



Tetrahedron Letters 44 (2003) 4311-4314

TETRAHEDRON LETTERS

## Palladium-catalyzed cross-coupling reaction of allyl acetates with pinacol aryl- and vinylboronates

Giorgio Ortar\*

Dipartimento di Studi Farmaceutici e Istituto di Chimica Biomolecolare del C.N.R., Sezione di Roma, Università 'La Sapienza', 00185 Roma, Italy

Received 1 April 2003; accepted 16 April 2003

Abstract—Pinacol boronates 2 couple efficiently with allyl acetates 1 in the presence of a palladium catalyst prepared in situ from  $PdCl_2$  and TFP to give the coupled products 3 in moderate to good yields under mild conditions. © 2003 Elsevier Science Ltd. All rights reserved.

Aryl- and vinylboronic acid pinacol esters, which are most conveniently prepared by direct borylation of aryl and vinyl halides or triflates,<sup>1</sup> represent an useful alternative to the corresponding boronic acids in the Suzuki-Miyaura cross-coupling reaction.<sup>2</sup> Their use may be particularly advantageous when the isolation of free boronic acids requires additional protection-deprotection steps or in the presence of functionalities incompatible with the traditional route to boronic acids from Grignard or lithium reagents and trialkyl borates. Compared to the impressive development of the Suzuki-Miyaura coupling, only scanty attention has been paid in the past to the use of organoboron reagents in palladium-catalyzed allylic substitutions<sup>3</sup> and, to the best of my knowledge, there are so far no reports on the utilization of pinacol boronates in such reactions.<sup>4</sup> Recently, Balme et al. have developed a novel catalytic system [PdCl<sub>2</sub>(TFP)<sub>2</sub>] working guite effectively in cross-coupling reactions of allyl acetates with a variety of arylboronic acids in conjunction with a fluoride source.<sup>5</sup> Encouraged by this result, I have examined the effectiveness of pinacol boronates in palladium-catalyzed allylation reactions and I report herein that pinacol aryl- and vinylboronates (2) are indeed good substrates for the coupling reaction with allyl acetates (1) (Scheme 1).

Some reaction conditions were briefly explored, using cinnamyl acetate (1a) and 1-naphthylboronate (2a) as



Scheme 1.

model substrates. The results are summarized in Table 1.

Table 1. Reaction of 1a with 2a under various conditions<sup>a</sup>

| Entry | Catalyst                             | Base                            | $Solvent/T \ (^{o}C)$ | Yield (%) <sup>b</sup> |
|-------|--------------------------------------|---------------------------------|-----------------------|------------------------|
| 1     | $Pd(PPh_3)_4$                        | K <sub>3</sub> PO <sub>4</sub>  | THF/60                | 46                     |
| 2     | $Pd(PPh_3)_4$                        | Cs <sub>2</sub> CO <sub>3</sub> | THF/60                | 43                     |
| 3     | $Pd(PPh_3)_4$                        | CsF                             | THF/60                | 54                     |
| 4     | Pd <sub>2</sub> dba <sub>3</sub>     | CsF                             | THF/60                | 9                      |
| 5     | $Pd(PPh_3)_4$                        | CsF                             | DMF/60                | 69                     |
| 6     | $Pd(PPh_3)_4$                        | _                               | THF/60                | 13                     |
| 7     | $Pd(PPh_3)_4$                        | _                               | DMF/60                | 15                     |
| 8     | PdCl <sub>2</sub> /2TFP <sup>c</sup> | KF                              | MeOH/rt               | 82                     |
| 9     | $PdCl_2/2TFP^c$                      | _                               | MeOH/rt               | Traces                 |
| 10    | PdCl <sub>2</sub> /2PPh <sub>3</sub> | KF                              | MeOH/rt               | 45                     |
| 11    | PdCl <sub>2</sub> /dppf <sup>d</sup> | KF                              | MeOH/rt               | Traces                 |

<sup>a</sup> All reactions were carried out with 1 mol% of the catalyst, 1.3 equiv. of **2a** and 1.3 equiv. of CsF or 2.6 equiv. of K<sub>3</sub>PO<sub>4</sub>, Cs<sub>2</sub>CO<sub>3</sub> and KF for 4 h (entries 1–7) or 24 h (entries 8–11).

