

Tetrahedron Letters 42 (2001) 6263-6266

TETRAHEDRON LETTERS

P(RNCH₂CH₂)₃N-catalyzed diastereoselective synthesis of oxazolines

Philip Kisanga,^{a,b} Palanichamy Ilankumaran^{a,c} and John G. Verkade^{a,*}

^aDepartment of Chemistry, Iowa State University, Ames, IA 50011, USA ^bAldrich Chemical Company, 940 W. St. Paul Ave., Dept. 271, Milwaukee, WI 53233, USA ^c122B, Cedar Lane, Highland Park, NJ 08904, USA

Received 27 March 2001; revised 10 July 2001; accepted 13 July 2001

Abstract—We report herein that the strong nonionic bases $P(RNCH_2CH_2)_3N(R = Me, 1a; i-Pr, 1b)$ catalyze the diastereoselective synthesis of thirteen oxazolines in the presence of 5–30% of these catalysts. The formation of the oxazolines proceeds under very mild conditions in good to excellent yields with high diastereoselectivity (>95:5) for the *trans* isomer. © 2001 Elsevier Science Ltd. All rights reserved.

Oxazolines are versatile intermediates in the synthesis of β -substituted serines¹ which are of significant importance because of their utility in the synthesis of various antibiotics.² Thus, the serine moiety constitutes the primary core structure of antibiotics, such as hypeptin^{2b} and leucinostatin.³ Ethyl isocyanoacetate, a synthon for the formation of oxazolines, is relatively acidic and can be deprotonated by a variety of bases for coupling with aldehydes to afford oxazolines. However, the lack of diastereoselectivity of such reactions has rendered this synthetic route of limited use. Among catalysts that have been reported to effect the conversion of aldehyde/ether isocyanoacetate mixtures to oxazolines are ZnCl₂,⁴ a ZnCl₂/CuCl system,⁵ NaCN/EtOH,⁶ and $Cu_2O.^7$ The copper(I) oxide-catalyzed process leads to the formation of varying ratios (1.5:1.0-0.4:1.0) of diastereomers⁷ and this catalyst also induces migration of the imine double bond with the resultant formation of two tautomers, giving a complex mixture of products.⁷ Furthermore, the presence of α,β -unsaturation leads to Michael addition, rendering this method of marginally practical utility. Although the NaCN/EtOH system affords oxazoline in high yields,⁶ its inability to induce excellent diastereoselectivity with aldehydes other than phenyl acetaldehyde restricts its use.⁸ The ZnCl₂/CuCl catalyzed process also leads to the formation of diastereomeric mixtures (7:1-1:1, trans:cis).⁵ As a result of these poor selectivities, alternative routes to the β-hydroxy α-amino acids have been developed,⁹ among which are the condensation of glycine with aldehydes on Ni(II) complexes^{9a} and an electrophilic amination reaction.^{9b} Since nickel is highly toxic, this methodology is not attractive in an industrial setting. The electrophilic amination process required 2.5–4.2 equiv. of LDA and also 1.5 equiv. of di-*t*-butylazodicarboxylate.^{9b} Moreover, the diastereoselectivity in this reaction ranges from 94:6–75:25 (*trans:cis*).^{9b} The use of excess LDA as a base has been reported to effect the reaction of ethyl isocyanoacetate with *o*-anisaldehyde to give the corresponding oxazoline in 80% yield at -75° C.^{9c} Enzyme systems¹⁰ have also been investigated for the synthesis of the broad spectrum antibiotic thiamphenicol **1a** and florfenicol **2a**.^{10c}

The proazaphosphatranes **2a** and **2b**¹¹ first synthesized in our laboratories have recently attracted interest as versatile highly basic¹² catalysts and reagents for variety of useful transformations.^{13–24} We therefore decided to explore additional examples of reactions in which stereoselectivity is an issue. Since oxazolines are versatile intermediates for the synthesis of serine derivatives, which in turn could open a route to interesting unnatural amino acids, we decided to investigate the

Keywords: oxazolines; proazaphosphatranes; catalysts; diastereoselectivity; nonionic base.

