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Summary of main observation and conclusion An efficient Pd-catalyzed method for C‒O cross-coupling of ketoximes and chalcone oximes with activated 
aryl bromides and bromo-chalcones has been developed. All oxime ethers were obtained in good to excellent yields by [(π-allyl)PdCl]2/tBuXPhos (L7) 
catalyst system. TrixiePhos (L11) was also found to be effective for the oxime coupling. This method offers an easy and smooth coupling of chalcone 
oximes with activated aryl bromides and bromo-chalcones which has not been previously explored . 
 

Background and Originality Content 
Oxime ethers are one of the most important structural motifs 

in organic chemistry which continue to beguile the chemists’ 
interest thanks to their pharmaceutical and agricultural 
applications.[1] Examples concerning the biological importance of 
oxime ethers (Figure 1) are as potent inhibitors of transthyretin 
amyloid fibril formation,[1a] antibiotic (Cefmenoxime,[1b] 
Aztreonam,[1c] Roxithromycin),[1d] anti-inflammatory (Ridogrel),[1e] 
antifungal (Oxiconazole),[1f] neuroleptic activity,[1g] 
immunosuppressive agents,[1h] antihistamine (1a),[1i] therapeutic 
agent for insomnia (Eplivanserin) (1b),[1j,k] melanin-concentrating 
hormone1 receptor antagonists (1c),[1l] antiplasmodial 
property,[1m] monamine oxidase and Acethylcholinesterase 
inhibitors (1d),[1n] insecticidal,[1o] fungicidal,[1p,q] herbicidal,[1r] etc. 
Moreover, oxime ethers are served as important and versatile 
intermediates in the synthesis of various structural motifs.[2] The 
O-aryl oxime ethers have been paid  much interest due to their 
accessibility to myriad of medicinally and synthetically important 
organic compounds[2] such as benzoxazole,[3a-c] 
dihydrobenzofuran,[3d,e] benzofurans,[3e-h,m] phenols,[3i] 
quinolines,[3j] 3-Aminobenzisoxazoles,[3k] pyrroles,[3l] etc.  

Figure 1 Examples of pharmaceutical molecules containing oxime 
ethers structural motif 

 
Moreover,  O-aryl oxime ethers could also be used as a ligand 

in Pd-catalyzed Suzuki-Miyaura coupling reaction to synthesize 
biaryls.[4] Conventionally, the synthesis of O-aryl oxime ethers 
were achieved by i) condensation of O-aryloxyamines with 
carbonyl compounds,[1a,3e,f,5] and ii) O-arylation of oximes with 
activated nitro- or fluoroarene derivatives in the presence of a 
strong base via SNAr type process.[1a,3e,5a,6]   

The O-aryloxyamines could be obtained from an amine 
exchange reaction of 2,4-dinitrophenoxyamine with phenols[3f,7] 
and O-arylation of ethyl acetohyroxamate,[1a,5d,8] or N-protected 
hydroxylamine[9] by SNAr type process, and subsequent hydrolysis 
with acid (Scheme 1). 

