6		156.8		155.6		158.9
3	6.40, d (2.3)	99.3	6.46, s	99.6		121.8	6.56, s	99.1
4		159.0		158.2		158.1		154.9
4a		140.3		117.5		120.3		141.4
5	8.06, s	125.8	7.88, d (8.5)	130.4	8.04, d (9.1)	128.9	8.04, d (8.6)	130.3
5a		142.0		126.0		126.1		140.7
6		125.4	6.59, dd (8.5, 2.7)	113.5	6.64, dd (9.1, 2.8)	115.2	6.62, dd (8.6, 2.3)	113.5
7		159.1		156.2		156.6		156.0
8	6.67, s	109.0	6.62, d (2.7)	114.4	6.63, br s	114.3	6.58, d (2.3)	114.7
8a		127.3		140.6		140.6		117.3
9	2.63, m	31.6	2.59 ^{<i>a</i>}	30.9	2.63 ^{<i>a</i>}	31.2	2.57, m	28.4
10	2.66, m	31.8	2.79, dd (14.3, 6.5); 2.70, dd (14.3, 7.1)	27.2	2.63 ^{<i>a</i>}	31.4	2.50, m	31.7
10a		116.9		140.3		139.8		126.6
1'		135.4		181.3		134.5		144.7
2'	6.94, d (1.9)	110.4			7.19, d (8.7)	130.5		117.3
3'		149.5	2.59; ^a 2.45 ^a	32.3	6.95, d (8.7)	117.4		160.3
4′		147.4	2.45; ^a 2.28 m	27.5		157.1	6.36 d (2.9)	98.2
5'	6.76, d (8.2)	116.1	5.36, dd (8.7, 6.0)	53.2	6.95, d (8.7)	117.4		158.2
6'	6.83, dd (8.2, 1.9)	119.6			7.19, d (8.7)	130.5	6.37d (2.9)	109.2
7′	5.49, d (5.5)	88.7			3.96, s	27.4		
8'	3.46, dd (7.7, 5.5)	55.2						
9′	3.84, dd (11.0, 5.5); 3.76, dd (11.0, 7.7)	65.6			Glc			
1″					4.83, d (7.6)	102.5		145.2
2″					3.41, t (7.6)	75.0	6.39 d (2.9)	116.1
3″					3.42 ^{<i>a</i>}	78.0		158.2
4″					3.36, m	71.4	6.49, dd (8.0, 2.0)	113.6
5″					3.38, m	78.1	6.93, t (8.0)	130.2
6″					3.85, dd (12.0, 2.0); 3.65, dd (12.0, 5.3)	62.5	6.38, dd (8.0, 2.9)	120.7
α							2.27, t (6.7)	38.1
α'							2.47, t (6.7)	37.7
3'- OCH ₃	3.81, s	56.4					3.63, s	55.9
5'- OCH ₃							3.89, s	56.0
4- ОСН ₃	3.82, s	55.9	3.79, s	55.8	3.28, s	60.3		

^aOverlapped resonances.

Figure 3. Key HMBC correlations of compounds 1-4.

observed at $\delta_{\rm H}$ 6.76 (1H, d, J = 8.2 Hz, H-5'), 6.83 (1H, dd, J = 8.2, 1.9 Hz, H-6'), and 6.94 (1H, d, J = 1.9 Hz, H-2"), as well as the resonances due to a three-carbon unit, including an oxymethine at $\delta_{\rm H}$ 5.49 (1H, d, J = 5.5 Hz, H-7'), a methine at $\delta_{\rm H}$ 3.46 (1H, dd, J = 7.7, 5.5 Hz, H-8'), and an oxymethylene at $\delta_{\rm H}$ 3.84 (1H, dd, J = 11.0, 5.5 Hz, H_a-9') and $\delta_{\rm H}$ 3.76 (1H, J = 11.0, 7.7 Hz, $H_{\rm h}$ -9'). The connection of the aromatic ring to C-7' was deduced from the HMBC correlations from H-7' to C-2' and C-6' and from H-8' to C-1'. Furthermore, the connectivity of C-8' and C-6 was deduced from the HMBC correlations from H-8' to C-5 and C-7, and the connectivity of C-7' and C-7 through an ether linkage was based on the HMBC correlations from H-7' to C-7. Finally, two methoxy moieties that resonated at $\delta_{\rm H}$ 3.81 (3H, s, 3'-OCH₃) and 3.82 (3H, s, 4-OCH₃) were assigned to C-3' and C-4 by the NOESY correlations between 3'-OCH₃/H-2' and 4-OCH₃/H-3, respectively. The HMBC correlations from 3'-OCH_3($\delta_{\rm H}$ 3.81) and H-2' ($\delta_{\rm H}$ 6.95) to C-3' $(\delta_{\rm C}$ 149.5) and from 4-OC<u>H</u>₃ $(\delta_{\rm H}$ 3.82) and H-3 $(\delta_{\rm H}$ 6.40) to C-4 ($\delta_{\rm C}$ 159.0) were used to confirm the assignments. The 7',8'trans relative configuration was assigned via the NOESY correlations between H-7'/H_{a,b}-9', H-8'/H-2', and H-8'/H-6' (Figure 4). The coupling constant ($J_{H-7',H-8'} = 5.5$ Hz) also supported the conclusion.