^{*} Corresponding author. Tel.: (515) 294-5023; fax: (515) 294-0105; e-mail: jverkade@iastate.edu

Scheme 1.

possibility of inducing a diastereoselective reaction between aldehydes and ethyl isocyanoacetate (Scheme 1).

We report here the use of catalytic amounts of the proazaphosphatranes 2 as catalysts in the synthesis of oxazoline alkyl carboxylates with high diastereoselectivity. The reaction of benzaldehyde with ethyl isocyanoacetate in THF in the presence of 20% of 2b at room temperature for 1 h afforded a product mixture that contained the *trans*-oxazoline 3a as the major product according to the ¹H NMR spectroscopy. However, the reaction was not clean and led to the formation of other uncharacterized side products. No significant improvement was observed upon reducing the temperature to -78° C or raising the temperature to 40°C. However, upon changing the solvent to isobuty-ronitrile, the desired oxazoline ethyl carboxylate 3a was

Table 1. Reaction of aldehydes with ethyl isocyanoacetate in isobutyronitrile to give 3

Aldehyde	Mol% 2b	<i>T</i> , °C (<i>t</i> , min)	Yield of $3, \%$
Benzaldehyde	0.20	25 (60)	3a , 95
<i>p</i> -Fluorobenzaldehyde	0.20	$-5(15)^{a}$	3b , 98
<i>p</i> -Chlorobenzaldehyde	0.20	$-20(15)^{a}$	3c , 94 ^b
<i>p</i> -Cyanobenzaldehyde	0.30	-63(75)	3d, 99
<i>p</i> -Nitrobenzaldehyde	0.30	-63(75)	3e , $-^{d}$
<i>p</i> -Anisaldehyde	0.20	25 (120)	3f , 78
<i>p</i> -Methylsulfonylbenz- aldehyde	0.30	25 (75)	3, 97
2,5-Dimethylbenz- aldehyde	0.30	-63 (960)	3h , 93 ^b
2,5-Dimethoxybenz- aldehyde	0.30	25 (90)	3, 91
Isobutyraldehyde	0.05	25 (60) ^c	30 , - ^e
Pivalaldehyde	0.05	$-25(60)^{\circ}$	3k , 87
<i>n</i> -Heptaldehyde	0.05	$-25(60)^{\circ}$	31 , – ^e
(E)-Cinnamaldehyde	0.20	$-25(75)^{\circ}$	3m , 68
<i>n</i> -Butyraldehyde	0.05	$-25 (60)^{\circ}$	3a, -e
o-Anisaldehyde	0.20	25 (60)	30 , 75
2-Naphthaldehyde	0.20	25 (60)	3p , 97
2-Furaldehyde	0.20	25 (60)	3q , 93

^a This was followed by stirring at room temperature for 60 min.

^b Very small amounts (2–3%) of the *cis*-isomer were observed by ¹H NMR spectroscopy of the crude reaction mixture.

- $^{\circ}$ The reactants were mixed at -63 $^{\circ}$ C, stirred for 15 min and then at rt for time periods specified.
- ^d An inseparable mixture containing the Knoevenagel product was observed even at -63°C overnight.
- ^e An inseparable complex mixture containing the oxazoline, the Knoevenagel product and unidentified materials was observed by ¹H NMR spectroscopy.

isolated in 95% yield.²⁵ Both **2a** and **2b** afforded similar yields within experimental error (data for **2a** not shown in Table 1).

