Intramolecular Opening of β-Lactams with Amines as a Strategy Toward Enzymatically or Photochemically Triggered Activation of Lactenediyne Prodrugs

Luca Banfi,*^[a] Giuseppe Guanti,*^[a] and Marcello Rasparini^[a]

Keywords: Lactams / Nucleophilic substitution / Photolysis / Prodrugs / Ring expansion

In order to develop a general strategy for selective activation of designed enediyne prodrugs belonging to the "lactenediyne" family, we studied the scope of intramolecular transamidation of simple monocyclic β -lactams bearing a tethered amine. The effect of substituents, of reaction media, and of the type of tether, on the rate of transamidation is disclosed. The possibility of triggering the transamidation event under mild conditions by the action of suitable enzymes or UV light was demonstrated on model monocyclic β -lactams. Finally, the strategy of intramolecular opening of the β -lactam leading to a larger seven-membered ring was employed on a lactenediyne, demonstrating that ring enlargement could unleash the reactivity of the enediyne moiety.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

Introduction

We have recently reported the synthesis of various members of a new family of artificial enediynes $(lactenediynes)^{[1-3]}$ characterized by the fusion of a β -lactam with a ten-membered enediyne ring. These compounds have been designed to be structurally simpler than natural enediyne antibiotics,^[4] and to be endowed with a triggering mechanism amenable to selective control. The most useful representatives of this family have the general formula 1 (Scheme 1). We have already proved that in these compounds the β -lactam unit acts as a very efficient safety lock, completely preventing Bergman cycloaromatization of the enediyne. On the other hand, removing this constraint results in a reactive monocyclic enediyne, which cyclizes rapidly to a reactive diradical. Opening of the four-membered ring may, therefore, represent the triggering event that converts a stable prodrug into a reactive, cytotoxic drug.

In the absence of activating substituents, the β -lactam unit is quite stable under physiological conditions. It is necessary, therefore, to find a way to induce its opening under mild conditions. Optimally, the triggering event should be initiated by the action of a suitable enzyme or by UV light. In this way, it would be possible, in principle, to effect prodrug activation selectively within tumor cells.

There are three alternative strategies that exploit enzymes for prodrug activation: prodrug monotherapy (PMT),^[5,6] antibody-directed enzyme prodrug therapy (ADEPT),^[7]

 [a] Dipartimento di Chimica e Chimica Industriale dell'Università di Genova
 Via Dodecaneso 31, 16146 Genova, Italy
 E-mail: banriv@chimica.unige.it
 guanti@chimica.unige.it

Scheme 1

and gene-directed enzyme prodrug therapy (GDEPT). Photochemically directed prodrug therapy (PDPT) may also be used to direct the cytotoxic effects with site selectivity. We feel that designed enediynes can be ideal candidates for these four strategies, although by now only a few examples of artificial enediynes equipped with enzymatic^[8] or photochemical^[9,10] triggers have been reported.

We thought that a good way to achieve our goals would be to tether a nucleophile, in particular an amino group, to the lactenediyne in order to make intramolecular opening of the β -lactam unit feasible under mild conditions. Since several enzymatically or photochemically removable amine protecting groups are known, accomplishing such a strategy definitely seems workable. Intramolecular opening of the β lactam unit in lactenediynes 1 does not lead to monocyclic enediynes, but to *ortho*-fused or spiro-bicyclic systems. Because of the different nature of the newly formed fused heterocyclic rings, however, no longer are they expected to be stabilizing against cycloaromatization. Preliminary molecular mechanics calculations, performed using the simplified approach proposed by Maier,^[11] corroborated this hypothesis.

At the outset of this work very little was known on the intramolecular nucleophilic opening of simple monocyclic β -lactams.^[12] For this reason, we decided to explore the whole strategy on model compounds. In a preliminary communication we have already described some results concerning the effect of the type of tether, of substituents, and of reaction media, on the rate of transamidation.^[13] We now report in full the preparation of those and other model compounds, the results of transamidation, and the conjugation of these model compounds with enzymatically or photochemically removable protecting groups.

Finally, we report the first application of the strategy on a simple lactenediyne, demonstrating that ring enlargement removes all of the steric constraints that inhibit cycloaromatization.

Preparation of Model Amines

To gain some insight on the influence that structural changes have on the rate of transamidation reactions, we prepared a series of model monocyclic β -lactams having an amino group tethered either at N-1 (2a-d) or at C-3. In these compounds the amine is connected to the β -lactam through either an oxygenated chain (3a-c) or an alkyl chain (4). All the compounds were prepared in racemic form. They are depicted in Scheme 1 (BOM = PhCH₂OCH₂). Although the amino group could be also tethered, in principle, to C-4, we chose not to study this type of compound for two reasons: a) We expected that stereoselective synthesis of trans-lactenediynes, disubstituted at position 4 of the β -lactam unit, would be problematic. b) The transition state for a transamidation reaction in this case would be (again at the lactenediyne level) a bridged tricyclic ring instead of an *ortho*-fused tricyclic ring and, thus, we foresaw the intramolecular reaction as being more difficult.

Amines 2a - d were prepared in every case from the corresponding alcohols 9a-d through azides 14a-d (Scheme 3). The syntheses of alcohols 9a-d are in turn described in Scheme 2. Compound 9a was prepared from known azetidinone 5.^[2] After protection of the hydroxy unit as a benzyloxymethoxy ether and N-desilylation, the required side chain was introduced by base-mediated alkylation of the nitrogen atom with ethyl bromoacetate. This reaction was carefully optimized by varying the bromoacetate and base employed. Good yields were obtained with either tBuOK, NaN(SiMe₃)₂ or by the phase-transfer methodology described by Reuschling.^[14] As for the ester, we found that ethyl or tert-butyl bromoacetates definitely gave better yields than benzyl bromoacetate. In order to facilitate subsequent reduction, we eventually chose the ethyl ester. Reduction of 8 with calcium borohydride gave 9a. This reagent is ideal in this case because the reaction medium is not

basic, provided that $CaCl_2$ is used in slight excess, and thus intramolecular β -lactam opening by the alcohol is avoided. Compounds **9b**-**d** were prepared in a completely different way, starting from the imine formed between cinnamaldehyde and 2-[(*tert*-butyldimethylsilyl)oxy]ethanamine.^[15] Staudinger condensations with methoxyacetyl and phenoxyacetyl chlorides furnished azetidinones **10** and **13**, respectively. Compound **10** was converted by desilylation to the 4-styrylazetidinone **9b** or, through ozonolysis, protection, and desilylation, to **9c**. The synthesis of **9d** from **13** was carried out similarly to that of **9c**.

Scheme 2. a) BOMCl, EtN*i*Pr₂; b) nBu_4NF , THF, -40 °C; c) KOH, BrCH₂CO₂Et; d) Ca(BH₄)₂, THF/H₂O, -20 °C; e) HOCH₂CH₂NH₂; f) Me₂*t*BuSiCl, Et₃N; g) MeOCH₂COCl, Et₃N, CH₂Cl₂, -78 °C \rightarrow room temp; h) HF, H₂O/CH₃CN; i) O₃, then Me₂S·NaBH₄; l) PhOCH₂COCl, Et₃N, CH₂Cl₂, -78 °C \rightarrow room temp.