Compound 1 was a racemic mixture based on the specific rotation value ($[\alpha]^{20}_{D} = 0$). Considering the axial chirality of the biphenyl bond, four enantiomerically pure compounds were possible, namely, (aS,7'S,8'R)-, (aR,7'R,8'S)-, (aS,7'R,8'S)-, and (aR,7'S,8'R)-1 (Figure 5A). The resolution of compound 1 was achieved using chiral-phase column chromatography to afford two well-separated peaks (1a and 1b) in a peak area ratio of 1:1 (Figure 5B). Compounds 1a and 1b are a pair of enantiomers since they showed opposite specific rotations and antipodal ECD curves. The absolute configurations of compounds 1a and 1b were defined by comparing the experimental and calculated ECD spectra (Figure 5C). The calculated ECD spectra of (aS,7'S,8'R)-1 and (aR,7'R,8'S)-1

Figure 4. Key NOESY correlations of compounds 1 and 2.

closely matched the experimental data for compounds 1a and 1b, respectively, particularly the Cotton effects (CEs) in the region of 205-250 nm, which showed different patterns compared to their diastereomers. Based on the aforementioned evidence, bletillatin A (1) was elucidated as an enantiomeric mixture of (aS,7'S,8'R)- and (aR,7'R,8'S)-2-hydroxy-4-methoxy-7'-(4-hydroxy-3-methoxyphenyl)-8'-hydroxymethyl-7',8',9,10-tetrahydrofuro[2,3-*b*]phenanthrene.

Bletillatin B (2) was isolated as a brownish oil, and the molecular formula was determined to be C19H19NO4 by the protonated molecular ion peak at m/z 326.1375 [M + H]⁺ observed in the HRESIMS data (calcd 326.1387 for $C_{19}H_{20}NO_4$) and the ¹³C NMR data. Compound **2** was also a 9,10-dihydrophenanthrene derivate based on the characteristic resonances of two methylene groups at $\delta_{\rm H}$ 2.59 (2H, m, H_{a,b}-9), $2.70 (1H, dd, J = 14.3, 7.1 Hz, H_a-10)$, and $2.79 (1H, dd, J = 14.3, J_a = 14.3)$ 7.1 Hz, H_b -10). In the ¹H NMR data, an aromatic proton resonance at $\delta_{\rm H}$ 6.46 (1H, s, H-3) assigned to the A-ring and a set of ABX-type aromatic proton resonances [$\delta_{\rm H}$ 6.59 (1H, dd, J = 8.5, 2.7 Hz, H-6), 6.62 (1H, d, J = 2.7 Hz, H-8), 7.88 (1H, d, J = 8.5 Hz, H-5) assigned to the B-ring were deduced from the HMBC correlations from H-3 to C-4a, H-5 to C-4a and C-8a, and H-8 to C-5a and C-9. A methoxy moiety was assigned to C-4 by the NOESY correlation between $4-OCH_3$ and H-3. In addition, HMBC correlations were observed from 4-OCH₃ ($\delta_{\rm H}$ 3.79) to C-4 ($\delta_{\rm C}$ 158.2). The presence of a 5'-substituted pyrrolidone moiety was suggested by the typical ¹³C NMR resonances $[\delta_{C} 181.3 (C-2'), 32.3 (C-3'), 27.5 (C-4'), and 53.2$ (C-5')], and it was located at C-1 of the 9,10-dihydrophenanthrene moiety by the HMBC correlations from $H_{a,b}$ -4' to C-1 and from H-5' to C-2 and C-9a. The specific rotation of compound 2 was zero, suggesting that it was a racemic mixture. Chiral-phase column chromatography yielded two wellseparated peaks (2a and 2b) in a ratio of approximately 1:1 (Figure 6A and B). The ECD spectrum of compound 2a showed typical CEs for (aS)-9,10-dihydrophenanthrenes, namely, positive CEs in the region of 250-325 nm (Figure 6C).8 Meanwhile, the antipodal ECD curves suggested the aR configuration for compound 2b. The configuration of C-5' could not be determined from either the NOESY correlations or calculated ECD spectra. Thus, the structure of bletillatin B (2)was elucidated as an enantiomeric mixture of (aS)- and (aR)-2,7dihydroxy-4-methoxy-1-(2'-oxopyrrolidin-5'-yl)-9,10-dihydrophenanthrene.