Comparison of the ¹H and ¹³C NMR data for product **3a** to literature data⁵ revealed that the *trans*-oxazoline ethyl carboxylate was the only product of the reaction. Attempted reaction of *p*-fluorobenzaldehyde in isobutylnitrile afforded complex reaction mixtures. However, by carrying out the reaction with ethyl isocyanoacetate at a lower temperature (see Table 1) for 15 min followed by further reaction at room temperature for 1-1.5 h, p-fluorobenzaldehyde, p-chloro*p*-methylsulfonylbenzaldehyde benzaldehyde. and pivalaldehyde reacted to afford the corresponding trans-oxazoline ethyl carboxylates, in addition to small amounts of the corresponding Knoevenagel products in cases of *p*-methylsulfonylbenzaldehyde the and pivalaldehyde as shown by ¹H NMR spectroscopic analysis. On the other hand aromatic aldehydes bearing electron donating groups (2,5-dimethylbenzaldehyde, 2,5-dimethoxybenzaldehyde, o-anisaldehyde, 2-naphthaldehyde and 2-furaldehyde required room temperature to afford similar yields (Table 1) with the exception of 2,5-dimethylbenzaldehyde which consistently formed large amounts of the Knoevenagel product. However, by reducing the temperature to -63° C and carrying out the reaction for 16 h followed by quenching with MeOH at -40°C, clean formation of the desired oxazoline ethyl carboxylate was realized with 2,5-dimethylbenzaldehyde. Nitrobenzaldehyde consistently formed a mixture of the oxazoline and a Knoevenagel product that could not be separated. The oxazoline ethyl carboxylate 3g thus obtained in 97% yield is of significance because an analogous oxazoline has previously been used as an intermediate in the synthesis of thiamphenicol (1a) and florfenicol (2b).^{10b,c} The aliphatic aldehydes isobutyraldehyde, *n*-heptaldehyde, and *n*-butyraldehyde gave complex mixtures consisting of desired compounds, the Knoevenagel products and other unidentified species.

Acknowledgements

We thank the National Science Foundation for the grant support of this research.

References

- (a) Hining, H.; Seufer-Waserthal, P.; Weber, H. *Tetrahedron* 1990, 46, 3841; (b) Gaparski, C. M.; Miller, M. J. *Tetrahedron* 1991, 47, 5367; (c) Togni, A.; Pastor, S. D.; Ribs, G. J. Organomet. Chem. 1990, 381, C21.
- 2. (a) Saeed, A.; Young, D. W. *Tetrahedron* 1992, 48, 2507;
 (b) Shoji, J.; Hinoo, H.; Hattori, T.; Kirooka, K.; Kimura, Y.; Yoshida, T. J. Antibiot. 1988, 42, 1460.
- Hukushima, K.; Arai, T.; Mori, Y.; Tsuboi, M.; Suzuki, M. J. Antibiot. 1983, 36, 1613.