All of these alcohols were transformed into the corresponding azides 16a-d by substitution of their corresponding mesylates (Scheme 3). Finally, reduction with triphenylphosphane^[16] gave the free amines 2a-d, which were purified by chromatography [CHCl₃/MeOH/*i*Pr₂NH]. Interestingly, some of these amines (2a and 2d) tend to give two spots by TLC, but they cannot be separated by column chromatography. Treatment with an acylating agent (e.g., Ac₂O in pyridine) provokes the disappearance of both spots, and affords the expected acetamides in high yields. Therefore, we think that the presence of the two spots reflects an equilibrium between a free amine and its product of addition to the β -lactam carbonyl group (a sort of hemiaminal). This fact, however, could not be proved by ¹H NMR spectroscopy because the spectra were quite complex. On standing, amines 2a-d tended to afford less-polar products, giving negative FluramTM tests,^[17] identified as the seven-membered azalactams 17a-d. This transformation is clearly faster for oxygenated compounds 2c-d. In the case of 2d in particular, 17d is already visible in the crude mixture derived from azide reduction. After the intramolecular transamidation process was completed as described below, the rearranged azalactams 17a-d were easily identified by IR, ¹³C NMR and ¹H NMR spectroscopies. In the IR spectrum, the β -lactam carbonyl signal that had appeared at about 1740 cm⁻¹ was replaced by a signal at 1660 cm⁻¹. In the ¹³C NMR spectrum, the carbonyl group's signal was shifted downfield by about 8-9 ppm relative to that of the β -lactam. In the ¹H NMR spectrum, the coupling constants between 3-H and 4-H (β -lactam numbering) changed: the *cis* one went from 4-5 Hz to nearly 0 Hz, while the *trans* one (present only in the case of 2a-17a) went from 2.2 to 9.8 Hz. Moreover, the signal(s) of 3-H proton(s) was (were) shifted upfield by about 0.5 ppm.

Scheme 3. a) MsCl, Et₃N, CH₂Cl₂, -30 °C; b) NaN₃, DMF, 50–60 °C; c) Ph₃P, H₂O/THF, room temp.

Amines 3a,b (Scheme 4) were prepared in racemic form as shown in Scheme 4. Again, in this case the first step was a Staudinger reaction^[18] between an imine of glyceraldehyde acetonide and allyloxyacetyl chloride. As already reported, this reaction afforded racemic 18 as a single diastereoisomer from among the four possible ones. Ozonolysis of 18, followed by in situ NaBH₄ reduction, afforded alcohol 19 in unsatisfactory yields, because intramolecular opening of the lactam by the hydroxy group occurred, followed by reduction of the resulting lactone. We then discovered that an excellent yield of 19 could be achieved by reduction of the ozonolysis product with Me₂S to form the aldehyde that then was reduced with BH₃. Transformation into the amine 3a was then realized as outlined above. To evaluate the effect of an electron-withdrawing substituent bonded to the nitrogen atom, we also replaced the anisyl group with a *tert*-butoxycarbonylmethyl group to give 22. Ozonolysis/reduction and the usual functional group transformations gave 3b.

The synthesis of amine 3c followed a very similar approach (Scheme 5). In this case the required imine was prepared from benzyloxymethoxyacetaldehyde, in turn obtained by ozonolysis of ether 26.

Scheme 4. a) *p*-Anisidine, mol. sieves; b) allyloxyacetyl chloride, CH_2Cl_2 , Et_3N , -20 °C to room temp.; c) O₃, $CH_2Cl_2/MeOH$, then Me₂S; d) BH₃·THF; e) MsCl, Et_3N , CH_2Cl_2 , -30 °C; f) NaN₃, DMF, 50–60 °C; g) Ph₃P, H₂O/THF, room temp.; h) Ce(NH₄)₂(NO₃)₆; i) *t*BuOK, BrCH₂CO₂*t*Bu, *n*Bu₄NI

Scheme 5. a) O₃, CH₂Cl₂/MeOH, then Me₂S; b) *p*-anisidine, mol. sieves; c) allyloxyacetyl chloride, CH₂Cl₂, Et₃N, -20 °C to room temp.; d) BH₃·THF; e) MsCl, Et₃N, CH₂Cl₂, -30 °C; f) NaN₃, DMF, 50–60 °C; g) Ph₃P, H₂O/THF, room temp.; h) crotonyl chloride, Et₃N, CH₂Cl₂, reflux; i) Ca(BH₄)₂, THF/EtOH; l) BOMCl, EtN*i*Pr₂; m) 9-BBN, THF, room temp.; then KHCO₃, H₂O₂

Compounds $3\mathbf{a}-\mathbf{c}$ also showed the same phenomenon of the double spot on TLC plates that was seen with $2\mathbf{a}$ and $2\mathbf{d}$. On standing in solution, compounds $3\mathbf{a}-\mathbf{c}$ were slowly converted into morpholinones $25\mathbf{a}-\mathbf{c}$. The rearranged azalactams $25\mathbf{a}-\mathbf{c}$ could be easily identified by IR, ¹³C NMR and ¹H NMR spectroscopies. In the IR spectra, the β -lactam carbonyl groups' signals that had appeared at about 1740 cm⁻¹ were replaced by signals at 1670 cm⁻¹. In the ¹³C NMR spectra, the carbonyl groups' peaks were shifted downfield by about 4 ppm relative to those of the β -lactams. In the ¹H NMR spectra, the coupling constants between 3-H and 4-H (β -lactam numbering) went from 4-5 Hz to nearly 0 Hz. Finally, the 3-H protons were shifted upfield by about $\delta = 0.4$ ppm.

For the synthesis of 4 (Scheme 5), we condensed crotonyl chloride with imine 30. Although this reaction was reported to give a 60% yield,^[19] in our hands the method was less efficient. Nevertheless, the adduct 31 was reduced with calcium borohydride in good yield to give the alcohol 32. It is worth noting that the same reduction conditions failed when applied to the similar 3-(allyloxy)-4-(methoxycarbonyl)-1-(4-methoxyphenyl)-2-azetidinone, which led instead to reduction also of the β -lactam unit. It seems that the 3-alkoxy substituent activates the β-lactam toward reduction. Reduction of **31** with NaBH₄ in THF/EtOH/H₂O produced a mixture of 32 and of the *trans* isomer, probably because of enolization at the carbon atom α to the methyl ester. To avoid this isomerization, it is important to use a slight excess of CaCl₂ in the preparation of Ca(BH₄)₂.^[20] After protection as the BOM ether, the double bond in 33 was smoothly hydroborated with 9-BBN to give the alcohol 34, which was finally converted into amine 4 through the usual protocol.

Compound 4 also underwent rearrangement, albeit more slowly, to the pyrrolidinone 36. In the IR spectrum, the carbonyl group's signal moved from the position of a typical

 β -lactam (1740 cm⁻¹) to 1692 cm⁻¹, while in the ¹³C NMR spectrum, the signal of the carbonyl group was shifted downfield by about 10 ppm.

Studies on the Rate of Intramolecular Transamidation of Model Amines

The half-lives of amines 2a-d, 3a-c and 4 were examined in 96% EtOH as solvent (Table 1) by taking aliquots of the solutions and analysing them by ¹H NMR spectroscopy. Although in aprotic solvents the reaction rate was in some cases slightly higher,^[13] we preferred a protic solvent because of its greater similarity to in vivo conditions. In all cases, the reactions were driven to completion after an appropriate time, indicating that the equilibrium was shifted to the right. The collected results show that the nature of the substituent can be important in accelerating the reaction. For example, in the case of lactams 2a-d, where the amino group is tethered to the nitrogen atom, an OR group at C-3 causes an increase in the rate, with the phenoxy group being more activating than the methoxy one. An unsaturated substituent at C-4 also has an activating effect. As for the lactams $3\mathbf{a}-\mathbf{c}$, with the amino unit tethered at C-3, the *tert*-butoxycarbonylmethyl group was more activating than an aryl group, despite the higher basicity of the leaving group. This result suggests that the leaving group probably is not the amide anion, and that protonation of the lactam nitrogen atom before opening of the ring may be required for a fast reaction rate.^[21]