Bletillatin C (3) was isolated as a brownish powder, and the molecular formula was determined to be $C_{28}H_{30}O_9$ by the ammonium adduct ion peak at m/z 528.2246 [M + NH₄]⁺ observed in the HRESIMS data (calcd 528.2234 for $C_{28}H_{34}NO_9$). In the ¹H and ¹³C NMR data, compound 3 displayed superimposable resonances assignable to the methyl-

Figure 5. Chiral-phase resolution of compound 1. (A) Four possible enantiomers. (B) Chiral-phase HPLC chromatograph. (C) Experimental and calculated ECD spectra.

ene groups and B-ring, similar to compound 2, but differences were observed in the A-ring resonances.⁶ An aromatic proton singlet at $\delta_{\rm H}$ 6.52 (1H, s, H-1) was assigned to H-1 by the HMBC correlations from H-1 to C-4a and C-10. The presence of a 4-O- β -D-glucopyranosylbenzyl moiety was deduced from the resonances for a methylene [$\delta_{\rm H}$ 3.96 (2H, s, H₂-7'), $\delta_{\rm C}$ 27.4 (C-7')], an AA'XX'-type aromatic ring [$\delta_{\rm H}$ 6.95 (2H, d, J = 8.7 Hz, H-3',5'), 7.19 (2H, d, J = 8.7 Hz, H-2',6')], and a β glucopyranosyl moiety with the anomeric resonances at $\delta_{\rm H}$ 4.83 (1H, d, J = 7.6 Hz, H-1''). Upon acid hydrolysis, the compound produced D-glucose, the absolute configurations of which were confirmed by an HPLC analysis of its thiocarbamate derivative and a comparison with the standard D-glucose.²⁸ The assignment of a methoxy group at C-4 was accomplished based on the HMBC correlations from 4-OCH₃ and H-7' to C-4. Thus, the structure of bletillatin C (3) was determined as 2,7-dihydroxy-3- $(4-O-\beta-D-glucopyranosylbenzyl)-4-methoxy-9,10-dihydrophe$ nanthrene.

Bletillatin D (4) was isolated as a brownish powder, and its molecular formula was established as $C_{30}H_{28}O_6$ based on the presence of a protonated molecular ion at m/z 485.1957 [M +