Scheme 1 Previous synthetic routes to oxime ethers 

Other methods describing the synthesis of alkoxy and 
aryloxyamines are the oxyaziridines as aminating agent for a wide 
range of alcohols as nucleophile.[10]   
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In the recent past, several other improved methods for the 
synthesis of O-aryloxyamines developed are i) copper-catalyzed 
coupling of phenylboronic acids with N-hydroxyphthalimide,[11] ii) 
base promoted O-arylation of N-hydroxyphthalimide and 
N-hydroxysuccinimide with diaryliodonium salts[12] and 
subsequent  cleavage with hydrazine, hydroxylamine or 
ammonia, and iii) O-arylation of ethyl acetohydroxamate or 
oximes either with aryl  coupling partner under Pd-catalyzed C‒O 
coupling methodology[1m,3m] or with diaryl iodonium salts under 
basic condition (Scheme 1).[3f] However, the synthesis of O-aryl 
oxime ethers by direct coupling of aryl halides with ketoxime was 
not well explored and is highly inviting and  only one method 
available was reported by Maitra et al. .[13a] This method described 
the copper-catalyzed coupling of aryl iodides with oximes in 
moderate to good yields but the functional group tolerance of aryl 
iodides, and aryl bromides has not been fully explored and also 
required to carry out at reflux temperature of toluene. After the 
pioneering work of Maitra et al., several other groups reported 
the methods for the direct coupling of oximes with phenyl boronic 
acids, under different conditions using copper catalyst,[13b-f] and 
diaryliodonium salts under basic conditions (Scheme 1).[3f,g,14] 
Therefore, the synthesis of O-aryl oxime ethers reported so far, 
despite their generality, requires multistep synthesis that includes 
the synthesis of starting materials such as arylboronic acids or 
diaryliodonium salts, which are usually obtained from aryl halides 
and commercially these starting materials are relatively expensive 
when compared with corresponding aryl halides.  
 Although general and efficient Pd-catalyzed methods for the 
direct coupling of aryl halides with ethyl acetohydroximate were 
reported,[1m,3m] no Cu or Pd-catalyzed direct coupling of aryl 
bromides with ketoximes is available to date. Moreover, the 
reaction of chalcone oximes with i) arylboronic acids, under 
copper catalyzed conditions,[15a,b] and ii) diaryliodonium salts  
under basic conditions led to N-arylation products  
predominantly over O-arylation products (Scheme 2). [15c] 
 
Scheme 2 Reactions of chalcone oximes with arylboronic acids 
and diaryliodonium salts 

In the latter method, D. L. Mo et al. observed a mixture of O- (55%) 
and N-arylation (34%) of chalcone oxime and decided to switch the 
selectivity from O- to N-arylation process.[15c] Therefore, the 
O-arylation of chalcone oxime is not fully explored at all and no 
methods are available for this coupling to date.  
Herein, in the light of the above, we report an efficient Pd-catalyzed 
method for O-arylation of ketoximes and chalcone oximes with aryl 
bromides and bromo-chalcones.[15d]  

 
 
 
 
 
 
 
 

Results and Discussion 
Finding practicable supporting phosphine ligands for 

Pd-catalyzed O-arylation of acetophenone oxime with 
4-bromoacetophenone was starting point of our investigation. 
The commercially available Buchwald and Beller type ligands 
shown in Figure 2 were employed for this O-arylation process. 

 
 
Figure 2 Structure of ligands used for Pd-catalyzed O-arylation of 
acetophenoneoxime. 
 

The ligand screening reaction was carried out under 
conditions, [(π-allyl)PdCl]2 (1.0 mol %), ligands, L1–L20 (2.5 mol %), 
in toluene (2.0 mL), at 60 oC and is summarized in table 1. The 
only ligand tBuXPhos (L7) gave the O-arylation product 1 in 72% 
yields with complete conversion in short reaction time (Entry 7). 
The ligand TrixiePhos (L11) gave the desired product in poor yield 
(Entry 11, 53%) with 65% conversion even after 17 h. The ligands 
cataCXium®PIntB (L16), and cataCXium®PtB (L20), produced 
promising results in our previous report for the coupling of 
bromo-chalcones with ethyl acetohydroxamate,[1m] were 
unsuccessful in the present coupling reaction. It is important to 
note that other promising ligands such as BrettPhos (L9),[16a,b] 
RockPhos (L12),[16f] tBuBrettPhos (L13)[16g] in the C‒O 
cross-coupling reactions were also unsuccessful to couple 
4-bromoacetophenone with acetophenones oxime. This due to 
the fact that the property of the ligands and their complexes 
directs different mechanistic reductive elimination pathway  
from nucleophile to nucleophile. Some ligands do not facilitate 
the reductive-elimination step and hence no reaction.[16a,h] 
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aReaction Conditions: Aryl halides (0.5 mmol, 1.0 eq.), ketoxime  (0.525 mmol, 1.05 eq.), Cs2CO3 (1.5 mmol, 1.5 
eq.), [(π-allyl)PdCl]2 (1.0 mol %), tBuXPhos (L7) (2.5 mol %), toluene (2.0 mL), temperature 90 oC, Ar atm. 
bIsolated yield. c[(π-allyl)PdCl]2 (2.0 mol %), tBuXPhos (L7) (5.0 mol %); d[Pd2(dba)3] (1.0 mol %), tBuXPhos (L7) 
(2.5 mol %). 

