Expeditious Synthesis of 2,3,6-Trisubstituted 2*H*-1,3-Oxazin-4(3*H*)-ones via the Tertiary Amine-Induced Reaction of 2-Diazo-3-oxoalkanals and Imines Under Mild Conditions

Hengzhen Qi, Jiantao Zhang, Jiaxi Xu*

State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. of China Fax +86(10)64435565; E-mail: jxxu@mail.buct.edu.cn *Received 13 January 2011*

Abstract: A series of 2,3,6-trisubstituted 2H-1,3-oxazin-4(3H)-one derivatives were conveniently synthesized in satisfactory to good yields by the reaction of imines with 2-diazo-3-oxoalkanals in the presence of a catalytic amount of a tertiary amine during several seconds under mild condition. Different bases and α -diazo- β -dicarbonyl compounds were also evaluated and a reaction mechanism is proposed. Compared with the corresponding thermal- and photo-induced reactions, the current method is a metal-free, mild, highly regioselective, and more efficient approach for the synthesis of 2H-1,3-oxazin-4(3H)-one derivatives.

Key words: acylketene, amine-induced reaction, cycloaddition, 2diazo-3-oxoalkanal, Diels–Alder reaction, imine, oxazinone

 α -Diazo- β -dicarbonyl compounds (α -diazo- β -diketones and α -diazo- β -oxoalkanals) are important synthetic intermediates in organic chemistry.1 They have been widely used in the synthesis of heterocyclic compounds via cycloadditions.¹ α-Diazo-β-diketones undergo heteroatom Diels-Alder reactions with unsaturated compounds, such as imines,² aldehydes and ketones,³ thiones,⁴ nitriles,⁵ isocyanates,^{2a} isothiocyanates,^{2a,6} carbodiimides,^{2a} etc., respectively, to afford 2*H*-1,3-oxazin-4-ones, 4*H*-1,3dioxin-4-ones, 4H-1,3-oxathiin-4-ones, 1,3-oxazin-4ones, 2H-1,3-oxazine-2,4(3H)-diones, 2-thioxo-2H-1,3oxazin-4(3H)-ones, 2-alkylimino-2H-1,3-oxazin-4(3H)ones, and so on (Scheme 1). They undergo [2+3] cycloadditions in the presence of transition-metal catalysts, generally dirhodium tetraacetate, with nitriles,⁷ carbon disulfide,⁸ electron-rich olefins,^{5,9} and alkynes¹⁰ to produce 4-acyloxazoles, 1,3-oxathiole-2-thiones, 3-acyl-4,5dihydrofurans, and 3-acylfuran derivatives, respectively (Scheme 1). However, α -diazo- β -oxoalkanals have been seldom applied in organic synthesis. They were condensed with primary amines, ammonium, hydroxylamine, and semicarbazide to yield the corresponding 1-substituted 4-acyl-1H-1,2,3-triazoles in moderate to good yields under acidic conditions.¹¹ Decomposition of diazomalonaldehyde under catalysis of dirhodium tetraacetate with alkyl vinyl ether leads to 2-alkoxy-2,3-dihydro-4-pyrones, which on exposure to an acid give 4-pyrones;¹² and affords 2-substituted 1,3-oxazole-4-carboxaldehydes via

SYNTHESIS 2011, No. 6, pp 0887–0894

Advanced online publication: 11.02.2011 DOI: 10.1055/s-0030-1258439; Art ID: H11211SS

© Georg Thieme Verlag Stuttgart · New York

1,3-dipolar cycloaddition with nitriles.¹³ Diazomalonaldehyde reacts with trimethylsilyl vinyl ethers under the catalysis of copper sulfate to give 4-pyrones as well.¹⁴

1,3-Oxazinone derivatives are important biologically active compounds, showing antibacterial,¹⁵ anti-inflammatory,¹⁶ antinociceptive activities,¹⁷ etc. 2*H*-1,3-Oxazin-4(3*H*)-one derivatives have been generally prepared by thermal heteroatom Diels–Alder reaction of imines with acylketenes,¹ which can be generated mainly from α -diazo- β -dicarbonyl compounds, including α -diazo- β -diketones and α -diazo- β -oxoalkanals, 1,3-dioxinones, furan-

2,3-diones, as well from carboxylic acid derivatives and alkynol derivatives.¹ Recently, we found that 2-diazo-3oxoalkanals undergo Wolff rearrangement to generate acylketenes, which react with imines to afford 2H-1,3-oxazin-4(3H)-ones in satisfactory yields under photoirradiation conditions.¹⁸ The cycloaddition of α -diazo- β diketones and/or 2-diazo-3-oxoalkanals with imines occurs at high temperature under thermal conditions^{1,2} or in low yields and slow reaction rates under photoirradiation.¹⁸ It is desired to develop an efficient approach to conduct the reaction. To improve the synthetic efficiency, a search for catalysts was done to increase the reaction rates under mild reaction conditions. It was reported that a mere trace of amine can cause diazomalonaldehyde to liberate nitrogen to generate a polymer composed of formylketene.¹⁹ Thus, it was assumed that organic bases would attack the positive part of the diazo group to promote the release of nitrogen and further Wolff rearrangement. Therefore, the efficiency of organic bases as catalysts was evaluated in reactions of representative a-diazo- β -diketones and 2-diazo-3-oxoalkanals with imines. Herein, we present our results on the tertiary amine-catalyzed reaction of 2-diazo-3-oxoalkanals and imines to synthesize 2H-1,3-oxazin-4(3H)-ones expeditiously.