<sup>b</sup> Isolated yields.

<sup>c</sup> TFP refers to tri-2-furylphosphine.

<sup>d</sup> dppf refers to 1,1'-bis(diphenylphosphino)ferrocene.

0040-4039/03/\$ - see front matter 0 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0040-4039(03)00980-8

*Keywords*: allylation; boron and compounds; coupling reactions; Pd catalyst.

<sup>\*</sup> Tel.: +39649913612; fax: +396491491; e-mail: giorgio.ortar@ uniroma1.it

Table 2. Palladium-catalyzed cross-coupling of allyl acetates 1 with pinacol boronates  $2^{\rm a}$ 

| Entry | Allyl acetate 1 | Pinacol boronate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e <b>2</b> <sup>b</sup> | Product 3          |                 | Yield (%) <sup>c</sup> |
|-------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|-----------------|------------------------|
| 1     | OAc             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2a                      |                    | 3a              | 82                     |
| 2     | la              | A contraction of the second se | 2b                      | Me                 | 3b              | 91                     |
| 3     | la              | , B C CO <sub>2</sub> Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2c                      | CO <sub>2</sub> Me | 3c              | 84                     |
| 4     | 1a              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2d                      | NHCOMe             | 3d              | 83                     |
| 5     | 1a              | Xo, B<br>C, B<br>C, OMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2e                      | C C OMe            | 3e              | 65                     |
| 6     | 1a              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2f                      | BocHN CO2Me        | 3f              | 82 <sup>d,e</sup>      |
| 7     | 1a              | X <sub>o</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2g                      |                    | 3g              | 62                     |
| 8     | 1a              | Aco + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>2h                 | Aco                | 3h              | 64 <sup>d,e,f</sup>    |
| 9     | // OAc          | 1b 2d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | NHCOMe             | 3i              | 88                     |
| 10    | OAc             | 1c 2d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | NHCOMe             | 3ј              | 63 <sup>dg</sup>       |
| 11    | OAc             | 1d 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | Land South         | 3k <sup>h</sup> | 61 <sup>d</sup>        |
| 12    | OAc             | 1e 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                    | 3k <sup>i</sup> | 58 <sup>d</sup>        |

<sup>a</sup>All reactions were carried out in the same manner as described in the text, unless otherwise noted. <sup>b</sup>Pinacol boronates **2a-f** and **2g,h** were prepared according to refs. 1b and 1c, respectively. <sup>c</sup>Yields of isolated material. <sup>d</sup> 3 mol% of PdCl<sub>2</sub>/2TFP were used. <sup>e</sup>1 equiv. of boronate was used. <sup>f</sup>THF was used to dissolve **2h**. The reaction was carried at 45 °C. <sup>g</sup>Reaction time 48 h. <sup>h</sup>E/Z mixture = 83/17. <sup>i</sup>E/Z mixture = 25/75.

The use of a fluoride salt, as already adopted by Balme, to promote transmetalation<sup>6</sup> ensuring essentially non basic conditions and thus avoiding some typical problems encountered in Suzuki–Miyaura couplings, was found superior to that of other inorganic bases. The best yields of **3a** were obtained under the optimized conditions developed by Balme for arylboronic acids (entry 8).

The protocol was successfully extended to a variety of allyl acetates and of pinacol aryl- and vinylboronates (Table 2). In a typical procedure (entry 1), a stirred solution of cinnamyl acetate (1a, 176 mg, 1 mmol), PdCl<sub>2</sub> (1.8 mg, 0.01 mmol), TFP (4.6 mg, 0.02 mmol) in MeOH (3 mL) was flushed with  $N_2$  for 10 min at room temperature. Then, KF (151 mg, 2.6 mmol) and a solution of 1-naphthylboronate (2a, 330 mg, 1.3 mmol) in MeOH (2 mL) were added and the mixture was stirred 24 h at room temperature under N<sub>2</sub>. The reaction mixture was then diluted with brine and extracted with ether. The organic phase was washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and evaporated. Chromatography of the residue (289 mg) on silica gel (9 g) using hexane as eluent afforded 199 mg (82%) of (E)-3-(1-naphthyl)-1phenyl-1-propene (3a).