 
 
 
 
 
 
 
 
Table1. Ligand Evaluationa 

With this practicable ligand L7, we further optimized the reaction 
conditions such as temperature, Pd source, base, and solvent 
(Table 2). Initially, the efficiency of the ligand, L7 was checked at a 
bit higher temperature, 90 oC. Surprisingly, the ligands, L7, 
afforded the desired product 1 in excellent yield, 96% (Table 2; 
Entry 1). With this interesting result, we further engaged in 
carrying out the coupling reaction using other two ligands L11, 
and L16 with moderate results (Table 1) to check the effect of 
temperature. To our surprise, the ligand TrixiePhos (L11) was also 
successful towards the coupling with a significant improvement in 
the yield of the product 1, 83% (Table 2; Entry 2), whereas the 
ligand L16 did not afford a significant improvement in the yield of 
the product 1 (Table 2; Entry 3).  The reduction of catalyst 
[(π-allyl)PdCl]2 loading from 1.0 to 0.5 mol % with L7 (Entry 4) was 
unsuccessful.  
 
Table 2 Optimization of reaction conditionsa 
 
 

 

Entry Pd Source 
(1.0 mol %) Ligand Base 

(1.5 eq.) 
Reaction 
Time (h) 

Conv. 
(%)b 

Y  
(%  

1 [(π-allyl)PdCl]2 L7 Cs2CO3 2 h 100  
2 [(π-allyl)PdCl]2 L11 Cs2CO3 23 100 8  
3 [(π-allyl)PdCl]2 L16 Cs2CO3 23 66  
4 [(π-allyl)PdCl]2 L7 Cs2CO3 23 62 2  
5 Pd(PPh3)4 L7 Cs2CO3 22 h ND N  
6 Pd(OAc)2 L7 Cs2CO3 23 h ND N  
7 [Pd2(dba)3] L7 Cs2CO3 4 h 100  
8 [(π-cinnamylPdCl)2] L7 Cs2CO3 22 h ND N  
9 [(π-allyl)PdCl]2 L7 K3PO4 23 h 84  

10 [(π-allyl)PdCl]2 L7 K2CO3 23 h 71  
11 [(π-allyl)PdCl]2 L7 KOH 22 h ND N  
12 [(π-allyl)PdCl]2 L7 Cs2CO3 19 h 73 5  
13 [(π-allyl)PdCl]2 L7 Cs2CO3 23 h ND N  

aReaction Conditions: 4′-Bromoacetophenone (0.5 mmol, 1.0 eq.), Acetophenoneoxime (0.6  
1.2 eq.), Cs2CO3 (0.75 mmol, 1.5 eq.), Pd source (1.0 mol %), Ligands (2.5 mol %), tolue   
mL), temperature 90 oC, Ar atm. bBased on starting material recoverd. cIsolated yields. dR  
time not optimized. e[(π-allyl)PdCl]2 (0.5 mol %), Ligand, L7 (1.25 mol %). f1,4-Dioxane (2   
gTHF (2.0 mL). ND = Not Determined; NR = No Reaction. 