Representative 2-diazo-3-oxoalkanals and α -diazo- β diketones can be prepared conveniently from the corresponding 3-oxoalkanals and β -diketones, or from α -diazo ketones. 2-Diazo-3-oxo-3-phenylpropanal (1a) was prepared from 2-diazoacetophenone and the Vilsmeier-Haack reagent,^{11a} which was synthesized from DMF and oxalyl chloride.²⁰ 2-Diazo-3-oxobutanal (1b) was prepared from 3-oxobutanal via the diazo transformation with 2-azido-1-ethylpyridinium tetrafluoroborate.²¹ Diazomalonaldehyde (1c) was obtained via hydrolysis and diazotization of N,N-dimethyl-N-[2-(dimethylaminomethylene)amino-3-dimethylamino]prop-2-enylideneammonium perchlorate,^{11a} which was prepared from DMF, phosphorus oxychloride, and glycine hydrochloride in the presence of perchloric acid²² (Scheme 2). α -Diazo- β diketones **1d–f** were prepared from the corresponding β diketones via the diazo transformation with tosyl azide2f (Scheme 2).

The reactivity of different α-diazo-β-dicarbonyl compounds 1 with benzylideneaniline (2a) was initially evaluated under the catalysis of triethylamine (Table 1). The results indicate that 2-diazo-3-oxoalkanals 1a,b and diazomalonaldehyde (1c) are exceptionally reactive. After a drop of triethylamine was added to a mixture of an α -diazo- β -keto aldehyde and an imine, the α -diazo- β -keto aldehyde released nitrogen rapidly. The Wolff rearrangement and cycloaddition with the imine, for 2-diazo-3-oxo-3phenylpropanal (1a), took place during 1-2 second(s), giving rise to the desired product 2,3,6-triphenyl-2H-1,3oxazin-4(3H)-one (3a) in a satisfactory yield. Although the reaction can be conducted under solvent-free conditions, to mix two reactants completely and to perform the reaction smoothly, an α -diazo- β -keto aldehyde and an imine were dissolved in a small amount of dichlo-

Scheme 2 Preparation of α -diazo- β -dicarbonyl compounds 1

romethane before addition of a tertiary amine. 2-Diazo-3oxobutanal (1b) and diazomalonaldehyde (1c) produced complex products possibly due to their high reactivity. However, α -diazo- β -diketones 1d–g are inert and do not participate in any reaction under the same reaction conditions.

Secondly, the reaction of 2-diazo-3-oxo-3-phenylpropanal (1a) and N-benzylideneaniline (2a) was selected as a model reaction to evaluate the catalytic efficiency of different bases (Table 2, entries 1-8). The results indicate that all aliphatic tertiary amines can catalyze the reaction, but the yield of the desired product decreases obviously with increasing steric hindrance of bases. Under the catalysis of secondary amine piperidine, only trace of the product was obtained. However, aromatic tertiary amine N,Ndimethylaniline and pyridine, as well triphenylphosphine, cannot catalyze the reaction. In the case of inorganic bases, both weak base potassium carbonate and strong base sodium hydride are not efficient catalysts for the reaction. To further verify the effect of organic bases on the reaction, the reaction of 2-diazo-3-oxo-3-phenylpropanal (1a) and N-benzylidenebenzylamine (2b) was conducted with different tertiary amines as catalysts (Table 2, entries 9-12). The results show that the yield decreases with increasing steric hindrance from triethylamine to tributyl-

Table 1 Evaluation of Different α -Diazo- β -dicarbonyl Compounds 1 in the Reaction with *N*-Benzylideneaniline (**2a**) under the Catalysis of Triethylamine

$R^1 \longrightarrow_{N_2}^{O}$	O − R ² +	Ph N ^{Ph}	Et ₃ N CH ₂ Cl ₂	R^2 Ph R^1 Ph B^1 Ph	
Entry	Diazo co	mpound 1	Time	Yield (%)	