The lower reactivity of amines 3a and 3c compared to 2b-d is somewhat surprising, since they have an oxygenated substituent at C-3 and an aryl group at the nitrogen atom (which is expected to be more activating than an alkyl group). This observation may depend on stereoelectronic factors: if the activation by the oxygen atom in compounds

Table 1. Rate of intramolecular transamidation of amines 2a-d, 3a-c and 4 in 96% EtOH

Entry	Starting amine	Rearranged lactam	Additives	Conc. [M]	Temp. [°C]	t _{1/2} [h] ^[a]
1	2a	17a	none	$1.1 \cdot 10^{-2}$	60	136
2	2b	17b	none	$1.1 \cdot 10^{-2}$	60	8
3	2b	17b	none	$1.1 \cdot 10^{-2}$	40	55
4	2c	17c	none	$1.1 \cdot 10^{-2}$	60	25
5	2c	17c	none	$1.1 \cdot 10^{-2}$	40	90
6	2d	17d	none	$1.1 \cdot 10^{-2}$	60	8
7	2d	17d	none	$1.1 \cdot 10^{-2}$	40	50
8	3a	25a	none	$1.1 \cdot 10^{-2}$	60	130
9	3b	25b	none	$1.1 \cdot 10^{-2}$	60	22
10	3c	25c	none	$1.1 \cdot 10^{-2}$	60	120
11	4	36	none	$1.1 \cdot 10^{-2}$	60	204
12	2a	17a	none	10^{-1}	60	130
13	2a	17a	0.1 м Et ₃ N	$1.1 \cdot 10^{-2}$	60	130
14	2a	17a	0.1 м Еt ₃ N/0.05 м АсОН	$1.1 \cdot 10^{-2}$	60	8
15	2a	17a	0.1 м Еt ₃ N/0.05 м АсОН	$1.1 \cdot 10^{-2}$	40	33
16	2d	17d	0.1 м Et ₃ N/0.05 м АсОН	$1.1 \cdot 10^{-2}$	40	3

^[a] $t_{1/2}$ was determined by ¹H NMR spectroscopy (see Exp. Sect.).

3 depends on the spatial arrangement of its nonbonding electron pairs, intramolecular transamidation of amines $3\mathbf{a}-\mathbf{c}$ may force the electron pairs into an unfavourable position. Another explanation is that the oxygen atom in the β -position lower the basicity of the amine. To check this hypothesis we prepared amine 4, in which the tether does not contain an oxygen atom, but its reactivity was found to be even lower than that of $3\mathbf{a}$ and $3\mathbf{c}$.

As expected, the effect of concentration on rate was negligible (compare Entry 12 with Entry 1). Also, a basic additive (Et₃N) had no effect. On the contrary, we observed a dramatic accelerating effect brought about by a near-neutral buffer (compare Entry 14 with Entry 1 and Entry 16 with Entry 7). This observation indicates once again that protonation of the leaving nitrogen atom is likely to be of great importance in the mechanism. Surprisingly, the effect of buffer on amine **3a** was less significant than on other lactams.^[13]

In conclusion, the collected data allowed us to demonstrate the possibility of intramolecular opening of the lactam to give a larger ring under conditions similar to those that may be present in the cell. Although the rate of transamidation still seems too low in ethanol alone, the dramatic effect of buffer is promising in view of in vivo applications. Compounds with the amine tethered to the nitrogen atom and having an alkoxyl group at C-3 have been singled out as good candidates for implementing this strategy at the lactenediyne level.

Control of Transamidation by Blocking the Amines with an Enzymatically or Photochemically Removable Protecting Group

To induce selective intramolecular opening of the β -lactam ring of the lactenediynes within the tumor cells or in their neighbourhood, we planned to block the amino unit with enzymatically or photochemically removable protecting groups. Again, in this case we first carried out a preliminary study on a model compound lacking the enediyne moiety, represented by amine **2b**. It was converted, as shown in Scheme 6, into three protected derivatives: **37**, **40** and **41**. The best yields of these compounds were obtained by not isolating the amine **2b** chromatographically, but by directly acylating the crude product of the reduction of azide **16b** with PPh₃.

Phenylacetamide **37** was prepared to exploit Penicillin G acylase as the initiator of the cascade of events leading to intramolecular β -lactam opening. This is a cheap, non-endogenous enzyme that is perfectly suited for Antibody-Directed Enzyme Prodrug Therapy (ADEPT). The enzyme is generally active in the hydrolysis of esters^[22,23] and amides^[23,24] of phenylacetic acid, and has been used previously in the activation of antitumor prodrugs.^[25] The enzymatic deprotection of **37** was carried out in aqueous TRIS buffer (pH = 7.5) containing 10% MeOH (used to partially solubilize the substrate). The hydrolysis reaction was complete in 5 h, indicating that **37** is a good substrate for the enzyme.

Scheme 6

At this point, TLC showed the presence of both amine **2b** and azalactam **17b**. On stirring overnight at 37 °C, complete conversion of **2b** into **17b** occurred and the latter was isolated in good yield.

Plasmin is a serine protease that has been found to be particularly abundant on the surface of tumor cells with high metastatic potential.^[26] It was, therefore, suggested as an ideal candidate for the development of a Prodrug Monotherapy (PMT) approach to selective delivery of antitumor agents to cancer cells.^[5,27] Plasmin is an endopeptidase that is selective for breaking the peptide bond at a lysine site. Tripeptide **38**, therefore, is a well-suited protecting group to be cleaved by plasmin: the terminal D-valine unit is important to avoid the action of exopeptidases. The synthesis of Boc-protected tripeptide **38** was carried out as described previously.^[5] We also prepared the analogous Fmoc-protected derivative, but we had trouble coupling it with **2b** and in chromatographic purification (in part, because of the high insolubility of these Fmoc derivatives).

After coupling **2b** with **38**, the protecting groups were smoothly removed by CF_3CO_2H . Reaction of the resulting

salt 40 with plasmin took place at room temperature in buffer of pH = 7.5. In this case the reaction was slower than that with Penicillin G acylase and, as a result, we isolated the rearranged azalactam 17b directly.

Finally, we also protected the amino group of 2b as the nitroveratryl urethane 41. This group is known to be removable by irradiation at 350 nm.^[10,28] Compound 41 disappeared after several hours (depending on the molar amount and on the overall lamp power) when it was irradiated at 350 nm at room temperature in ethanol. The yields, however, of either the amine 2b or the azalactam 17b were poor. These low yields were probably due to reaction of the free amine with the nitrosoaldehyde derived from the protecting group. To circumvent this problem, we carried out the deblocking in the presence of semicarbazide or H_2SO_4 .^[29] The yields in these cases turned out to be quite good, as determined by phenylacetylation of the resulting crude 2b to afford the corresponding phenylacetamide in 65-75% yield. The most convenient additive is H₂SO₄. The ammonium salt of 2b is stable against transamidation and it can be purified from the byproducts by simple extraction. On addition of a base, the amine **2b** can be extracted into CHCl₃. Stirring of this solution at 40 °C led to complete conversion of 2b into azalactam 17b.