  
 
 
 
 
 
 
 
 
 

 
 
 

Other Pd catalysts with the ligand L7 were also checked towards 
the coupling (Entries 5-8), showed that the only catalyst 
[Pd2(dba)3] as effective as [(π-allyl)PdCl]2 catalyst in the coupling 
reaction and afforded the desired product in excellent yield 92% 
(Entry 7). Further feasibility studies with various bases (Entries 
9-11), and solvents (Entries 12, and 13) were also unsuccessful. As 
a result, the ligand (L11) and the catalyst [Pd2(dba)3] were also 
found to be effective towards the O-arylation of acetophenone 
oxime.  
With those optimized reaction conditions in hand, we were 
pleased to examine the generality of the coupling of aryl 
bromides with structurally diversified ketoximes (Table 3). First, 
we continued O-arylation of acetophenone oxime with different 
electronic nature of aryl bormides. Aryl bromides with 
electron-withdrawing group at 4-position gave the desired 
products 1-5 in good to excellent yields under optimized 
conditions with 1 mol % Pd catalyst. However, the catalyst system 
was failed to give the coupled products, 6 – 8 by coupling  of 
acetophenone oxime with aryl bromides, such as 2′- and 
3′-bromoacetophenones, and 4-bromoanisole even in higher 
catalyst loading and at 90 oC, which reveals that the catalyst 
system allows the C‒O reductive elimination step via electronic 
pathway.[16a-e] We then continued the O-arylation of various 
ketoximes with activated aryl bromides. The C‒O coupling of 
4-bromobenzophenone with benzophenone oxime under 
optimized conditions was incomplete (40% conv.) with 1 mol % Pd 
catalyst while the same was successful at 2.0 mol % catalyst 
loading reveals that the higher catalyst loading is required for 
other ketoximes. All other structurally diversified ketoximes were 
then 

smoothly coupled with activated aryl bromides to afford the 
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Yield 

(%)c Entry Ligand Reaction 
Time (h) 

Conv. 
(%)b 

Yield 

(%)c 
1 L1 17 ND NR 11 L11 17 65 53 
2 L2 17 ND NR 12 L12 17 66 12 
3 L3 17 ND NR 13 L13 17  ND  NR 
4 L4 17 ND NR 14 L14 17 ND NR 
5 L5 17 ND NR 15 L15 17 ND NR 
6 L6 17 ND NR 16 L16 17 60 25 
7 L7 3 100 72 17 L17 17 ND NR 
8 L8 17 ND NR 18 L18 17 64 26 
9 L9 17 ND NR 19 L19 17 ND NR 

10 L10 17 ND NR 20 L20 17 59 14 
aReaction Conditions: 4′-Bromoacetophenone (0.5 mmol, 1.0 eq.), acetophenoneoxime (0.55 mmol, 1.1 
eq.), Cs2CO3 (0.75 mmol, 1.5 eq.), [(π-allyl)PdCl]2 (1.0 mol %), Ligand, L1–L20 (2.5 mol %), toluene 
(2.0 mL), 60 oC, Ar atm.. bBased on starting material recovered. cIsolated yield. ND = Not Determined. 
NR = No Reaction.  
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Entry Pd Source 
(1.0 mol %) Ligand Base 

(1.5 eq.) 
Reaction 
Time (h) 

Conv. 
(%)b 

Yield 
(%)c 

1 [(π-allyl)PdCl]2 L7 Cs2CO3 2 h 100 96 
2 [(π-allyl)PdCl]2 L11 Cs2CO3 23 100 83d 
3 [(π-allyl)PdCl]2 L16 Cs2CO3 23 66 41 
4 [(π-allyl)PdCl]2 L7 Cs2CO3 23 62 26e 
5 Pd(PPh3)4 L7 Cs2CO3 22 h ND NR 
6 Pd(OAc)2 L7 Cs2CO3 23 h ND NR 
7 [Pd2(dba)3] L7 Cs2CO3 4 h 100 92 
8 [(π-cinnamylPdCl)2] L7 Cs2CO3 22 h ND NR 
9 [(π-allyl)PdCl]2 L7 K3PO4 23 h 84 42 