2		1			. ,
	1	\mathbb{R}^1	\mathbb{R}^2		
1	1 a	Ph	Н	2 s	54
2	1b	Me	Н	2 s	complex products
3	1c	Н	Н	2 s	complex products
4	1d	Me	Me	24 h	no reaction
5	1e	CH ₂ CM	e ₂ CH ₂	24 h	no reaction
6	1f	Ph	Me	24 h	no reaction
7	1g	Ph	Ph	24 h	no reaction

amine to ethyldiisopropylamine (DIPEA) although the yield is higher than that in the reaction with *N*-benzylideneaniline (**2a**). Triphenylphosphine cannot catalyze the reaction either. However, besides the 2,3,6-trisubstituted 2H-1,3-oxazin-4(3H)-one (**3b**), its regioisomer, the 2,3,5-trisubstituted 2H-1,3-oxazin-4(3H)-one (**4b**), was also obtained in a low yield under the catalysis of triethyl- and tributylamines. After evaluation of different α-diazo-β-dicarbonyl compounds and bases, it was found that 2-diazo-3-oxo-3-phenylpropanal (1a) is a suitable precursor of heteroatomcontaining diene and triethylamine is the more efficient catalyst for the reaction. The reaction was further extended to various linear and cyclic imines 2a-i (Table 3). For each of imines, the desired products were obtained in satisfactory to good yields. For imine 2g with a chiral carbon atom, a pair of diastereomeric products were generated in a ratio of 6:1 of *anti*-isomer/syn-isomer on the basis of ¹H NMR analysis (Table 3, entry 7). In the reaction with imine 2i, the desired Diels-Alder product 3i was obtained, accompanied with benzoyl trans-\beta-lactam product 5i, which was generated from imine 2i and benzoylketene, produced from diazo compound 1a, via the Staudinger reaction through the imine attack to the ketene from its exoside and subsequent conrotatory ring closure.²³ Although diazomalonaldehyde did not produce the desired product with linear imine 2a, it did with cyclic imine 2i in a low yield of 26% (Table 3, entry 10).

To compare the current method with the thermal and photo reactions, we carried out the reaction of 2-diazo-3-oxo-3-phenylpropanal (1a) and imine 2b under thermal and photo conditions, respectively (Scheme 3). The results indicate that the triethylamine-catalyzed reaction shows advantages not only in the reaction rate, but also in yield and regioselectivity, revealing that benzoyl formyl carbene generated from 2-diazo-3-oxo-3-phenylpropanal (1a) prefers a hydrogen shift to give rise to benzoylketene under triethylamine-catalyzed and thermal conditions, whereas

Table 2Evaluation of the Catalytic Efficiency of Different Bases in the Reaction of 2-Diazo-3-oxo-3-phenylpropanal (1a) with Imines 2aand 2b

Entry	Imine 2		Base	Tiı
1a	a : R = Ph b : R = Bn	3a,b	4b	
Ph H	$H + Ph \sim N^R - ba$ 2a,b	$\frac{1}{2Cl_2}$ H N R Ph O Ph	H N R Ph N $BnPh$ O Ph H O Ph	

Entry	Imine 2	Base	Time	Yield (%)
1	2a	Et ₃ N	2 s	54
2	2a	Bu ₃ N	10 s	36
3	2a	piperidine	2 s	trace
4	2a	PhNMe ₂	24 h	no reaction
5	2a	pyridine	24 h	no reaction
6	2a	Ph ₃ P	24 h	no reaction
7	2a	K ₂ CO ₃	24 h	no reaction
8	2a	NaH	24 h	no reaction
9	2b	Et_3N	2 s	92 (3/4 = 93:7)
10	2b	Bu ₃ N	10 s	83 (3 / 4 = 88:12)
11	2b	DIPEA	15 s	54 (3/4 = 100:0)
12	2b	Ph ₃ P	24 h	no reaction

Synthesis 2011, No. 6, 887-894 © Thieme Stuttgart · New York

it does not show any selectivity under photoirradiation conditions.

As for the reaction mechanism, it is proposed that a tertiary amine attacks the middle nitrogen atom of the diazo group of 2-diazo-3-oxo-3-phenylpropanal (1a) or diazo-malonaldehyde (1c) to generate a zwitterionic intermediate, which further undergoes an electron transfer to form a diacylcarbene through loss of nitrogen and the amine. The diacylcarbene undergoes the Wolff rearrangement to produce the acylketene, which undergoes a heteroatom Diels–Alder cycloaddition to yield the desired 2,3,6-trisubstituted 2H-1,3-oxazin-4(3H)-one **3** (Scheme 4).

thermal reaction: in refluxing toluene, 1 h, 76% yield, 3b/4b = 86:14 photo reaction: UV light, in CH₂Cl₂, 2 h, 78% yield, 3b/4b = 50:50 Et₃N-catalyzed reaction: in CH₂Cl₂, 2 s, 92% yield, 3b/4b = 93:17

Scheme 3 Comparison of thermal, photo, and Et_3N -catalyzed reactions of diazo compound 1a and imine 2b

Table 3	Reaction of 2-Diazo-3-ox	o-3-phenylpropanal (1a) and	Diazomalonaldehyde (1c) with	Various Imines 2
---------	--------------------------	-----------------------------	------------------------------	------------------

Entry	Diazoacetate 1	Imine 2	β-Lactam 3	Yield (%) ^a
1	1a	Ph Ph 2a	H Ph Ph Ph Bh Bh Bh Bh Bh Bh Bh B	54
2	1a	Ph N ^{Bn} 2b	H H H H H H H H H H	86 (4b : 6%)
3	1a	Contraction North Contraction	H H H H H H H H H H H H H H H H H H H	68
4	1a	PhNOMe 2d	H H H H H H H H H H	47
5	1a	MeO N 2e		78
6	1a	O ₂ N N 2f	H Ph O NO_2 3f	85

Downloaded by: Karolinska Institutet. Copyrighted material.