- (a) Badr, M. Z. A. B.; Aly, M. M.; Fahmy, A. M. Bull. Chem. Soc. Jpn. 1981, 54, 1844; (b) Kirihata, M.; Kawahara, S.; Ichimoto, I.; Ueda, H. Agric. Biol. Chem. 1990, 54, 753.
- Ito, Y.; Matsura, T.; Saegusa, T. Tetrahedron Lett. 1985, 26, 5781.
- 6. Hoppe, D.; Schollkopf, U. Angew. Chem., Int. Ed. Engl. 1970, 9, 300.
- (a) Saegusa, T.; Ito, Y.; Konoshita, H.; Tomita, S. J. Org. Chem. 1971, 36, 3316; (b) Rich, D. H.; Dhaon, M. K.; Dunlap, B.; Millaer, S. P. F. J. Med. Chem. 1986, 29, 978.
- Rao, M. N.; Holkar, A. G.; Ayyanger, N. R. J. Chem. Soc., Chem. Commun. 1991, 1007.
- (a) Soloshonok, V. A.; Avilov, D. V.; Kukhar, N. S.; Kochetkov, K. A.; Orlova, S. A.; Pysarevsky, A. P.; Struchkov, Y. T.; Raevsky, N. I.; Belokon, Y. N. *Tetrahedron: Asymmetry* 1995, *6*, 1741; (b) Gunati, G.; Banfi, L.; Narisano, E. *Tetrahedron* 1988, 44, 5562; (c) Colonna, S.; Manfredi, A.; Solladié-Cavallo, A.; Quazzoti, S. *Tetrahedron Lett.* 1990, *31*, 6185.
- (a) Clark, J. E.; Fischer, P. A.; Schumacher, D. P. Synthesis 1991, 891; (b) Wu, G.; Schumacher, D. P.; Tormos, W.; Clark, J. E.; Murphy, B. L. J. Org. Chem. 1997, 62, 2996; (c) Clark, J. E.; Fischer, P. A.; Schumacher, D. P. Synthesis 1991, 891.
- (a) Schmidt, H.; Lensink, C.; Xi, S.-K.; Verkade, J. G. Z. Anorg. Allg. Chem. 1989, 578, 75; (b) Wroblewski, A.; Pinkas, J.; Verkade, J. G. Main Group Chem. 1995, 1, 69; (c) Kisanga, P.; Verkade, J. G., manuscript in preparation.
- 12. D'Sa, B.; Kisanga, P.; Verkade, J. G.; Schwesinger, R. *J. Org. Chem.* **2000**, *65*, 5431.
- 13. D'Sa, B.; Verkade, J. G. J. Org. Chem. 1996, 61, 2963.
- 14. Ilankumaran, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 3086.
- 15. Kisanga, P.; McLeod, D.; D'Sa, B.; Verkade, J. G., in preparation.
- D'Sa, B.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1998, 63, 3691.
- 17. Wang, Z.; Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 6559.
- Kisanga, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 4298.
- Kisanga, P.; D'Sa, B.; Verkade, J. G. J. Org. Chem. 1998, 63, 10057.
- Arumugam, S.; McLeod, D.; Verkade, J. G. J. Org. Chem. 1997, 62, 4927.
- 21. Tang, J.-S.; Verkade, J. G. J. Org. Chem. 1994, 59, 7793.
- 22. Yu, Z.; Verkade, J. G., in preparation.
- 23. Wang, Z.; Verkade, J. G. Heteroatom. Chem. 1998, 9, 687.
- 24. Wang, Z.; Verkade, J. G. Tetrahedron Lett. 1998, 39, 9331.
- 25. The desired amount of **2b** (Table 1) was weighed into a flask under nitrogen. To this was added 3.0 mL of isobutyronitrile, followed by 2.0 mmol of ethyl isocyanoacetate. The reaction mixture was placed in a constant temperature bath adjusted to the temperature