First Application of the Intramolecular Transamidation Reaction to Lactenediynes

The study described above on model compounds has demonstrated the feasibility of triggering, with suitable enzymes or UV light, the intramolecular opening of a monocyclic β -lactam under mild conditions (pH = 7.5, temperature ca. 37 °C). We still had to check, however, that ring enlargement to a more flexible seven-membered azalactam really does remove the "safety lock" provided by the β -lactam, thus allowing enedivne cycloaromatization to occur. Preliminary force-field calculations had suggested that this process was likely to happen, but we obviously needed more solid experimental proof. Therefore, we prepared amine 46, starting from the previously described lactenediyne 42 (Scheme 7). The first step of this synthesis is interesting. On treating with a base such as KN(SiMe₃)₂ or NaH, a fast, quantitative migration of the silyl group occurs from the nitrogen atom to the oxygen atom. The resulting anion at the nitrogen atom can be alkylated in situ with ethyl bromoacetate. In just one step, therefore, we have succeeded in protecting the hydroxy group, deblocking the nitrogen atom, and then alkylating it. The following steps are similar to those applied to the model compounds. Amine 46 was purified by chromatography and can be stored in a freezer as the stable hydrochloride salt. On warming the free amine in THF at reflux in the presence of the hydrogen donor 1,4cyclohexadiene, the amine slowly disappears and gives rise to two new spots (TLC). Small quantities (< 1 mg) of the less-polar one were isolated by fast preparative TLC and analyzed by ¹H NMR spectroscopy. This compound, which still possesses the enediyne group and, therefore, is most

likely azalactam 47, is always present in minimal quantities throughout the reaction; the main product is the cycloaromatized compound 48. The latter compound was isolated in moderate yield (45%) after completion of the reaction (4 d). Its structure was easily identified, by ¹H and ¹³C NMR spectroscopy, by the absence of the ethylenic protons and carbon atoms and of the acetylenic carbon atoms typical of the enediyne moiety, and by the presence of aromatic protons and carbon atoms. The fact that intramolecular transamidation had occurred was demonstrated by: a) the carbonyl group's appearance at 1663 cm^{-1} in the IR spectrum; b) the signal at $\delta = 179.04$ ppm in the ¹³C NMR spectrum for the carbonyl group; c) the presence of an amide NH unit in both ¹H NMR and IR spectra. The half-life of 46 under these conditions was estimated to be about 24 h. At 40 °C the reaction was obviously slower. At this temperature, however, 47 was only ever present in small quantities, indicating that cycloaromatization is faster than intramolecular transamidation. The reactivity of 46 towards transamidation seems somewhat lower than that of the model compound 2a. Structural modifications, such as, for example, the introduction of an alkoxy group at C-3, are expected to increase its reactivity. We have recently completed the total synthesis of lactenediynes endowed with this feature.^[3,15]

Scheme 7

Conclusions

A thorough study on the intramolecular transamidation of model β -lactams bearing an amino group tethered at either N-1 or C-3 has been carried out, showing interesting structure–reactivity relationships and the important effects of solvent and buffer. Protection of this amine with enzymatically or photochemically removable groups allows the selective triggering of intramolecular β -lactam opening. Finally, applying the same concepts to a lactenediyne, we have demonstrated that, upon ring enlargement, the heterocycle *trans*-fused with the enediyne ring is no longer able to act as a "safety lock" (i.e., it no longer prevents cycloaromatization).

These results open the way to the implementation of these concepts in the development of new lactenediyne prodrugs whose activity against DNA may be triggered by a suitable enzyme or by UV light. Studies towards this important goal are in progress.

Experimental Section

General Remarks: ¹H and ¹³C NMR spectra were taken in CDCl₃ at 200 MHz and 50 (or 20) MHz, respectively. Chemical shifts are reported in ppm (δ scale), using TMS as an internal standard. Coupling constants are reported in Hz. In ABX systems, the proton A is considered downfield and B upfield. Peak assignment in the ¹³C NMR spectra was also made on the basis of DEPT or offresonance experiments. GC-MS was carried out with an HP-5971A instrument, with an HP-1 column (12 m long, 0.2 mm diameter), electron impact at 70 eV, a mass temperature of about 167 °C, and starting the spectral range from m/z = 33. Analyses were performed with a constant He flow of 0.9 mL/min, starting at 100 °C for 2 min (unless otherwise noted) and then raising the temperature by 20 °C/min. Values of R_t were measured in minutes from injection. IR spectra were measured as CHCl₃ solutions. TLC analyses were carried out on silica gel plates, which were scrutinized by UV or by dipping into a solution of $(NH_4)_4MoO_4\cdot 4H_2O$ (21 g) and Ce(SO₄)₂·4H₂O (1 g) in H₂SO₄ (31 mL) and H₂O (469 mL) and warming. In the case of primary amines, the spots were also developed with the FluramTM reagent.^[17] Values of $R_{\rm f}$ were measured after an elution of 7-9 cm. Column chromatographies were carried out on 220-400 mesh silica gel by using the "flash" methodology. All reactions employing dry solvents were carried out under nitrogen (or argon, where indicated). During extractions, the aqueous phases were always reextracted twice with the indicated organic solvent. Organic extracts were always dehydrated with Na2SO4 and filtered before concentration to dryness. Abbreviations used: PE =petroleum ether, boiling range 40-60 °C; THF = tetrahydrofuran; DMF = dimethylformamide; BOM = benzyloxymethyl; pyBOP =(benzotriazol-1-yloxy)tris(pyrrolidino)phosphonium hexafluorophosphate.

rac-4-[(Benzyloxymethoxy)methyl]-1-(*tert*-butyldimethylsilyl)azetidin-2-one (6): A solution of alcohol $5^{[2]}$ (2.510 g, 11.65 mmol) in dry CH₂Cl₂ (40 mL) was cooled to 0 °C and treated in sequence with *N*-ethyldiisopropylamine (3.00 mL, 17.52 mmol) and freshly distilled benzyl chloromethyl ether (2.5 mL, 18.0 mmol). After 10 min, the cooling bath was removed and the solution stirred for 5 h at room temp. After addition of diethylamine (1.21 mL, 11.65 mmol) and stirring for 15 min, the mixture was poured into saturated aqueous NH₄Cl and extracted with Et₂O. Concentration and chromatography of the crude product (PE/EtOAc, 70:30 to 50:50 + 1% Et₃N) gave pure **6** as a slightly yellow oil (2.894 g, 74%). $R_{\rm f} = 0.55$ (PE/EtOAc, 70:30). C₁₈H₂₉NO₃Si (335.51): calcd. C 64.44, H 8.71, N 4.17; found C 64.5, H 8.75, N 4.1. GC-MS: $R_t = 9.55$, m/z = 278 [M^{+·} - 57] (2.3), 248 (3.3), 206 (16.7), 158 (4.5), 100 (10.0), 91 (100.0), 75 (3.9), 73 (10.1), 65 (4.4), 57 (6.8), 41 (7.3). ¹H NMR: $\delta = 0.23$ and 0.24 (2 s, 2 × 3 H, CH₃Si), 0.96 [s, 9 H, (CH₃)₃C], 2.78 (dd, J = 2.0, 15.2 Hz, 1 H, CHHC=O), 3.13 (dd, J = 5.4, 15.2 Hz, 1 H, CHHC=O), 3.56-3.76 (m, 3 H, CHN and CH₂O), 4.61 (s, 2 H, PhCH₂), 4.77 (s, 2 H, OCH₂O), 7.30-7.43 (m, 5 H, aromatics) ppm.