Table 3 Reaction of 2-Diazo-3-oxo-3-phenylpropanal (1a) and Diazomalonaldehyde (1c) with Various Imines 2 (continued)

^a Yields of isolated products (sum of *cis-* and *trans-*product yields). ^b Ratio was determined via ¹H NMR analysis of the reaction mixture.

Scheme 4 Proposed mechanism for reaction of diazo compounds 1 and imines 2 under the catalysis of triethylamine

Despite α -diazo- β -keto aldehydes are active and α -diazo- β -diketones are inert in the presence of tertiary amines, it seems that the hydrogen atom in the formyl group plays an important role in the reaction. We initially assumed that the amine first abstracts the hydrogen atom to generate a 2-diazo-3-oxoacyl anion intermediate, which induces the Wolff rearrangement to produce an acylketene anion. The anion abstracts a proton from the generated ammonium in the reaction system to form the acylketene, which undergoes Diels-Alder reaction to produce the desired product. However, α -diazo- β -keto aldehydes are inert to the strong base sodium hydride with weak nucleophilicity, revealing that bases, especially tertiary amines, cannot abstract the hydrogen atom of the formyl group. On the other hand, less steric tertiary amines (favorable nucleophiles) show higher activity than more steric ones (unfavorable nucleophiles), supporting the proposed mechanism through the amine attack to the diazo group.

In summary, a series of 2,3,6-trisubstituted 2H-1,3-oxazin-4(3H)-one derivatives were expeditiously synthesized in satisfactory to good yields from the reaction of imines and 2-diazo-3-oxoalkanals under the catalysis of

Synthesis 2011, No. 6, 887–894 © Thieme Stuttgart · New York

tertiary amine during several seconds under mild condition. Different bases and α -diazo- β -dicarbonyl compounds were also evaluated, indicating that less steric tertiary amines are efficient catalysts and 2-diazo-3oxoalkanals are suitable acylketene precursors. A reaction mechanism was proposed in which tertiary amines induce Wolff rearrangement of 2-diazo-3-oxoalkanals to generate acylketenes, which further undergo a heteroatom Diels–Alder reaction to yield 2,3,6-trisubstituted 2*H*-1,3oxazin-3(4*H*)-ones. Compared with the corresponding thermal- and photo-induced reactions, the current method is a metal-free, mild, highly regioselective, and more efficient approach to synthesis of 2*H*-1,3-oxazin-4(3*H*)-one derivatives.

Melting points were measured on a Yanaco MP-500 melting point apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a Varian Mercury Plus 300 (300 MHz) or Bruker AV 400 (400 MHz) spectrometer in CDCl₃ with TMS as an internal standard. HRMS data were carried out on a Bruker APEX IV Fourier transform ion cyclotron resonance mass spectrometer. IR spectra were determined on a Nicolet 5700 FT-IR spectrometer. All α diazo- β -dicarbonyl compounds were prepared according to the reported methods,^{2f,11a,20-22} and their analytical data are identical to those earlier reported in literatures.^{2f,11a,20-22} Column chromatography was carried out on Haiyang silica gel (200–300 mesh) (Qingdao, China). CH₂Cl₂ was refluxed with CaH₂ and freshly distilled prior to use.

Caution: Diazomethane is toxic and potentially explosive. α -Diazo- β -diketones and α -diazo- β -oxoalkanals are also potentially explosive. All operations involving diazo compounds must be carried out in a well-ventilated hood with an adequate shield for safety, although no explosion had occurred in any of our experiments.

Reaction of 2-Diazo-3-oxoalkanals and Imines under the Catalysis of Tertiary Amine; General Procedure

To a solution of 2-diazo-3-oxoalkanal **1** (2 mmol) and an imine **2** (1 mmol) in CH₂Cl₂ (3 mL) was added a drop of a tertiary amine (0.3 mmol) under stirring in an ice-water bath or at r.t. N₂ was liberated immediately and TLC monitoring indicated that the reaction completed. After stirring for 2 s (with Et₃N) (10 s with Bu₃N and 15 s with DIPEA), the residue was separated on a silica gel column chromatographically [elution with EtOAc and petroleum ether (bp 60–90 °C) 1:10 to 1:20, v/v] to afford the product(s) **3** (Table 3).

2,3,6-Triphenyl-2*H*-1,3-oxazin-4(3*H*)-one (3a)

Yield: 177 mg (54%); colorless crystals; mp 161–162 °C (Lit.²⁴ mp 146–148 °C).

IR (KBr): 1663 cm^{-1} (C=O).

¹H NMR (400 MHz, CDCl₃): δ = 6.08 (s, 1 H, CH), 6.87 (s, 1 H, CH), 7.22–7.74 (m, 15 H, ArH).