10 [(π-allyl)PdCl]2 L7 K2CO3 23 h 71 47 
11 [(π-allyl)PdCl]2 L7 KOH 22 h ND NR 
12 [(π-allyl)PdCl]2 L7 Cs2CO3 19 h 73 56f 
13 [(π-allyl)PdCl]2 L7 Cs2CO3 23 h ND NRg 

aReaction Conditions: 4′-Bromoacetophenone (0.5 mmol, 1.0 eq.), Acetophenoneoxime (0.6 mmol, 
1.2 eq.), Cs2CO3 (0.75 mmol, 1.5 eq.), Pd source (1.0 mol %), Ligands (2.5 mol %), toluene (2.0 
mL), temperature 90 oC, Ar atm. bBased on starting material recoverd. cIsolated yields. dReaction 
time not optimized. e[(π-allyl)PdCl]2 (0.5 mol %), Ligand, L7 (1.25 mol %). f1,4-Dioxane (2.0 mL); 
gTHF (2.0 mL). ND = Not Determined; NR = No Reaction. 
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desired products (9-20) in good to excellent yields. The catalyst 
system comprised of [Pd2(dba)3]/tBuXPhos (L7) was also checked 
for the coupling of 1-bromo-4-nitrobenzene and 
4-bromobenzophenone with acetophenone oxime  to afford the 
desired products 2 and 5 in 75% and 85% respectively. 
 
Table 3 Pd-catalyzed O-arylation of ketoximes with aryl 
bromides.a,b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Owing to widespread applications of chalcones in 

medicinal,[1j,k,m,17] synthetic,[18] and material chemistries,[19] we 

extend the generality of the catalyst system to bromo-chalcones 

as coupling partner in the C‒O cross-coupling reaction with 

ketoximes. These novel chalcone products may open the door to 

find several therapeutic properties (Scheme 1).[1m,n] The coupling 

of various ketoximes with different bromo-chalcones by 

[(π-allyl)PdCl]2/tBuXPhos (L7) system was required to carry out 

with 3.0 mol % Pd-catalyst loading and a bit lower temperature, 

75 oC (Table 4). The chalcones bearing the bromine substitution 

on the 3-phenyl ring, 

(E)-3-(4-bromophenyl)-1-(substitutedphenyl)prop-2-en-1-ones, 

were coupled smoothly with different ketoximes to afford the 

desired products 21-29 in moderate to excellent yields (60-90%). 

Table 4 Pd-catalyzed C‒O cross-coupling of bromo-chalcones with 
ketoximesa,b 

Similarly, the chalcones bearing the bromine substitution           
on the 1-phenyl ring, 
(E)-1-(4-bromophenyl)-3-(substitutedphenyl)prop-2-en-1-ones, 
were also coupled smoothly with different ketoximes to afford 
the desired coupled products 30-35 in good to excellent yields 
(73-98%). The yield range shows that 
(E)-1-(4-bromophenyl)-3-(substituted-phenyl)prop-2-en-1-ones, 
tolerate well under reaction conditions than 
(E)-3-(4-bromophenyl)-1-(substituted-phenyl)prop-2-en-1-ones. 
Interestingly, many reactions were complete in short reaction 
times. 

Finally, we turned our attention, with eager, to explore the 
coupling of chalcone oximes with activated aryl bromides and 
bromo-chalcones as the chalcone oximes interestingly underwent 
N-arylation rather than O-arylation product under the reported 
conditions. [15] Moreover, no efficient methodology is available for 
O-arylation of chalcone oximes except an example reported by 
Mo and coworkers.[15c] Chalcone oximes were obtained by 
reaction of corresponding chalcones with hydroxylamine 
hydrochloride in the presence of pyridine as base in methanol to 
afford the product with a mixture of isomers E:Z (about 3:0.3). 
The coupling was carried out with 3.0 mol % catalyst loading at 75 
oC (Table 5).  