The coupling reactions proceeded generally within 24 h at room temperature and were compatible with both electron-withdrawing and -donating groups. Sterically hindered substrates (2b,h) were also tolerated. Products **3** arose from exclusive attack at the less substituted allyl terminus. No evidence was found in entries 9-12 that the reaction products had suffered some isomerization of the allylic double bond into conjugation with the aromatic moiety. In the case of geranyl (1d) and neryl (1e) acetates, a limited erosion of the stereochemical integrity of the double bond occurred (entries 11, 12). This result, which has precedents in the palladium-catalyzed cross-coupling reactions of allyl substrates with tetraphenylborate anion<sup>3e</sup> and organotin nucleophiles,<sup>8</sup> seems to indicate that the transmetalation step of the  $\pi$ -allylpalladium intermediates with the boronate proceeds with a rate comparable to that of the syn/anti-isomerization reaction.

## References

- (a) Ishiyama, T.; Ishida, K.; Miyaura, N. *Tetrahedron* 2001, 57, 9813–9816; (b) Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. J. Org. Chem. 2000, 65, 164–168; (c) Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. Synthesis 2000, 778–780; (d) Takahashi, K.; Takagi, J.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 126–127; (e) Murata, M.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62, 6458–6459; (f) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508–7510.
- (a) Gravett, E. C.; Hilton, P. J.; Jones, K.; Péron, J.-M. Synlett 2003, 253–255; (b) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633–9695 and references cited therein; (c) Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Am. Chem. Soc. 2002, 124,

8001–8006; (d) Firooznia, F.; Gude, C.; Chan, K.; Marcopulos, N.; Satoh, Y. *Tetrahedron Lett.* **1999**, *40*, 213–216 and references cited therein; (e) Giroux, A.; Han, Y.; Prasit, P. *Tetrahedron Lett.* **1997**, *38*, 3841–3844; (f) Ishiyama, T.; Itoh, Y.; Kitano, T.; Miyaura, N. *Tetrahedron Lett.* **1997**, *38*, 3447–3450.