¹³C NMR (75.5 MHz, CDCl₃): δ = 90.1, 99.0, 125.0, 126.3, 126.4, 127.2, 128.65, 128.71, 129.1, 129.5, 131.4, 131.7, 136.5, 139.7, 161.4, 163.0.

3-Benzyl-2,6-diphenyl-2H-1,3-oxazin-4(3H)-one (3b)

Yield: 292 mg (86%); colorless crystals; mp 125–126 °C (Lit.²⁵ mp 123–124 °C).

¹H NMR (400 MHz, CDCl₃): δ = 3.91 (d, *J* = 15.6 Hz, 1 H in CH₂), 5.41 (d, *J* = 15.6 Hz, 1 H in CH₂), 6.00 (s, 1 H, CH), 6.29 (s, 1 H, CH), 7.17–7.61 (m, 15 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 46.5, 87.9, 97.7, 126.3, 127.4, 127.6, 127.8, 128.65, 128.66, 128.69, 129.8, 131.2, 131.8, 135.3, 136.9, 161.7, 164.0.

3-Benzyl-2,5-diphenyl-2H-1,3-oxazin-4(3H)-one (4b)

Yield: 22 mg (6%); colorless crystals; mp 142–143 °C.

IR (KBr): 1661 cm⁻¹ (C=O).

¹H NMR (400 MHz, CDCl₃): δ = 3.98 (d, *J* = 15.2 Hz, 1 H in CH₂), 5.47 (d, *J* = 15.2 Hz, 1 H in CH₂), 6.27 (s, 1 H, CH), 7.08 (s, 1 H, CH), 7.25–7.53 (m, 15 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 46.9, 88.4, 116.8, 127.55, 127.59, 127.6, 128.0, 128.3, 128.7, 129.9, 132.6, 135.4, 136.8, 151.5, 162.6. HRMS (ESI): *m/z* calcd for C₂₃H₂₀NO₂ [M + H]⁺: 342.1489; found: 342.1503.

2-Fur-2-yl-3-(4-methoxyphenyl)-6-phenyl-2*H*-1,3-oxazin-4(3*H*)-one (3c)

Yield: 236 mg (68%); colorless crystals; mp 151-153 °C.

IR (KBr): 1645 cm⁻¹ (C=O).

¹H NMR (400 MHz, CDCl₃): δ = 3.79 (s, 3 H, CH₃), 6.05 (s, 1 H, CH), 6.35 (dd, *J* = 1.6, 3.6 Hz, 1 H, ArH), 6.58 (d, *J* = 3.6 Hz, 1 H, ArH), 6.70 (s, 1 H, CH), 6.90 (d, *J* = 8.8 Hz, 2 H, ArH), 7.27 (d, *J* = 8.8 Hz, 2 H, ArH), 9.35–7.48 (m, 4 H, ArH), 7.71 (d, *J* = 7.2 Hz, 2 H, ArH).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 55.5, 85.0, 98.6, 110.6, 111.4, 114.5, 126.6, 127.2, 128.7, 131.4, 131.7, 131.8, 143.9, 149.0, 158.3, 161.2, 162.6.

HRMS (ESI): m/z calcd for $C_{21}H_{18}NO_4 [M + H]^+$: 348.1230; found: 348.1228.

3-(4-Methoxystyryl)-2,6-diphenyl-2H-1,3-oxazin-4(3H)-one (3d)

Yield: 180 mg (47%); colorless crystals; mp 115–116 °C.

IR (KBr): 1662 cm⁻¹ (C=O).

¹H NMR (400 MHz, CDCl₃): δ = 3.81 (s, 3 H, CH₃), 6.10 (s, 1 H, CH), 6.21 (d, *J* = 6.0 Hz, 1 H, CH), 6.52 (dd, *J* = 6.4, 15.6 Hz, 1 H, CH), 6.80 (d, *J* = 16 Hz, 1 H, CH), 6.91–7.76 (m, 14 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 90.7, 97.9, 114.6, 122.3, 126.4, 127.1, 128.1, 128.8, 128.9, 131.4, 131.6, 131.8, 135.1, 136.2, 158.5, 162.1, 163.3.

HRMS (ESI): m/z calcd for $C_{25}H_{22}NO_3 [M + H]^+$: 384.1594; found: 384.1598.

3-Isopropyl-2-(4-methoxyphenyl)-6-phenyl-2*H*-1,3-oxazin-4(3*H*)-one (3e)

Yield: 252 mg (78%); colorless crystals; mp 142-143 °C.

IR (KBr): 1650 cm⁻¹ (C=O).

¹H NMR (400 MHz, CDCl₃): $\delta = 1.09$ (d, J = 6.4 Hz, 3 H, CH₃), 1.33 (d, J = 6.4 Hz, 3 H, CH₃), 3.74 (s, 3 H, CH₃), 4.88 (hept, J = 6.4 Hz, 1 H, CH), 5.89 (s, 1 H, CH), 6.51 (s, 1 H, CH), 6.85– 7.58 (m, 9 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 20.3, 21.3, 44.3, 55.2, 83.7, 99.0, 113.7, 126.2, 128.5, 128.6, 129.6, 130.9, 132.1, 159.8, 160.2, 163.1.