rac-4-[(Benzyloxymethoxy)methyl]azetidin-2-one (7): A solution of alcohol 6 (2.620 g, 7.81 mmol) in dry THF (40 mL) was cooled to -40 °C and treated with a solution of $nBu_4NF\cdot 3H_2O$ in THF (1 M, 23.4 mL, 23.4 mmol). After 1 h, the reaction was complete and was quenched at -40 °C with saturated aqueous NH₄Cl. Extraction with Et₂O gave, after concentration and chromatography (PE/ EtOAc, 30:70 to 20:80), pure 7 as a slightly yellow oil (1.708 g, 99%). $R_{\rm f} = 0.27$ (PE/EtOAc, 30:70). $C_{12}H_{15}NO_3$ (221.25): calcd. C 65.14, H 6.83, N 6.33; found C 65.3, H 7.05, N 6.2. GC-MS: $R_t =$ 7.93, $m/z = 190 [M^{+} - 31] (0.2), 120 (29.5), 119 (9.8), 108 (12.0),$ 91 (100.0), 72 (8.4), 70 (12.8), 65 (10.4), 43 (19.7), 41 (7.6), 39 (5.3). ¹H NMR: $\delta = 2.65$ (ddd, J = 1.5, 2.4, 14.8 Hz, 1 H, CHHC=O), 3.04 (ddd, J = 1.9, 4.9, 14.8 Hz, 1 H, CHHC=O), 3.56 (dd, J =8.5, 11.2 Hz, 1 H CHHO), 3.75-3.86 (m, 2 H, CHN and CHHO), 4.61 (s, 2 H, PhCH₂), 4.79 (s, 2 H, OCH₂O), 5.99 (br. s, 1 H, NH), 7.30–7.43 (m, 5 H, aromatics) ppm. ¹³C NMR (20 MHz): δ = 40.52 (CH2), 46.92 (CH), 69.92 (CH2O), 70.80 (CH2O), 95.17 (OCH2O), 127.84, 128.53 (aromatics), 137.51 (quat. aromatic), 167.50 (*C*=O) ppm. IR: $\tilde{v}_{max} = 3416, 3003, 2950, 2890, 2870, 1762$ (s), 1604, 1494, 1453, 1412, 1361, 1337, 1167, 1109, 1037 cm⁻¹.

Ethyl rac-{2-[(Benzyloxymethoxy)methyl]-4-oxoazetidin-1-yl}acetate (8): A solution of azetidinone 7 (1.00 g, 4.52 mmol) in dry THF (30 mL) was cooled to 0 °C and treated with nBu₄NBr (154 mg, 0.48 mmol), powdered KOH (85%, 348 mg, 5.27 mmol) and ethyl bromoacetate (0.60 mL, 5.41 mmol). After 75 min, the reaction was complete and was quenched with saturated aqueous NH₄Cl. Extraction with $Et_2O(2 \times)$ and EtOAc gave, after concentration and chromatography (PE/EtOAc, 50:50 to 40:60), pure 8 as an oil (1.171 g, 84%). $R_{\rm f} = 0.41$ (PE/EtOAc, 50:50). $C_{16}H_{21}NO_5$ (307.34): calcd. C 62.53, H 6.89, N 4.56; found C 62.35, H 6.9, N 4.5. GC-MS: $R_t = 9.55$; $m/z = 307 [M^{+-}]$ (0.1), 234 (0.5), 200 (9.3), 174 (5.7), 156 (9.7), 129 (6.6), 120 (13.2), 114 (7.5), 91 (100.0), 86 (11.3), 65 (5.6), 56 (5.6), 55 (4.5), 41 (7.2). ¹H NMR: $\delta = 1.28$ (t, J =7.1 Hz, 3 H, CH_3), 2.71 (dd, J = 2.6, 14.6 Hz, 1 H, CHHC=O), 3.08 (dd, J = 5.2, 14.6 Hz, 1 H, CHHC=O), 3.68 and 3.83 (AB part of ABX system, $J_{AB} = 10.4$ Hz, $J_{AX} = 3.4$ Hz, $J_{BX} = 7.6$ Hz, 2 H, CH₂O), 3.86 (d, J = 18.0 Hz, 1 H, CHHCO₂Et), 4.00 (m_c, 1 H, CHN), 4.18 (d, J = 18.0 Hz, 1 H, CHHCO₂Et), 4.19 (q, J =7.2 Hz, 2 H, CH₂CH₃), 4.59 (s, 2 H, PhCH₂), 4.75 (s, 2 H, OCH₂O), 7.30-7.43 (m, 5 H, aromatics) ppm.

rac-4-[(Benzyloxymethoxy)methyl]-1-(2-hydroxyethyl)azetidin-2-one (9a): A suspension of finely ground CaCl₂ (388 mg, 3.48 mmol) in dry THF (20 mL) and dry EtOH (10 mL) was cooled to -20 °C and treated with NaBH₄ (240 mg, 6.40 mmol). After 15 min, a solution of ester 8 (357 mg, 1.16 mmol) in dry THF (10 mL) was added. After 3.5 h, the reaction was complete and was quenched by the slow addition of saturated aqueous NH₄Cl. Most of the THF and EtOH were evaporated and the mixture was extracted three times with EtOAc. After concentration and chromatography (PE/EtOAc, 30:70 to EtOAc/MeOH, 95:5) pure 9a was obtained as an oil (281 mg, 91%). $R_{\rm f} = 0.27$ (PE/EtOAc, 30:70). $C_{14}H_{19}NO_4$ (265.31): calcd. C 63.38, H 7.22, N 5.28; found C 63.6, H 7.4, N 5.0. GC-MS: $R_{\rm t} = 9.31$; m/z = 234 [M⁺⁺ - 31] (1.5), 204 (2.1), 144 (2.4), 132 (5.6), 120 (7.9), 114 (14.8), 91 (100.0), 72 (20.4), 65 (5.4), 45 (10.2), 41 (6.8). ¹H NMR: δ = 1.80 (br. s, 1 H, OH), 2.70 (dd, J = 2.2, 14.6 Hz, 1 H, CHHC=O), 2.99 (dd, J = 4.6, 14.6 Hz, 1 H, CHHC=O), 3.30–3.42 (m, 2 H, CH₂N), 3.64–3.90 (m, 5 H, CH₂O and CHN), 4.61 (s, 2 H, PhCH₂), 4.79 (s, 2 H, OCH₂O), 7.30–7.43 (m, 5 H, aromatics) ppm. ¹³C NMR (20 MHz): δ = 38.65 and 46.71 (CH₂), 51.35 (CHN), 60.44, 68.43, 69.96 (CH₂), 94.98 (OCH₂O), 127.69, 128.42 (aromatic CH), 137.33 (quat. aromatic), 167.66 (C=O) ppm. IR: \tilde{v}_{max} = 3668, 3603, 3430, 3085, 3036, 2995, 2943, 2888, 1741 (s), 1602, 1453, 1402, 1379, 1344, 1331, 1193, 1168, 1147, 1113, 1050, 944 cm⁻¹.