H]⁺ in the HRESIMS spectrum (calcd 485.1959 for $C_{30}H_{29}O_6$). The ¹H NMR data for compound 4 revealed resonances of four methylene groups $[\delta_{\rm H} 2.27 (2 {\rm H}, {\rm t}, J = 6.7 {\rm Hz}, {\rm H}_2 - \alpha), 2.47 (2 {\rm H}, {\rm t}, J = 6.7 {\rm Hz}, {\rm H}_2 - \alpha), 2.47 (2 {\rm H}, {\rm t}, J = 6.7 {\rm Hz}, {\rm H}_2 - \alpha)$ $J = 6.7 \text{ Hz}, \text{H}_2 \cdot \alpha'$, 2.50 (2H, m, H_{ab}-10), and 2.57 (2H, m, H_{ab}-9)], suggesting a heterodimeric structure. The assignments of a proton singlet at $\delta_{\rm H}$ 6.56 (1H, s, H-3) of the A-ring of the 9,10dihydrophenanthrene moiety and a set of AMX-type proton resonances [$\delta_{\rm H}$ 6.58 (1H, d, J = 2.3 Hz, H-8), 6.62 (1H, dd, J = 8.6, 2.3 Hz, H-6), and $\delta_{\rm H}$ 8.04 (1H, d, J = 8.6 Hz, H-5)] of the Bring were deduced from the HMBC correlations from H-3 to C-4a, from H_{ab}-10 to C-1, from H-5 to C-4a and C-8a, and from H-8 to C-5a and C-9. On the other hand, the structure of the bibenzyl group was established by the presence of a set of metacoupled aromatic protons [$\delta_{\rm H}$ 6.36 (1H, d, J = 2.9 Hz, H-4'), 6.37 (1H, d, J = 2.9 Hz, H-6')] (C ring) and a set of aromatic proton resonances [$\delta_{\rm H}$ 6.38 (1H, dd, J = 8.0, 2.9 Hz, H-6"), 6.39 (1H, d, *J* = 2.9 Hz, H-2"), 6.49 (1H, dd, *J* = 8.0, 2.0 Hz, H-4"), 6.93 (1H, t, J = 8.0 Hz, H-5")] for a *meta*-substituted phenyl moiety (D-ring), as well as the key HMBC correlations from H₂- α to C-6' and C-2', from H-4' to C-2' and C-6', from H₂- α ' to C-2",6", from H-5" to C-1", and from H-4" to C-2" and C-6". Two

Figure 6. Chiral-phase resolution of compound 2. (A) Four possible enantiomers. (B) Chiral-phase HPLC chromatograph. (C) Experimental and calculated ECD spectra.

methoxy groups were assigned to C-3' and C-5' by the HMBC correlations from H-4' to C-3' and C-5'; from H-6' to C-2' and C-5', from 3'-OC<u>H</u>₃ to C-3', and from 5'-OC<u>H</u>₃ to C-5'. Although HMBC correlations did not occur across the 9,10-dihydrophenanthrene and bibenzyl moieties, the connection of two quaternary carbons C-1 and C-2' was reasonable by assignment of their positions using the HMBC correlations from H-3 and H_{a,b}-10 to C-1 and from H-4, H-6, and H- α' to C-2'. Thus, the structure of bletillatin D (4) was determined as 2,4,7-trihydroxy-1-{6-[2-(3-hydroxyphenyl)]ethyl-2,4-dimethoxy}-phenyl-9,10-dihydrophenanthrene.

In addition to compounds 1 and 2, the chiral-phase resolution of compounds 5, 8-11, 13, 22, 25, 33, and 34 was also successfully achieved, and the absolute configurations of enantiopure compounds were determined using the experimental and calculated ECD spectra (Supporting Information).

The antineuroinflammatory activities of all isolated compounds were evaluated using Griess assays in overactivated BV-2 microglial cells stimulated with LPS. A known inhibitor of neuroinflammation, minocycline, was used as the positive control (IC₅₀ 27.2 μ M). The dimeric phenanthrene compound **33** showed the most potent antineuroinflammatory activity, with an IC₅₀ value of 1.0 μ M, followed by compound **32** (IC₅₀ 5.0 μ M). However, compound **34** exhibited no activity. The heterodimeric compound 7 also showed potent activity (IC₅₀ 1.9 μ M). A comparison of compounds 7 and 4 (IC₅₀ 60.7 μ M), the structures of which only differ in the presence of a methoxy group at C-5' or C-2, revealed that compound 7 showed more potent activity than compound 4. In addition, compounds **5**, **12**, **16**, **18**, **21**, **23**, and **24** exhibited weak inhibitory activities, with IC₅₀ values ranging from 12.0 to 30.0 μ M. Accounting for the chiralities of 9,10-dihydrophenanthrenes, enantiopure compounds (**33a** and **33b**, Figure 7) were evaluated for their

antineuroinflammatory activities. Results indicated that compounds **33a** and **33b** exhibited significant inhibitory effects with IC_{50} values of 6.9 and 1.4 μ M, respectively (minocycline was also used as the positive control, with IC_{50} value at 35.7 \pm 1.1 μ M), and (a*R*)-**33** (compound **33b**) was more active than (a*S*)-**33** (compound **33a**). Based on these results, phenanthrenes and 9,10-dihydrophenanthrenes show potential for further development as neuroinflammatory inhibitors. Furthermore, the chiralities of bioactive isomers have an influence on antineuroinflammatory activities.