- (a) Cortés, J.; Moreno-Mañas, M.; Pleixats, R. Eur. J. Org. Chem. 2000, 239–243; (b) Uozumi, Y.; Danjo, H.; Hayashi, T. J. Org. Chem. 1999, 64, 3384–3388; (c) Moreno-Mañas, M.; Pajuelo, F.; Pleixats, R. J. Org. Chem. 1995, 60, 2396–2397; (d) Miyaura, N.; Yamada, K.; Suginame, H.; Suzuki, A. J. Am. Chem. Soc. 1985, 107, 972–980; (e) Legros, J.-Y.; Fiaud, J.-C. Tetrahedron Lett. 1990, 31, 7453–7456.
- 4. A nickel-catalyzed coupling of a 1,3-disubstituted allyl carbonate with a borate prepared in situ from pinacol phenylboronate and MeLi has been described: Kobayashi, Y.; Mizojiri, R.; Ikeda, E. *J. Org. Chem.* **1996**, *61*, 5391–5399.
- 5. Bouyssi, D.; Gerusz, V.; Balme, G. Eur. J. Org. Chem. 2002, 2445–2448.
- 6. It is generally assumed that organoboron reagents add to  $\pi$ -allylpalladium complexes via attack at the metal.<sup>3b,d</sup> See also: Chung, K.-G.; Uemura, M.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 15–18.
- 7. Characterization data of coupling products 3. 3a: mp 74-75°C (lit.<sup>9</sup> mp 74-75°C); IR 3077, 3009, 1597, 1497, 1448, 1396, 1214, 966 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  3.98 (2H, d, J = 4.8 Hz), 6.41–6.53 (2H, m), 7.15–8.04 (12H, m); <sup>13</sup>C NMR  $\delta$  36.35, 123.78, 125.34, 125.41, 125.70, 125.87, 126.15, 126.85, 128.23, 128.47, 128.63, 131.08, 131.80, 133.65, 135.99, 137.22. 3b: oil; IR 3064, 2927, 1600, 1494, 1448, 967 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  2.31 (3H, s), 3.50 (2H, d, J = 4.8 Hz), 6.26–6.39 (2H, m), 7.12–7.33 (9H, m); <sup>13</sup>C NMR & 19.37, 36.77, 125.81, 126.15, 126.77, 128.21, 128.27, 128.95, 129.95, 130.63, 136.11, 137.25, 137.94. 3c: mp 36-37°C; IR 3022, 2949, 1715, 1607, 1438, 1413, 1281, 1113, 964 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  3.55 (2H, d, J=6.6 Hz), 3.87 (3H, s), 6.28 (1H, td, J=15.6, 6.6 Hz), 6.42 (1H, d, J=15.6 Hz), 7.15–7.33 (7H, m), 7.95 (2H, d, J=8.4 Hz); <sup>13</sup>C NMR  $\delta$  39.17, 51.86, 125.92, 127.07, 127.76, 127.97, 128.30, 128.43, 129.59, 131.57, 136.93, 145.33, 166.71. 3d: mp 130-131°C; IR 3288, 3026, 1656, 1598, 1496, 1409, 1369, 1316, 1266, 1022, 966 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  2.10 (3H, s), 3.46 (2H, d, J=6.3 Hz), 6.28 (1H, td, J=15.9, 6.3 Hz), 6.40 (1H, d, J=15.9 Hz), 7.13 (2H, d, J=8.5 Hz), 7.16-7.34 (5H, m), 7.42 (2H, d, J=8.5 Hz), 8.02 (1H, br s); <sup>13</sup>C NMR & 24.29, 38.60, 120.15, 125.86, 126.86, 128.25, 128.82, 128.90, 130.75, 135.82, 135.95, 137.15, 168.50. 3e: mp 33-34°C (lit.3c oil); IR 2929, 2833, 1607, 1510, 1298, 1243, 1178, 1032, 965 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  3.46 (2H, d, J = 6.3 Hz), 3.75 (3H, s), 6.29 (1H, td, J = 15.9, 6.3 Hz), 6.39 (1H, d, J=15.9 Hz), 6.82 (2H, d, J=8.7 Hz), 7.09-7.33 (7H, m); <sup>13</sup>C NMR  $\delta$  38.37, 55.13, 113.70, 125.86, 126.79, 128.24, 129.35, 129.42, 130.49, 131.91, 137.28, 157.79. 3f: oil; IR 3438, 3010, 2982, 1742, 1709, 1498, 1367, 1166, 966 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  1.41 (9H, s), 3.02 (1H, dd, J=14.0, 6.1 Hz), 3.09 (1H, dd, J=14.0, 5.7 Hz), 3.51 (2H, d, J = 6.6 Hz), 3.71 (3H, s), 4.57 (1H, m), 4.99 (1H, d)J=8.1 Hz), 6.32 (1H, td, J=15.6, 6.6 Hz), 6.43 (1H, d, J=15.6 Hz), 7.05 (2H, d, J=7.8 Hz), 7.16 (2H, d, J=7.8 Hz), 7.19–7.37 (5H, m); <sup>13</sup>C NMR  $\delta$  28.25, 37.87, 38.88, 52.08, 54.35, 79.76, 125.89, 126.89, 128.26, 128.60, 128.84,