 $(3R^*, 4S^*)$ -1-(2-Hydroxyethyl)-3-methoxy-4-(2-phenylethenyl)azetidin-2-one (9b): A solution of silvl ether $10^{[15]}$ (4.50 g, 12.45 mmol) in CH₃CN (40 mL) was cooled to -20 °C and treated with 40% aqueous HF (2 mL, 45.18 mmol). The solution was stirred at -20 °C for 1 h, at -10 °C for 5 h, and at 0 °C for 3 h. Then the mixture was poured cautiously into a suspension of NaHCO₃ (12.6 g, 150 mmol) in 100 mL of H₂O. Extraction with EtOAc, followed by washing with saturated aqueous NaCl, concentration, and chromatography (EtOAc to EtOAc/MeOH, 95:5) gave pure 9b as a white solid (2.31 g, 75%). An analytical pure sample was obtained by trituration with Et₂O/PE. $R_{\rm f} = 0.31$ (EtOAc). M.p. 78.2-79.4 °C. C₁₄H₁₇NO₃ (247.29): calcd. C 68.00, H 6.93, N 5.66; found C 67.9, H 7.0, N 5.6. GC-MS: $R_t = 8.98$; $m/z = 247 [M^{+}]$ (3.3), 216 (28.9), 215 (6.7), 188 (7.5), 176 (21.2), 172 (5.3), 163 (23.4), 160 (58.5), 159 (45.7), 156 (26.4), 145 (18.3), 144 (21.7), 140 (13.7), 129 (38.8), 128 (33.3), 127 (16.3), 121 (5.9), 117 (46.1), 116 (19.4), 115 (100.0), 91 (37.5), 85 (7.3), 77 (13.6), 72 (11.6), 65 (9.1), 51 (13.0), 45 (34.8), 44 (12.0), 42 (12.0), 39 (15.7). ¹H NMR: δ = 3.10-3.45 (m, 2 H, CH₂N), 3.46 (s, 3 H, OCH₃), 3.74-3.90 (m, 3 H, CH_2OH), 4.35 (dd, J = 4.4, 9.1 Hz, 1 H, CHN), 4.64 (d, J =4.4 Hz, 1 H, CHOMe), 6.24 (dd, J = 9.1, 16.0 Hz, 1 H, CH= CHPh), 6.75 (d, J = 16.0 Hz, 1 H, PhCH), 7.20-7.50 (m, 5 H, aromatics) ppm. ¹³C NMR: $\delta = 45.41$ (CH₂N), 58.62 (CH₃O), 59.90 (CHN), 61.65 (CH₂OH), 84.70 (CHOMe), 122.61 (C= CHPh), 126.72, 128.46, 128.68 (aromatic CH), 135.78 (aromatic quat.), 137.07 (PhCH=), 167.66 (C=O) ppm. IR: v_{max} = 3402 (broad), 2994, 2928, 2832, 1739 (s), 1599, 1403, 1346, 1250, 1145, 1052, 995, 968 cm⁻¹.

(3R*,4S*)-1-[2-(tert-Butyldimethylsilyloxy)ethyl]-4-(hydroxymethyl)-3-methoxyazetidin-2-one (11): A solution of azetidinone 10^[15] (700 mg, 1.94 mmol) in dry CH₂Cl₂ (9 mL) and dry MeOH (13.4 mL) was ozonized at -78 °C until a grey-blue color persisted. The solution was treated with Me₂S (0.50 mL) and, after 10 min, with NaBH₄ (300 mg, 7.93 mmol). The temperature was allowed to rise to 0 °C during 2 h. The mixture was quenched with saturated aqueous NH₄Cl. After evaporation of most of the MeOH, extraction with EtOAc, concentration and chromatography (PE/EtOAc, 30:70 to 20:80) gave pure 11 as an oil (432 mg, 77%). $R_{\rm f} = 0.39$ (PE/EtOAc, 30:70). C13H27NO4Si (289.44): calcd. C 53.94, H 9.40, N 4.84; found C 54.3, H 9.2, N 4.7. GC-MS: $R_t = 7.42$; m/z = 274 $[M^{+-} - 15]$ (2.9), 232 (75.4) $[M^{+} - 57]$, 204 (10.6), 202 (6.4), 174 (11.8), 144 (36.7), 130 (6.8), 100 (78.6), 88 (100.0), 75 (49.8), 73 (46.1), 71 (64.8), 61 (8.0), 60 (29.2), 59 (26.2), 58 (25.3), 57 (29.2), 56 (26.2), 45 (23.9), 41 (12.7). ¹H NMR: $\delta = 0.09$ (s, 6 H, CH₃Si), 0.90 [s, 9 H, $(CH_3)_3$ C], 3.08 (t, J = 6.6 Hz, 1 H, OH), 3.40 (t, J =5.0 Hz, CH₂N), 3.58 (s, 3 H, OCH₃), 3.65-3.95 (m, 5 H, CH₂O, CHN), 4.54 (d, J = 4.4 Hz, 1 H, CHOMe) ppm. ¹³C NMR $(20 \text{ MHz}): \delta = -5.4 (CH_3Si), 18.34 [C(CH_3)_3], 25.91 [C(CH_3)_3],$ 43.30 (CH₂N), 59.37, 59.73, 60.47, 62.05 (CH₃O + CHN + CH_2O), 167.49 (C=O) ppm.

(3*R**,4*S**)-4-[(Benzyloxymethoxy)methyl]-1-[2-(*tert*-butyldimethyl-silyloxy)ethyl]-3-methoxyazetidin-2-one (12): Alcohol 11 (216 mg,

0.746 mmol) was dissolved in dry DMF (3 mL), and treated in sequence with nBu₄NI (27 mg, 74 µmol), EtNiPr₂ (188 µL, 1.11 mmol) and freshly distilled benzyloxymethyl chloromethyl ether (134 µL, 0.96 mmol). The solution was stirred for 6 h at 60 °C. After cooling, Et₂NH (115 µL, 1.11 mmol) was added. The solution stirred for 1 h at room temp. and then poured into saturated aqueous NH₄Cl. Extraction with Et₂O followed by concentration and chromatography (PE/Et₂O, 30:70 + 1% Et₃N) gave pure 12 as a yellowish oil (223 mg, 73%). $R_{\rm f} = 0.47$ (PE/Et₂O, 30:70). C₂₁H₃₅NO₅Si (409.59): calcd. C 61.58, H 8.61, N 3.42; found C 61.75, H 8.7, N 3.35. ¹H NMR: $\delta = 0.06$ (s, 6 H, CH₃Si), 0.89 [s, 9 H, $(CH_3)_3C$], 3.19 (dt, J = 14.1, 5.7 Hz, 1 H, CHHN), 3.52 (dt, J = 14.1, 5.5 Hz, 1 H, CHHN), 3.53 (s, 3 H, OCH₃), 3.69-3.86 (m, 4 H, CH₂O), 3.87-4.02 (m, 1 H, CHN), 4.52 (d, J = 4.6 Hz, 1 H, CHOMe), 4.61 (s, 2 H, CH₂Ph), 4.78 (s, 2 H, OCH₂O), 7.35 (s, 5 H, aromatics) ppm. IR: $\tilde{v}_{max} = 2995, 2933$, 2884, 2859, 1754 (s), 1602, 1453, 1405, 1358, 1191, 1113, 1046, 958 cm^{-1} .

(3*R**,4*S**)-4-[(Benzyloxymethoxy)methyl]-1-(2-hydroxyethyl)-3methoxyazetidin-2-one (9c): This compound was prepared in 92% yield from 12 according to the same procedure employed for 9b. Chromatography (EtOAc) gave pure 9c as a white solid. $R_f = 0.26$ (PE/EtOAc, 10:90). C₁₅H₂₁NO₅ (295.33): calcd. C 61.00, H 7.17, N 4.74; found C 61.4, H 7.3, N 4.6. GC-MS: $R_t = 9.54$; *m*/*z* = 295 [M⁺⁻] (0.2), 173 (0.9), 130 (2.0), 120 (1.5), 119 (1.8), 107 (8.1), 102 (11.4), 101 (20.8), 100 (7.0), 91 (100.0), 87 (76.9), 72 (58.2), 71 (56.9), 70 (77.3), 69 (21.5), 65 (10.0), 59 (39.0), 45 (10.7), 41 (14.8). ¹H NMR: δ = 3.26-3.48 (m, 2 H, CH₂N), 3.53 (s, 3 H, OCH₃), 3.58-3.96 (m, 5 H, CH₂O and CHN), 4.53 (d, *J* = 4.3 Hz, 1 H, CHOMe), 4.62 (s, 2 H, CH₂Ph), 4.79 (s, 2 H, OCH₂O), 7.35 (s, 5 H, aromatics) ppm. IR: $\tilde{v}_{max} = 3417$, 3006, 2937, 2892, 2778, 1738 (s), 1604, 1513, 1404, 1351, 1189, 1107, 1046, 920 cm⁻¹.