EXPERIMENTAL SECTION

General Experimental Procedures. An MCP 200 polarimeter from Anton Paar (Graz, Austria) was used to measure optical rotations. ¹H and ¹³C NMR spectra were recorded with a Bruker AVIII HD-600 spectrometer in δ (ppm) referenced to tetramethylsilane. HRESIMS data were collected using an Agilent HPLC 1290 Infinity and a 6540 UHD Accurate TOF-Q mass spectrometer. ECD spectra were recorded using a Bio-Logic Science MOS-450 spectrometer. The silica gel (SiO₂: $50-74 \ \mu m$) used for column chromatography was produced by Qingdao Ocean Chemical Group Co. (Qingdao, People's Republic of China). The ODS (50 μ m) used for column chromatography was produced by the YMC Company (Kyoto, Japan). HPLC separations were done by using a YMC ODS-A C_{18} column (5 μ m, 250 mm × 20 mm) with a Shimadzu SPD-20A UV detector and a Shimadzu LC-20AR pumping system. Sigma-Aldrich (MO, USA) supplied the deuterium reagents, DMSO- d_{6} , and methanol- d_4 . Chiral-phase separations were performed using the chiral-phase chromatographic column CHIRALPAK IF (Dacicel Chiral pak IF: CHIRALPAK IF analytic column, 4.6×250 mm, $4.6 \ \mu$ m particles, Daicel Chemical Industries, Tokyo, Japan). Tianjin DaMao provided all reagents for the chromatographic or analytical experiments (Tianjin, People's Republic of China).

Plant Material. Plant material was purchased from Shaanxi Tasly Plant Medicine LLC, collected from Shaanxi Province, People's Republic of China, in November 2016, and identified by Professor Yingni Pan (Shenyang Pharmaceutical University). A voucher specimen (20160911) is deposited in the herbarium of Shenyang Pharmaceutical University.

Extraction and Isolation. The dried tubers of *B. striata* (16 kg) were extracted using 95% aqueous EtOH (×3, for 3 h/extraction) using reflux and then successively leached with petroleum ether, EtOAc, and n-BuOH. The EtOAc fraction (400 g) was subjected to silica gel column chromatography (CC) with a gradient of CH₂Cl₂-MeOH to produce 10 fractions (Fr.1-Fr.10). Fr.2 was loaded on the ODS column, eluted with MeOH-H2O, and purified using HPLC to yield compounds 28 (12.3 mg), 26 (72.3 mg), 29 (21.6 mg), 15 (23.2 mg), and 20 (17.2 mg). Fr.3 was separated using silica gel CC with gradient elution using petroleum ether-EtOAc to yield Fr.3-1 and 3-2. These subfractions were separated on an ODS column and washed with a gradient of MeOH-H₂O to yield compounds 27 (15.1 mg), 6 (21.2 mg), 2 (16.1 mg), 30 (66.2 mg), and 31 (31.2 mg). Fr.4 was loaded onto an ODS column, eluted with MeOH-H2O, and further purified by HPLC equipped with an ODS column to give compounds 10 (13.2 mg) and 5 (22.7 mg). Fr.6 was separated on an ODS column (MeOH- H_2O) and then purified using HPLC to afford compounds 32 (3.2 mg), 4 (22.2 mg), and 7 (31.2 mg) after elution with MeOH-H₂O. Fr.7 was subjected to silica gel chromatography with gradient elution using CH₂Cl₂-MeOH and purified by HPLC with MeOH-H₂O to give compounds 1 (12.6 mg), 9 (42.3 mg), 8 (33.2 mg), and 12 (26.5 mg). Fr.9 was isolated using an ODS column and eluted with MeOH-H₂O to produce five subfractions, which were further purified by RP-C₁₈ HPLC to give compounds 14 (23.2 mg), 13 (61.4 mg), 16 (87.2 mg), 18 (67.3 mg), 19 (47.2 mg), 3 (14.7 mg), 21 (21.2 mg), 17 (29.3 mg), 22 (43.2 mg), and 23 (11.6 mg), with CH₃CN-H₂O. Fr.10 was subjected to an ODS column and purified by HPLC with CH₃CN-H₂O to give compounds 24 (22.5 mg), 25 (50.2 mg), 33 (31.5 mg), 34 (42.3 mg), and 11 (15.4 mg).