HRMS (ESI): m/z calcd for $C_{20}H_{22}NO_3$ [M + H]⁺: 324.1594; found: 324.1600.

3-Isopropyl-2-(4-nitrophenyl)-6-phenyl-2*H*-1,3-oxazin-4(3*H*)-one (3f)

Yield: 288 mg (85%); colorless crystals; mp 152–153 °C. IR (KBr): 1652 cm⁻¹ (C=O). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.15$ (d, J = 6.8 Hz, 3 H, CH₃), 1.38 (d, J = 6.8 Hz, 3 H, CH₃), 4.97 (hept, J = 6.8 Hz, 1 H, CH), 5.91 (s, 1 H, CH), 6.63 (s, 1 H, CH), 7.30–8.22 (m, 9 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 20.4, 21.4, 44.6, 82.8, 99.3, 123.6, 126.1, 128.2, 128.7, 131.3, 131.4, 144.8, 148.4, 160.2, 162.6.

HRMS (ESI): m/z calcd for $C_{19}H_{19}N_2O_4$ [M + H]⁺: 339.1339; found: 339.1355.

rel-(R)-2,6-Diphenyl-3-[(R)-1-phenylethyl]-2H-1,3-oxazin-4(3H)-one (anti-3g) and rel-(R)-2,6-Diphenyl-3-[(S)-1-phenyl-ethyl]-2H-1,3-oxazin-4(3H)-one (syn-3g)

Yield: 324 mg (90%); colorless crystals; mp 167–168 C; *anti/* syn = 6:1, inseparable.

IR (KBr): 1642 cm⁻¹ (C=O).

¹H NMR (400 MHz, CDCl₃): δ (*anti*-**3**g) = 1.45 (d, J = 7.2 Hz, 3 H, CH₃), 5.95 (s, 1 H, CH), 6.13 (q, J = 7.2 Hz, 1 H, CH), 6.28 (s, 1 H, CH), 7.10–7.58 (m, 15 H, ArH); δ (*syn*-**3**g) = 1.76 (d, J = 7.2 Hz, 3 H, CH₃), 5.91 (s, 1 H, CH), 5.95 (q, J = 7.2 Hz, 1 H, CH), 6.49 (s, 1 H, CH), 7.10–7.58 (m, 15 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ (*anti*-**3**g) = 17.7, 50.3, 84.7, 98.5, 126.4, 127.1, 127.4, 127.7, 128.4, 128.5, 128.8, 129.3, 131.1, 132.0, 137.5, 140.9, 160.3, 163.4; δ (*syn*-**3**g) = 17.8, 50.3, 84.9, 99.1, 126.4, 127.1, 127.4, 127.7, 128.1, 128.5, 128.8, 129.3, 131.1, 132.0, 137.5, 140.9, 160.3, 163.4.

HRMS (ESI): m/z calcd for $C_{24}H_{22}NO_2 [M + H]^+$: 356.1645; found: 356.1647.

2-Phenyl-6,7-dihydro[1,3]oxazino[2,3-*a*]isoquinolin-4(11b*H*)-one (3h)

Yield: 116 mg (42%); colorless crystals; mp 197–198 °C.

IR (KBr): 1660 cm⁻¹ (C=O).

¹H NMR (400 MHz, CDCl₃): δ = 2.85 (dt, *J* = 15.6, 4.0 Hz, 1 H, H in CH₂), 3.07 (ddd, *J* = 4.8, 10.8, 15.6 Hz, 1 H in CH₂), 3.36 (ddd, *J* = 3.6, 10.4, 12.8 Hz, 1 H), 4.42 (dt, *J* = 12.8, 4.8 Hz, 1 H), 6.24 (s, 1H), 7.25–7.56 (m, 10 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 28.5, 37.8, 84.7, 117.4, 127.2, 127.6, 128.0, 128.3, 128.6, 128.7, 129.5, 130.1, 132.8, 136.3, 153.9, 163.6.

HRMS (ESI): m/z calcd for $C_{18}H_{16}NO_2 [M + H]^+$: 278.1176; found: 278.1177.

13-Methyl-2-phenyldibenzo[*b,f*][1,3]oxazino[3,2-*d*][1,4]oxazepin-4(14b*H*)-one (3i)

Yield: 124 mg (35%); colorless oil.

IR (KBr): 1672 cm^{-1} (C=O).

¹H NMR (400 MHz, CDCl₃): δ = 2.33 (s, 3 H, CH₃), 6.18 (s, 1 H, CH), 6.72 (s, 1 H, CH), 7.17–7.83 (m, 12 H, ArH).