(3R*,4S*)-1-[2-(tert-Butyldimethylsilyloxy)ethyl]-3-phenoxy-4-(2phenylethenyl)azetidin-2-one (13): A solution of phenoxyacetyl chloride (730 µL, 3.52 mmol) in dry CH₂Cl₂ (40 mL) was cooled to -78 °C and treated dropwise with Et₃N (1.47 mL, 10.4 mmol). The temperature was allowed to rise to -40 °C during 30 min and the solution was treated with a solution of [2-(tert-butyldimethylsilyloxy)ethyl][(E)-3-phenylpropenylidene]amine^[15] (1.020 g, 3.52 mmol) in dry CH₂Cl₂ (18 mL). The mixture was stirred at -20°C for 48 h and at room temp. for 1 h. After treating with MeOH (6 mL) and stirring for 30 min, the mixture was poured into saturated aqueous NaCl and extracted with CH₂Cl₂. Concentration and chromatography (PE/EtOAc, 8:2 to 7:3) afforded pure 13 as a yellow oil (1.02 g, 68%). $R_{\rm f} = 0.29$ (PE/Et₂O, 60:40). C₂₅H₃₃NO₃Si (423.62): calcd. C 70.88, H 7.85, N 3.31; found C 70.55, H 7.9, N 3.2. ¹H NMR: $\delta = 0.08$ [s, 6 H, Si(CH₃)₂], 0.92 [s, 9 H, C(CH₃)₃], 3.14 (ddd, J = 4.8, 7.4, 14.0 Hz, 1 H, CHHN), 3.52-3.87 (m, 3 H, CH_2OSi , CHHN), 4.64 (dd, J = 4.4, 8.9 Hz, 1 H, CHN), 5.36 (d, *J* = 4.4 Hz, 1 H, CHOPh), 6.21 (dd, *J* = 8.9 Hz, 1 H, CH=CHPh), 6.71 (d, J = 15.9 Hz, 1 H, CH=CHPh), 6.98 (d, J = 8.0 Hz, 2 H, aromatics ortho to O), 7.18-7.40 (m, 3 H, other aromatics) ppm. ¹³C NMR (20 MHz): $\delta = -5.38$ [Si(CH₃)₂], 18.19 [C(CH₃)₃], 25.82 [C(CH₃)₃], 42.60 (CH₂N), 60.92 (CH₂O), 62.02 (CHN), 82.22 (CHOPh), 115.61, 122.75, 126.59, 128.13, 128.49, 129.34 (aromatic CH), 122.01 (CH=CHPh), 135.94 (aromatic quat.), 136.73 (CH= CHPh), 157.37 (aromatic quat.), 165.49 (C=O) ppm. IR: $\tilde{v}_{max} =$ 3009, 2954, 2930, 1756 (s), 1598, 1490, 1407, 1362, 1193, 1108, 967 cm^{-1} .

 $(3R^*, 4S^*)$ -1-[2-(*tert*-Butyldimethylsilyloxy)ethyl]-4-(hydroxymethyl)-3-phenoxyazetidin-2-one (14): This compound was prepared from 13 in 78% yield using the same procedure employed for 11. M.p. 53.9–54.5 °C. $R_{\rm f} = 0.47$ (PE/EtOAc, 60:40). $C_{18}H_{29}NO_4Si$ (351.51): calcd. C 61.50, H 8.32, N 3.98; found C 61.6, H 8.4, N 3.85. ¹H NMR: $\delta = 0.12$ [s, 6 H, Si(CH₃)₂], 0.93 [s, 9 H, C(CH₃)₃], 3.26 (dd, J = 6.3, 7.6 Hz, 1 H, OH), 3.41 (ddd, J = 3.6, 7.7, 14.5 Hz, 1 H, CHHN), 3.58 (ddd, J = 3.3, 5.0, 14.5 Hz, 1 H, CHHN), 3.72–4.15 (m, 5 H, CH₂OSi, CH₂OH, CHN), 5.27 (d, J = 4.4 Hz, 1 H, CHOPh), 6.98–7.12 (m, 3 H, aromatics), 7.25–7.42 (m, 2 H, aromatics) ppm. ¹³C NMR (20 MHz): $\delta = -5.41$ [Si(CH₃)₂], 18.46 [C(CH₃)₃], 25.96 [C(CH₃)₃], 44.0 (CH₂N), 60.53 (CHN), 60.96 (CH₂O), 62.23 (CH₂O), 80.72 (CHOPh), 115.63, 122.47, 129.67 (aromatic CH), 157.44 (aromatic quat.), 166.05 (C=O) ppm. IR: $\tilde{v}_{max} = 3408$, 3005, 2952, 2929, 2859, 1759 (s), 1600, 1492, 1407, 1358, 1193, 1097, 1027 cm⁻¹.

(3R*,4S*)-4-[(Benzyloxymethoxy)methyl]-1-[2-(tert-butyldimethylsilyloxy)ethyll-3-phenoxyazetidin-2-one (15): A solution of alcohol 14 (260 mg, 0.74 mmol) in dry DMF (3 mL) was treated with $\mathit{nBu_4NI}$ (27.4 mg, 0.074 mmol), $EtN\mathit{i}Pr_2$ (188 $\mu L,$ 1.11 mmol) and freshly distilled benzyloxymethyl chloride (134 µL, 0.96 mmol). After 30 min, the solution was heated at 60 °C overnight. After cooling to room temp., the reaction was quenched with diethylamine (115 µL, 1.11 mmol). After stirring for 1 h, the mixture was poured into saturated aqueous NH₄Cl and extracted with Et₂O. Chromatography (PE/Et₂O, 55:45 to 60:40) gave pure 15 as a yellowish oil (258 mg, 74%). $R_{\rm f} = 0.53$ (PE/Et₂O, 60:40). C₂₆H₃₇NO₅Si (471.66): calcd. C 66.21, H 7.91, N 2.97; found C 66.5, H 8.1, N 2.75. GC-MS: $R_t = 13.92$; $m/z = 456 [M^{+} - 15]$ $(1.0), 414 (30.7) [M^+ - 57], 200 (2.5), 184 (8.7), 164 (31.8), 149$ (20.0), 144 (5.2), 133 (15.6), 121 (8.4), 105 (7.9), 100 (13.4), 94 (22.0), 91 (100.0), 77 (11.3), 75 (8.3), 73 (18.3), 71 (37.1), 70 (20.6). ¹H NMR: $\delta = 0.08$ [s, 6 H, Si(CH₃)₂], 0.91 [s, 9 H, C(CH₃)₃], 3.26 (dt, J = 14.0, 5.7 Hz, 1 H, CHHN), 3.61 (dt, J = 14.0, 5.4 Hz, 1H, CHHN), 3.74-3.98 (m, 4 H, CH₂OSi, CH₂OBOM), 4.17 (dt, J = 6.6, 4.8 Hz, 1 H, CHN), 4.51 (s, 2 H, CH₂Ph), 4.71 (s, 2 H, OCH_2O), 5.26 (d, J = 4.8 Hz, 1 H, CHOPh), 6.98-7.12 (m, 3 H, aromatics), 7.20-7.40 (m, 6 H, aromatics) ppm. ¹³C NMR $(20 \text{ MHz}): \delta = -5.32 [Si(CH_3)_2], 18.25 [C(CH_3)_3], 25.94 [C(CH_3)_3],$ 43.71 (CH₂N), 58.24, 60.62, 66.72, 69.59 (CHN and CH₂O), 80.28 (CHOPh), 95.05 (OCH₂O), 115.63, 122.22, 127.84, 128.45, 129.54 (aromatic CH), 137.66, 157.69 (aromatic quat.), 166.05 (C=O) ppm. IR: v_{max} = 3005, 2953, 2931, 2885, 2858, 1757 (s), 1598, 1491, 1405, 1358, 1236, 1111, 1049, 920 cm⁻¹.