Bletillatin A (1): brownish oil (MeOH); $[\alpha]^{20}{}_{D}$ 0 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 282 (3.30) nm, 210 (4.60) nm; ¹H and ¹³C NMR data (see Table 1); HRESIMS m/z 419.1477 [M–H]⁻ (calcd for C₂₅H₂₃O₆, 419.1500).

Bletillatin B (2): brownish oil (MeOH); $[\alpha]^{20}{}_{D}$ 0 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 280 (2.61) nm, 212 (3.39) nm; ¹H and ¹³C NMR data (see Table 1); HRESIMS m/z 326.1375 [M + H]⁺ (calcd for C₁₉H₂₀NO₄, 326.1387).

Bletillatin C (3): brownish powder (MeOH); $[\alpha]^{20}_{D} - 2$ (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 282 (2.15) nm, 212 (3.60) nm; ¹H and ¹³C NMR data (see Table 1); HRESIMS m/z 528.2246 [M + NH₄]⁺ (calcd for C₂₈H₃₄NO₉, 528.2234).

Bletillatin D (4): brownish powder (MeOH); $[\alpha]_{D}^{20}$ 0 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 280 (2.60) nm, 211 (3.45) nm; ¹H and ¹³C NMR data (see Table 1); HRESIMS *m*/*z* 485.1957 [M + H]⁺ (calcd for C₃₀H₂₉O₆, 485.1959).

Acid Hydrolysis of Compound 3. Compound 3 (1.0 mg) was dissolved in 4 M HCl (1 mL) and heated at 90 °C for 2 h. The mixture was extracted with CH₂Cl₂ after cooling. The aqueous layer was evaporated to dryness. The residue was added to 3.0 mg of L-cysteine methyl ester, dissolved in pyridine (1 mL), and heated at 60 °C for 1 h. *o*-Tolylisothiocyanate (5 μ L) was added to the solution, and the mixture heated for an additional 1 h. The retention time of the reaction mixture (thiocarbamate derivative, 18.25 min) was confirmed by a comparison with authentic D-glucose using HPLC. The HPLC was equipped with a Shimadzu SPD-20A UV/visible detector and a Shimpack ODS (H) kit (4.6 × 250 mm, 5 μ m particle size) and analyzed at 35 °C (detection wavelength: 250 nm; flow rate: 1 mL/min). The mobile phase was CH₃CN-H₂O (25:75).^{27,28}

Chiral-Phase Resolution. The resolution was conducted using a chiral-phase column (Dacicel Chiral Pak IF) at 1 mL/min (detector: UV detection, λ : 210 nm). Chiral-phase separation of compound 1 using HPLC with *n*-hexane—EtOH (80:20) afforded compounds 1a (1.0 mg, $t_{\rm R} = 11$ min) and 1b (0.9 mg, $t_{\rm R} = 13$ min).

(*aS*,7'*S*,8'*R*)-*Bletillatin A* (**1***a*): $[\alpha]^{20}_{D}$ –26 (*c* 0.1, MeOH); ECD (MeOH) λ_{max} ($\Delta \varepsilon$) 214 (–0.76), and 282 (+2.27) nm.

(aR,7'R,8'S)-Bletillatin A (**1b**): $[\alpha]_{D}^{20}$ +26 (*c* 0.1, MeOH); ECD (MeOH) $\lambda_{max} (\Delta \varepsilon)$ 211 (+10.47), and 284 (+1.08) nm.

Similarity, chiral-phase separation of compound **2** using HPLC with *n*-hexane–EtOH (75:25) afforded compounds **2a** (1.2 mg, $t_R = 9 \text{ min}$) and **2b** (1.1 mg, $t_R = 12 \text{ min}$).

(*aS*)-*Bletillatin B* (2*a*): $[\alpha]^{20}_{D}$ –25 (*c* 0.1, MeOH); ECD (MeOH) λ_{max} ($\Delta \varepsilon$) 213 (+13.71), 230 (–10.41), and 277 (+5.49) nm.