Table 5 Pd-catalyzed C‒O cross-coupling of chalcones oximesa,b 
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aReaction conditions: Bromo-chalcones (0.5 mmol, 1.0 eq.), ketoximes (0.5 mmol, 1..0 eq.),  Cs2CO3 (1.5 mmol, 1.5 eq.), 
[(π-allyl)PdCl]2 (3.0 mol %), tBuXPhos (L7) (7.5 mol %), toluene (3.0 mL), temperature 75 oC, Ar atm; bIsolated yield. 
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First, (2E)-1-(4-methoxyphenyl)-3-phenyl prop-2-en-1-one oxime 
was coupled with 4-bromoacetophenone; interestingly, the 
reaction was complete in 1.5 h, and gave the expected O-coupled 
product 36 in 86% yield. The O-arylation product was confirmed 
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by 13C NMR with characteristic =N‒O‒C(Ar) carbon signal which 
appeared about 160 p.m., while it would not appear in the 
N-arylation product.[15] The O-arylated product was also obtained 
as a mixture of E:Z isomers (3.3:1) determined from 1H NMR 
spectrum. 13C NMR signals of E- isomers were identified from 
signals of Z-isomers in the mixture by their intensity and DEPT-90, 
and only few 13C NMR signals were seen for Z- isomers due to 
their low concentration in the mixture. Next, 
(2E)-1,3-bis(4-methoxyphenyl)prop-2-en-1-one oxime was also 
smoothly coupled with with 4-bromoacetophenone and methyl 
4-bromobenzoateto afford the desired O-coupled products 37 
and 38 in 94 and 80% yields respectively with same E:Z isomers 
ratio. The catalyst system was also successfully used for the 
coupling of bromo-chalcones with chalcone oximes for the first 
time. The chalcone oxime, 
(2E)-1,3bis-(4-methoxyphenyl)prop-2-en-1-one oxime was 
coupled with (E)-3-(bromophenyl)-1-phenyl prop-2-en-1-one to 
afford the desired product 39 in good yield, 82%. The other 
chalcone oximes were also effectively coupled with various 
bromo-chalcones to afford the products 40, 41, and 42 in 81, 77, 
and 76% yields respectively. The 
(E)-1-(bromophenyl)-3-(substitutedphenyl)prop-2-en-1-ones were 
also coupled to afford the desired products 43, and 44 in 89, and 
86% respectively. All the reactions were complete in short 
reaction times. The aldoximes could also be effectively coupled 
with activated aryl bromides by this catalyst system has recently 
been published.[21]  

Conclusions 
In summary, a Pd-catalyzed methodology for C‒O cross-coupling 
of ketoximes with activated aryl bromides and bromo-chalcones 
is described. Chalcone oximes, for the first time, coupled with 
activated aryl bromides and bromo-chalcones in good yields and 
short reaction times. Only two ligands tBuXPhos (L7) and 
TrixiePhos (L11) were found to be shown the coupling and the 
former was more effective than the latter in the coupling of 
ketoximes with a Bromo coupling partner. The mild reaction 
conditions and substrate tolerance make this method potentially 
helpful for medicinal chemists to access a wide array of novel 
chalcones for the biological screening process to find the novel 
therapeutic agents. Moreover, most of these chalcone oxime 
ethers have selective MAO-B inhibitory effect and two of these 
compounds have a dual-targeting inhibitory effect towards MAOs 
and AChE to treat neurodegenerative related diseases.[15d] 

Experimental 
General Procedure for the Palladium-Catalysed C‒O 
Cross-Coupling Reaction of Aryl bromides and Bromochalcones 
with Ketoximes  

An oven dried 10 mL two-neck round bottomed flask was 
equipped with a magnetic stir bar, a rubber septum, a condenser 
and an argon balloon on the top of the condenser with the aid of 

an adaptor. The flask was charged with Cs2CO3 and dried with hot 
air gun under vacuum. The R.B. flask was allowed to cool under 
argon atmosphere. Bromo coupling partner, ketoximes, Pd-source 
and ligands were added in quick succession. The flask was then 
evacuated and refilled with argon for three times.  To this, 2.0 
mL of anhydrous toluene was added via syringe and again the 
flask evacuated and refilled with argon for three times. The flask 
was placed in a pre-heated oil bath at a temperature 75 oC or 90 
oC. The reaction mixture was stirred vigorously until completion 
of the reaction as indicated by TLC analysis. The reaction mixture 
was allowed to cool to room temperature and the crude product 
was purified by column chromatography on silica gel (60-120 
mesh size) using ethyl acetate-hexane solvent mixture as eluent. 
The solvent removal under reduced pressure afforded the desired 
compounds as a solid. 
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