¹³C NMR (75.5 MHz, CDCl₃): δ = 20.8, 87.2, 97.9, 120.8, 121.0, 124.5, 125.3, 126.4, 127.8, 128.5, 128.8, 129.3, 131.2, 131.6, 131.7, 134.2, 153.8, 155.1, 163.5, 163.9.

HRMS (ESI): m/z calcd for $C_{23}H_{18}NO_3$ [M + H]⁺: 356.12812; found: 356.12794.

rel-(1*R*,12*bR*)-1-Benzoyl-11-methyl-1*H*-azeto[1,2-*d*]dibenzo[*b*,*f*][1,4]oxazepin-2(12*bH*)-one (5i)

Yield: 21 mg (6%); colorless crystals; mp 167-168 °C.

IR (KBr): 1752, 1678 cm⁻¹ (C=O).

¹H NMR (400 MHz, CDCl₃): δ = 2.35 (s, 3 H, CH₃), 5.37 (d, *J* = 2.8 Hz, 1 H, CH), 6.38 (d, *J* = 2.8 Hz, 1 H, CH), 7.02–8.30 (m, 12 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 53.5, 63.2, 120.1, 121.5, 121.6, 124.9, 125.1, 126.5, 128.9, 129.3, 129.6, 129.7, 130.7, 134.1, 135.0, 135.7, 144.5, 156.3, 158.8, 190.4.

HRMS (ESI): m/z calcd for $C_{23}H_{17}NO_3 + Na [M + Na]^+$: 378.1101; found: 378.1111.

13-Methyldibenzo[*b,f*][1,3]oxazino[3,2-*d*][1,4]oxazepin-4(14b*H*)-one (3j)

Yield: 73 mg (26%); colorless crystals; mp 107–108 °C.

IR (KBr): 1680 cm⁻¹ (C=O).

¹H NMR (400 MHz, CDCl₃): δ = 2.34 (s, 3 H, CH₃), 5.62 (d, *J* = 6.0 Hz, 1 H, CH), 6.55 (s, 1 H, CH), 7.15–7.57 (m, 7 H, ArH), 7.56 (d, *J* = 6.0 Hz, 1 H, CH).

¹³C NMR (100 MHz, CDCl₃): δ = 20.7, 87.4, 104.0, 120.8, 121.1, 124.6, 124.9, 128.2, 128.7, 129.0, 129.4, 131.8, 134.1, 154.0, 155.0, 156.2, 162.2.

HRMS (ESI): m/z calcd for $C_{17}H_{14}NO_3 [M + H]^+$: 280.0968; found: 280.0966.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

Acknowledgment

The project was supported partly by National Natural Science Foundation of China (Nos. 20972013 and 20772005), Beijing Natural Science Foundation (No. 2092022), and specialized Research Fund for the Doctoral Program of Higher Education, Ministry of Education of China.

References

- For reviews, see: (a) Wentrup, C.; Heilmayer, W.; Kollenz, G. Synthesis 1994, 1219. (b) Chen, L. B.; Zhang, Q. H.; Xu, J. X. Youji Huaxue (Chin. J. Org. Chem.) 2001, 21, 89; Chem. Abstr. 2001, 134, 295387. (c) Kollenz, G.; Ebner, S. In Science of Synthesis, Vol. 23; Danheiser, R., Ed.; Thieme: Stuttgart, 2006, 271. (d) Hyatt, J. A.; Raynolds, P. W. Org. React. 1994, 45, 159.
- (2) (a) Capuano, L.; Kirn, H. R.; Zander, R. Chem. Ber. 1976, 109, 2456. (b) Capuano, L.; Cartner, K. J. Heterocycl. Chem. 1981, 18, 1341. (c) Capuano, L.; Wamprecht, C. Liebigs Ann. Chem. 1986, 5, 933. (d) Xu, J. X.; Jin, S. Chin. Chem. Lett. 1992, 3, 181. (e) Xu, J. X.; Jin, S.; Xing, Q. Y. Phosphorus, Sulfur Silicon Relat. Elem. 1998, 141, 57. (f) Xu, J. X.; Jin, S. Heteroat. Chem. 1999, 10, 35. (g) Xu, J. X.; Zhang, Q. H.; Chen, L. B.; Chen, H. J. Chem. Soc., Perkin Trans. 1 2001, 2266. (h) Xu, J. X.; Chen, L. B. Heteroat. Chem. 2002, 13, 165. (i) Yamagata, K.; Ohkubo, K.; Yamazaki, M. Liebigs Ann. Chem. 1995, 187.
- (3) Chen, L.-B.; Xu, J. X. Hecheng Huaxue (Chin. J. Synth. Chem.) 2000, 8, 231; Chem. Abstr. 2001, 134, 17442.
- (4) Xu, J. X.; Zhang, Q. H. Heteroat. Chem. 2001, 12, 630.
- (5) Yamagata, K.; Akizuki, K.; Yamazaki, M. J. Prakt. Chem. 1998, 340, 51.
- (6) Nakano, H.; Ibata, T. Bull. Chem. Soc. Jpn. 1993, 66, 238.
- (7) (a) Kaellstroem, K.; Hedberg, C.; Brandt, P.; Bayer, A.; Andersson, P. G. *J. Am. Chem. Soc.* **2004**, *126*, 14308.
 (b) Lee, Y. R.; Suk, J. Y. *Heterocycles* **1998**, *48*, 875.
- (8) Ibata, T.; Nakano, H. Chem. Express **1989**, *4*, 93.
- (9) (a) Mueller, P.; Chappellet, S. *Helv. Chim. Acta* 2005, 88, 1010. (b) Lee, Y. R.; Hwang, J. C. *Eur. J. Org. Chem.* 2005, 1568. (c) Lee, Y. R.; Morehead, A. T. Jr. *Tetrahedron* 1995, 51, 4909.