(*aR*)-*Bletillatin B* (**2b**): $[\alpha]^{20}_{D}$ +25 (*c* 0.1, MeOH); ECD (MeOH) λ_{max} ($\Delta \varepsilon$) 205 (-25.19), 231 (+8.72), and 277 (-5.22) nm.

Using the same methods, compounds 5, 8–11, 13, 22, 25, 33, and 34 were optically resolved with HPLC using a chiral-phase chromatographic column. The $[\alpha]^{20}_{D}$ data and ECD data of these compounds were measured (Supporting Information).

Cell Viability and NO Production. Cell viability and NO production were tested using MTT and Griess assays, respectively, as described in our previous study.^{4,5}

Table 2. Inhibitory Activities of the Compounds on NO Production in LPS-Activated BV-2 Microglial Cells (Mean \pm SEM)

compound	$IC_{50} (\mu M)$	compound	IC_{50} (μM)
4	60.7 ± 1.6	24	12.0 ± 1.6
5	24.8 ± 1.9	25	39.4 ± 2.4
6	34.6 ± 1.3	27	30.0 ± 1.7
7	1.9 ± 1.9	29	82.0 ± 2.0
12	18.5 ± 2.1	30	30.2 ± 2.2
15	93.5 ± 1.4	32	5.0 ± 1.8
16	15.2 ± 2.2	33	1.0 ± 1.8
20	49.0 ± 2.2	33a ^a	6.9 ± 1.4
21	17.9 ± 1.6	33b ^a	1.4 ± 1.2
22	46.8 ± 1.7	minocycline ^b	27.2 ± 1.7
23	22.1 ± 1.8		

^{*a*}The data were afforded by the supplementary experiment according to the reviewer's advice using the method described here. Minocycline was also used as the positive control with an IC₅₀ value of $35.7 \pm 1.1 \mu$ M. ^{*b*}Minocycline was used as the positive control.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jnat-prod.9b00291.

1D and 2D NMR and HRESIMS spectra of compounds 1-4; optical resolution and determination of the structures of compounds 5, 8-11, 13, 22, 25, 33, and 34 (PDF)

AUTHOR INFORMATION

Corresponding Authors

*(N. Li) E-mail: liningsypharm@163.com. Tel: +86-24-43520739.

*(Y. Hou) E-mail: houyue@mail.neu.edu.cn. Tel: +86-24-83656117.

ORCID 0

Wei Li: 0000-0003-4143-8597

Ning Li: 0000-0001-7410-7327

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The study was partially supported by the National Natural Science Foundation of China (Grant Nos. 81673323, 81872768, 81473108, 81628012, 81473330, and U1603125), a project of the State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2017-B03), the Program for Liaoning Excellent Talents in University (LR2015022), and the Fundamental Research Funds for the Central Universities of China (N162004003) and LiaoNing Revitalization Talents Program.

REFERENCES

(1) Toth, B.; Hohmann, J.; Vasas, A. J. Nat. Prod. 2018, 81, 661–678.

(2) He, X. R.; Wang, X. X.; Fang, J. C.; Zhao, Z. F.; Huang, L. H.; Guo, H.; Zheng, X. H. J. Ethnopharmacol. **2017**, 195, 20–38.

(3) State Administration of Traditional Chinese Medicine; "Zhong Hua BenCao" Editorial Committee. *Zhong Hua Ben Cao*; Shanghai Science and Technology Press, 1999; Vol. 8, pp 674–679.

(4) Hou, Y.; Li, G. X.; Wang, J.; Pan, Y. N.; Jiao, K.; Du, J.; Chen, R.; Wang, B.; Li, N. Sci. Rep. 2017, 7, 1–17.

(5) Hou, Y.; Li, N.; Xie, G. B.; Wang, J.; Yuan, Q.; Jia, C. C.; Liu, X.; Li, G. X.; Tang, Y. Z.; Wang, B. *J. Funct. Foods* **2015**, *19*, 676–687.

(6) Liu, X. Q.; Yuan, Q. Y.; Guo, Y. Q. J. Asian Nat. Prod. Res. 2009, 11, 116–121.

(7) Yamaki, M.; Bai, L.; Inoue, K.; Takagi, S. *Phytochemistry* **1990**, *29*, 2285–2287.