129.19, 130.90, 133.56, 137.18, 138.66, 154.81, 172.05. 3g: oil; IR 2918, 2836, 1600, 1493, 1452, 1435, 967 cm<sup>-1</sup>; <sup>1</sup>H NMR δ 1.70–2.33 (6H, m), 2.70–2.80 (1H, m), 2.88 (2H, d, J=6.9 Hz), 5.58 (1H, m), 6.23 (1H, td, J=15.6, 6.9 Hz), 6.41 6.41 (1H, d, J=15.6 Hz), 7.15–7.37 (10H, m);  $^{13}\mathrm{C}$  NMR  $\delta$  29.63, 30.51, 34.06, 40.58, 41.57, 122.09, 126.22, 126.30, 127.13, 127.21, 128.59, 128.73, 128.86, 131.36, 136.67, 137.90, 147.35. 3h: mp 106-109°C; IR 3033, 2939, 2848, 1730, 1451, 1372, 1250, 1031, 962 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.83 (3H, s), 0.97–2.10 (15H, m), 1.06 (3H, s), 2.03 (3H, s), 2.33 (2H, d, J=7.2 Hz), 2.89 (2H, d, J=5.7 Hz), 4.61 (1H, m), 5.38 (2H, m), 6.26 (1H, td, J=15.9, 6.9 Hz), 6.42 (1H, d, J = 15.9 Hz), 7.16–7.37 (5H, m); <sup>13</sup>C NMR  $\delta$  15.74, 19.21, 20.71, 21.37, 27.74, 30.46, 31.13, 31.55, 34.53, 36.79, 36.90, 38.11, 46.43, 50.57, 57.05, 73.80, 122.27, 123.01, 125.78, 126.67, 128.24, 130.67, 137.54, 139.71, 143.52, 153.75, 170.17. 3i: mp 85-88°C (lit.<sup>10</sup> mp 89–92°C); IR 3290, 1663, 1601, 1556, 1511, 1407, 1370, 1321, 1264, 993, 916 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  2.12 (3H, s), 3.32 (2H, d, J=6.6 Hz), 5.02–5.08 (2H, m), 5.85–5.99 (1H, m), 7.09 (2H, d, J=8.4 Hz), 7.42 (2H, d, J=8.4 Hz), 8.09 (1H, br s); <sup>13</sup>C NMR δ 24.29, 39.52, 115.53, 120.12, 128.74, 135.76, 135.86, 137.13, 168.56. **3j**; mp 123–125°C; IR 3436, 3009, 2933, 2859, 1686, 1594, 1515, 1411, 1367, 1311, 1246, 1143 cm<sup>-1</sup>; <sup>1</sup>H NMR δ 1.45–2.08 (6H, m), 2.12 (3H, s), 3.35 (1H, m), 5.66 (1H, dd, J=10.0, 2.0 Hz), 5.87 (1H, m), 7.13 (2H, d, J=8.7 Hz), 7.41 (2H, d, J=8.7 Hz); <sup>13</sup>C NMR δ 21.02, 24.81, 24.94, 32.50, 41.18, 120.09, 127.89, 128.15, 129.83, 135.65, 142.48, 168.49. **3k**: oil; IR 3048, 2969, 2916, 1597, 1509, 1449, 1396, 1377, 1214, 1108 cm<sup>-1</sup>; <sup>1</sup>H NMR δ 1.58 (3H, s, *E*-isomer), 1.62 (3H, s, *Z*-isomer), 1.65 (3H, s, *E*-isomer), 1.69 (3H, s, *Z*-isomer), 1.75 (3H, s, *Z*-isomer), 1.78 (3H, s, *E*-isomer), 2.04–2.26 (4H, m), 3.77 (2H, d, *J*=6.6 Hz), 5.08 (1H, m, *E*-isomer), 5.17 (1H, m, *Z*-isomer), 5.39 (1H, t, *J*=6.9 Hz), 7.29–8.01 (7H, m).

- Castaño, A. M.; Echavarren, M. Tetrahedron Lett. 1996, 37, 6587–6590.
- Ross, D. R.; Waight, E. S. J. Chem. Soc. 1965, 6710– 6717.
- Yokoyama, Y.; Ito, S.; Takahashi, Y.; Murakami, Y. *Tetrahedron Lett.* 1985, 26, 6457–6460.