indicated in Table 1 and stirred for 5 min. To this solution was added 2.0 mmol of the aldehyde and then the solution was stirred at this temperature for a further 15 min after which it was allowed to stir at room temperature for 1 h. The reaction mixture was loaded onto a small silica gel column and eluted with ethyl ether. Removal of the solvent in vacuo afforded a crude mixture that was purified by eluting it on a silica gel column with ether/hexane. The ratio of ether was increased in 5% increments. The oxazolines eluted with 40% ether in hexane. The more polar oxazolines 3b-e and 3g were purified by eluting them with incrementally increasing amounts (5%) of ethyl acetate in hexane. They eluted 40% ethyl acetate in hexane. Compound **3a**: see discussion; **3b**: ¹H NMR (CDCl₃): δ 1.34 (t, 3H), 4.30 (q, 2H), 4.575 (dd, 1H), 5.66 (d, 2H), 7.090 (AB q, 2H), 7.31 (AB q, 2H). ¹³C NMR (CDCl₃): δ 170.3, 164.1, 161.6, 156.2, 134.8 (d, J=3 Hz), 127.5 (d, J=8 Hz), 115.9 (d, J=22 Hz), 81.6, 75.5, 62.1, 14.1. HRMS: Calcd for C12H12FNO5 237.0801, found m/e (M⁺) 237.0800; 3c: Isolated with an inseparable Knoevenagel by-product. ¹H NMR (CDCl₃): δ 1.35 (t, 3H), 4.32 (q, 2H), 4.55 (dd, 1H), 5.65 (d, 1H), 7.09 (d, 1H), 7.31–7.25 (m, 2H), 7.39–7.36 (m, 2H). ¹³C NMR (CDCl₃): δ 170.3, 156.2, 137.5, 134.7, 130.8, 129.2, 127.0, 81.5, 75.5, 62.2, 14.2. HRMS: Calcd for $C_{12}H_{12}CINO_5$ 253.0506, found m/e (M⁺) 253.0509; 3d: ¹H NMR (CDCl₃): δ 1.35 (m, 3H), 4.32 (dq, 2H), 4.56 (dd, 1H), 5.75 (d, 1H), 7.14 (d, 1H), 7.46 (m, 2H), 7.70 (m, 2H). ¹³C NMR (CDCl₃): δ 169.9, 169.9, 156.1, 144.2, 132.8, 129.9, 126.1, 118.3, 113.5, 81.0, 75.5, 62.3, 14.1. HRMS: Calcd for C13H12N2O5 244.0848, found m/e (M⁺) 244.0848; 3f: The ¹H NMR compared favorably with that reported in Liebigs Ann. Chem. 1972, 763, 1; 3g: ¹H NMR (CDCl₃): δ 1.355 (t, 3H), 3.09 (s, 3H), 4.32 (dq, 2H), 4.58 (dd, 1H), 5.79 (d, 1H), 7.18 (d, 1H), 7.57 (d, 2H), 7.99 (m, 2H). ¹³C NMR $(CDCl_3)$: δ 169.9, 156.1, 145.1, 140.7, 128.1, 126.3, 80.9, 75.5, 62.2, 44.4, 14.1. HRMS: Calcd for C13H15NO5S 297.0671, found m/e (M⁺) 297.0671; **3h**: ¹H NMR (CDCl₃): δ 1.30 (m, 6H), 2.29 (s, 3H), 4.26 (m, 2H), 4.54 (d, 1H), 5.90 (d, 1H), 7.03 (overlapping area, 3H), 7.12 (d, 1H). ¹³C NMR (CDCl₃): δ 170.6, 156.6, 136.7, 136.2, 131.9, 130.8, 129.3, 125.9, 79.9, 75.0, 61.9, 21.0, 18.7, 14.2. HRMS: Calcd for C₁₄H₁₇NO₃ 247.1208, found m/e (M⁺) 247.1211; **3i**: ¹H NMR (CDCl₃): δ 1.34 (t, 3H), 3.77 and 3.76 (two s, 6H), 4.29 (dq, 2H), 4.48 (dd, 1H), 5.88 (d, 1H), 6.83 (d, 2H), 6.87 (s, 1H), 7.07 (d, 1H). ¹³C NMR (CDCl₃): δ 170.9, 156.1, 153.7, 150.2, 128.2, 113.7, 112.3, 111.6, 79.1, 74.8, 61.7, 55.8, 14.2. HRMS: Calcd for $C_{14}H_{17}NO_5$ 279.1107, found m/ e (M⁺) 279.1107; **3k**: ¹H NMR (CDCl₃): δ 0.93 (s, 9H), 1.31 (t, 3H), 4.24 (q, 2H), 4.39 (s, 2H), 6.95 (s, 1H). ¹³C NMR (CDCl₃): δ 171.3, 156.7, 89.1, 68.2, 61.6, 33.7, 24.5, 14.1. HRMS: Calcd for C₁₀H₁₇NO₅ 199.1208, found m/e (M+) 199.1209; 30: On the basis of the ¹H NMR spectrum, this known compound contained an inseparable 8% of the corresponding Knoevenagel by-product. Because no NMR spectra have been reported for 30, we report them here. ¹H NMR of 30 $(CDCl_3)$: δ 1.33 (t, 3H), 3.79 (s, 3H), 4.29 (q, 2H), 4.51

(dd, 1H), 5.91 (d, 1H), 6.89 (d, 1H), 6.96 (s, 1H), 7.08 (d, 1H), 7.32–7.27 (m, 2H). ¹³C NMR (CDCl₃): δ 171.0, 156.3, 156.2, 129.7, 127.1, 126.2, 120.7, 110.6, 79.4, 74.7, 61.7, 55.3, 14.3; **3p**: ¹H NMR (CDCl₃): δ 1.33 (t, 3H), 4.30 (q, 2H), 4.69 (dd, 1H), 5.85 (d, 1H), 7.16 (d, 1H), 7.37 (dd, 1H), 7.49 (m, 2H), 7.83 (m, 4H).

¹³C NMR (CDCl₃): δ 170.5, 156.4, 136.1, 133.3, 129.2, 128.1, 127.8, 126.7, 126.6, 125.1, 122.8, 82.4, 75.4, 62.0, 14.1. HRMS: Calcd for C₁₆H₁₅NO₃ 269.1052, found m/ e (M⁺) 269.1052; **2q**: The ¹H NMR spectrum compared favorably with that reported in *J. Org. Chem.* **1990**, *55*, 1649.