(8) Yao, S.; Tang, C. P.; Ye, Y.; Kurtan, T.; Kiss-Szikszai, A.; Antus, S.; Pescitelli, G.; Salvadori, P.; Krohn, K. *Tetrahedron: Asymmetry* **2008**, *19*, 2007–2014.

(9) Yamaki, M.; Li, B.; Kato, T.; Inoue, K.; Takagi, S. *Phytochemistry* **1993**, 32, 427–430.

(10) Dong, H. L.; Wang, C. L.; Li, Y.; Guo, S. X.; Yang, J. S. Magn. Reson. Chem. 2010, 48, 256–260.

(11) Wang, Y.; Guan, S. H.; Meng, Y. H.; Zhang, Y. B.; Cheng, C. R.; Shi, Y. Y.; Feng, R. H.; Zeng, F.; Wu, J. X.; Zhang, J. X.; Yang, M.; Liu, X.; Li, Q.; Chen, X. H.; Bi, K. S.; Guo, D. A. *Phytochemistry* **2013**, *94*, 268–276.

(12) Auberon, F.; Olatunji, O. J.; Krisa, S.; Antheaume, C.; Herbette,
G.; Bonte, F.; Merillon, J. M.; Lobstein, A. *Molecules* 2016, *21*, 1–9.
(13) Yang, M. H.; Cai, L.; Li, M. H.; Zeng, X. H.; Yang, Y. B.; Ding, Z.

T. Chin. Chem. Lett. 2010, 21, 325-328.

- (14) Wu, Y. P.; Liu, W. J.; Zhong, W. J.; Chen, Y. J.; Chen, D. N.; He, F.; Jiang, L. Nat. Prod. Res. **2017**, *31*, 1518–1522.
 - (15) Zhang, Y. Y.; Song, X. Q.; Mei, W. L.; Zuo, W. J.; Cai, C. H.; Cheng, J.; Dai, H. F. J. Trop. Subtrop. Bot. **2015**, 23, 317–322.
 - (16) Leong, Y. W.; Kang, C. C.; Harrison, L. J.; Powell, A. D. Phytochemistry **1997**, 44, 157–165.
 - (17) Dong, H. L.; Liang, H. Q.; Wang, C. L.; Guo, S. X.; Yang, J. S. *Magn. Reson. Chem.* **2013**, *51*, 371–377.
 - (18) Yang, M. H.; Zhao, H. R.; Guo, J.; Yan, H. G.; Fu, X. M.; Cai, L. J. Yunnan Univ. **2015**, 37, 556–563.
 - (19) Zhang, F.; Zhao, M. B.; Li, J.; Tu, P. F. Chin. Tradit. Herb. Drugs 2013, 44, 1529–1533.
 - (20) Tuchinda, P.; Udchachon, J.; Khumtaveeporn, K.; Taylor, W. C. *Phytochemistry* **1989**, 28, 2463–2466.
 - (21) Lin, Y. L.; Chen, W. P.; Macabalang, A. D. Chem. Pharm. Bull. **2005**, 53, 1111–1113.
 - (22) Yamaki, M.; Kato, T.; Bai, L.; Inoue, K.; Takagi, S. *Phytochemistry* **1993**, 34, 535–537.
 - (23) Leong, Y. W.; Harrison, L. J.; Powell, A. D. Phytochemistry 1999, 50, 1237–1241.
 - (24) Han, G. X.; Wang, L. X.; Zhang, W. D.; Yang, Z.; Li, T. Z.; Jiang, T.; Liu, W. Y. J. Second Mil. Med. Univ. 2002, 23, 443–445.
 - (25) Xiao, S. J.; Yuan, F. M.; Zhang, M. S.; Yu, S. Y.; Li, J. D.; Yi, X. D.; Xu, D. L. J. Asian Nat. Prod. Res. 2017, 19, 140-144.
 - (26) Lin, C. W.; Hwang, T. L.; Chen, F. A.; Huang, C. H.; Hung, H. Y.; Wu, T. S. J. Nat. Prod. **2016**, 79, 1911–1921.
 - (27) Wang, C. J.; Wang, L. B. J. Med. Chem. 2013, 23, 235-242.
 - (28) Chaturvedula, V. S. P.; Yu, O.; Mao, G. H. Eur. Chem. Bull. 2014, 3, 104–107.