Synthesis 2011, No. 6, 887-894 © Thieme Stuttgart · New York

- (10) Davies, H. M. L.; Romines, K. R. *Tetrahedron* **1988**, *44*, 3343.
- (11) (a) Stojanovic, F. M.; Arnold, Z. *Collect. Czech. Chem. Commun.* **1967**, *32*, 2155. (b) Sezer, O.; Dabak, K.; Akar, A.; Anac, O. *Helv. Chim. Acta* **1996**, *79*, 449. (c) Costa, M. S.; Boechat, N.; Rangel, E. A.; da Silva, F. de C.; de Souza, A. M. T.; Rodrigues, C. R.; Castro, H. C.; Junior, I. N.; Lourenco, M. C. S.; Wardell, S. M. S. V.; Ferreira, V. F. *Bioorg. Med. Chem.* **2006**, *14*, 8644. (d) Ferreira, S. B.; Costa, M. S.; Boechat, N.; Bezerra, R. J. S.; Genestra, M. S.; Canto-Cavalheiro, M. M.; Kover, W. B.; Ferreira, V. F. *Eur. J. Med. Chem.* **2007**, *42*, 1388.
- (12) Wenkert, E.; Ananthanarayan, T. P.; Ferreira, V. F.; Hoffmann, M. G.; Kim, H. S. J. Org. Chem. 1990, 55, 4975.
- (13) Pereira, L. O. R.; Cunha, A. C.; Cecilia, M.; De Souza, B. V.; Ferreira, V. F. J. Brazilian Chem. Soc. 2002, 13, 368.
- (14) Kim, H.-S.; Yoon, Y. H. Bull. Korean Chem. Soc. **1993**, 14, 159.
- (15) (a) Wang, G. J.; Ella-Menye, J.-R.; Sharma, V. *Bioorg. Med. Chem. Lett.* 2006, *16*, 2177. (b) Wolfe, S.; Shustov, G. Patent WO 2003011298, 2003; *Chem. Abstr.* 2003, *138*, 153829.
- (16) Ina, S.; Yamana, K.; Suzuki, N.; Otani, T.; Iino, M.; Takahama, A. Patent WO 2003008396, **2003**; *Chem. Abstr.* **2003**, *138*, 137317.

- (17) Savelon, L.; Bizot-Espiard, J. G.; Caignard, D. H.; Pfeiffer, B.; Renard, P.; Viaud, M. C.; Guillaumet, G. *Bioorg. Med. Chem.* **1998**, *6*, 133.
- (18) Qi, H. Z.; Li, X. Y.; Xu, J. X. Org. Biomol. Chem. 2011, 9, in press; DOI:10.1039/C0OB00783H.
- (19) Arnold, Z.; Sauliova, J. Collect. Czech. Chem. Commun. 1973, 38, 2641.
- (20) Fujisawa, T.; Sato, T. Org. Synth. 1988, 66, 121.
- (21) Sezer, O.; Anac, O. Helv. Chim. Acta 1994, 77, 2323.
- (22) Arnold, Z.; Sauliova, J.; Krchnak, V. Collect. Czech. Chem. Commun. 1973, 38, 2633.
- (23) For recent reviews, see: (a) *The Organic Chemistry of* β-Lactams; Georg, G. I., Ed.; Verlag Chemie: Weinheim, 1993. (b) Palomo, C.; Oiarbide, M.; Aizpurua, J. M. In *Science of Synthesis*, Vol. 23; Danheiser, R., Ed.; Thieme: Stuttgart, 2006, 169–213. (c) Xu, J. X. ARKIVOC 2009, (ix), 21. For recent examples, see: (d) Liang, Y.; Jiao, L.; Zhang, S. W.; Yu, Z. X.; Xu, J. X. J. Am. Chem. Soc. 2009, 131, 1542. (e) Li, B. N.; Wang, Y. K.; Du, D. M.; Xu, J. X. J. Am. Chem. 2007, 72, 990. (f) Jiao, L.; Liang, Y.; Xu, J. X. J. Am. Chem. Soc. 2006, 128, 6060.
- (24) Sato, M.; Ogasawara, H.; Kato, T. *Chem. Pharm. Bull.* **1984**, 32, 2602.
- (25) Yamamoto, Y.; Watanabe, Y. Chem. Pharm. Bull. 1987, 35, 1871.