(3R*,4S*)-4-[(Benzyloxymethoxy)methyl]-1-(2-hydroxyethyl)-3phenoxyazetidin-2-one (9d): This compound was prepared in 96% yield from 15 according to the same procedure employed for 9b. Chromatography (PE/EtOAc, 3:7 to 2:8) gave pure 9d as a white solid. $R_{\rm f} = 0.32$ (PE/EtOAc, 3:7). $C_{20}H_{23}NO_5$ (357.40): calcd. C 67.21, H 6.49, N 3.92; found C 67.4, H 6.6, N 3.8. GC-MS: $R_t =$ 11.92 (during GC analysis, partial transformation into the rearranged lactone, $R_{\rm t} = 11.49$, took place); $m/z = 357 \, [{\rm M}^{+}] (0.7)$, 177 (1.3), 176 (1.2), 164 (34.5), 149 (22.1), 134 (8.2), 133 (17.8), 131 (8.0), 121 (14.9), 119 (5.8), 105 (14.1), 95 (13.0), 94 (28.3), 92 (21.0), 91 (100.0), 77 (21.6), 71 (37.0), 70 (20.0), 69 (10.4), 65 (9.5), 39 (7.7). ¹H NMR: $\delta = 3.43$ and 3.50 (AB part of ABX₂ system, $J_{AB} = 14.6$ Hz, $J_{AX} = J_{BX} = 4.8$ Hz, 2 H, CH_2N), 3.80–4.00 (m, 4 H, CH_2O), 4.12 (dt, J = 7.6, 4.4 Hz, 1 H, CHN), 4.56 (s, 2 H, CH₂Ph), 4.76 (s, 2 H, OCH₂O), 5.29 (d, J = 4.7 Hz, 1 H, CHOPh), 6.95-7.08 (m, 3 H, aromatics), 7.20-7.40 (m, 7 H, aromatics) ppm. ¹³C NMR (20 MHz): $\delta = 46.86$ (*C*H₂N), 58.40, 60.35, 67.24, 69.99 (CHN and CH₂O), 79.51 (CHOPh), 95.19 (OCH₂O), 115.51, 122.40, 127.77, 128.44, 129.60 (aromatic CH), 137.48, 157.43 (aromatic quat.), 166.70 (C=O) ppm. IR: v_{max} = 3442, 3002, 2945, 2890, 1747 (s), 1599, 1492, 1408, 1348, 1194, 1115, 1041 cm⁻¹.

rac-1-(2-Azidoethyl)-4-[(benzyloxymethoxy)methyl]azetidin-2-one (16a): A solution of alcohol 9a (191.9 mg, 0.72 mmol) in dry CH₂Cl₂ (10 mL) was cooled to -30 °C, and treated with triethylamine (300 µL, 2.17 mmol) and methanesulfonyl chloride (84.0 µL, 1.08 mmol). After 1 h at the same temperature, the reaction was quenched by addition of saturated aqueous NH₄Cl (10 mL). Extraction with EtOAc, and concentration to dryness, gave crude mesylate ($R_f = 0.49$, EtOAc/MeOH, 90:10), which was taken up in dry DMF (2 mL), treated with NaN₃ (181 mg, 2.80 mmol) and heated at 50 °C for 5 h. After cooling to room temp., the mixture was diluted with saturated aqueous NH₄Cl, and extracted with EtOAc. The organic extracts were washed with H₂O, saturated NaCl, concentrated and chromatographed (PE/EtOAc, 30:70 to 10:90) to give pure azide **16a** as an oil (162.3 mg, 78%). $R_{\rm f} = 0.74$ (EtOAc/MeOH, 90:10). C14H18N4O3 (290.32): calcd. C 57.92, H 6.25, N 19.30; found C 58.25, H 6.5, N 18.8. GC-MS: $R_t = 9.55$; $m/z = 262 [M^{+\cdot} - 28] (1.2), 234 (0.9), 204 (5.3), 141 (6.5), 120$ (3.3), 91 (100.0), 84 (2.9), 69 (5.4), 65 (5.2), 56 (4.3), 55 (4.0), 42 (7.7), 41 (6.5). ¹H NMR: $\delta = 2.68$ and 3.01 (AB part of ABX system, $J_{AB} = 14.6$ Hz, $J_{AX} = 5.0$ Hz, $J_{BX} = 2.3$ Hz, 2 H, $CH_2C=$ O), 3.26 (ddd, J = 2.6, 9.5, 15.4 Hz, 1 H, CHHN), 3.42–3.74 (m, 4 H), 3.78-3.90 (m, 2 H), 4.61 (s, 2 H, CH₂Ph), 4.80 (s, 2 H, OCH₂O), 7.35 (s, 5 H, aromatics) ppm. IR: $\tilde{v}_{max} = 3001, 2937$, 2889, 2107 (s), 1745 (s), 1603, 1453, 1400, 1348, 1331, 1286, 1148, 1110, 1043 cm^{-1} .

(3R*,4S*)-1-(2-Azidoethyl)-3-methoxy-4-(2-phenylethenyl)azetidin-2-one (16b): This compound was prepared (oil) in 86% yield from 9b according to the same procedure used for 16a. Reaction time of azide substitution: 5 h at 50 °C. $R_{\rm f} = 0.46$ (PE/EtOAc, 40:60). C14H16N4O2 (272.30): calcd. C 61.75, H 5.92, N 20.58, found C 61.7, H 5.9, N 20.5. GC-MS: decomposition during analysis giving two peaks at 8.10 and 8.82 min. ¹H NMR: $\delta = 3.10-3.34$ (m, 2 H), 3.40-3.62 (m, 2 H), 3.47 (s, 3 H, OCH₃), 4.40 (dd, J = 4.4, 9.0 Hz, 1 H, CHN), 4.66 (d, J = 4.4 Hz, CHOMe), 6.25 (dd, J =9.2, 15.9 Hz, 1 H, CH=CHPh), 6.76 (d, J = 16.2 Hz, 1 H, CHPh), 7.25–7.50 (m, 5 H, aromatics) ppm. ¹³C NMR: δ = 39.46 and 49.30 (CH₂N), 58.70 (CH₃), 61.73 (CHN), 85.62 (CHOMe), 122.71 (CH=CHPh), 126.74, 128.47, 128.70 (aromatic CH), 135.79 (aromatic quat.), 137.03 (CH=CHPh), 167.02 (C=O) ppm. IR: $\tilde{v}_{max} =$ 3037, 2996, 2926, 2833, 2106 (s), 1750 (s), 1399, 1347, 1132, 1058, 999, 968 cm⁻¹.

(3R*,4S*)-1-(2-Azidoethyl)-4-[(benzyloxymethoxy)methyl]-3-methoxyazetidin-2-one (16c): This compound was prepared (oil) in 85% yield from 9c according to the same procedure employed for 16a. Reaction time of azide substitution: overnight at 40 °C. $R_{\rm f} = 0.73$ (PE/EtOAc, 30:70). C15H20N4O4 (320.34): calcd. C 56.24, H 6.29, N 17.49; found C 56.3, H 6.35, N 17.4. GC-MS: $R_t = 9.79$; m/z = $292 [M^{+-} - 28]$ (2.8), 171 (16.0), 160 (11.7), 113 (8.5), 107 (6.5), 102 (7.3), 101 (13.5), 91 (100.0), 87 (48.9), 84 (8.2), 81 (6.8), 72 (35.0), 71 (38.6), 70 (52.3), 69 (21.5), 65 (9.3), 59 (25.2), 42 (9.1), 41 (13.2). ¹H NMR: $\delta = 3.26 - 3.40$ (m, 1 H), 3.42 - 3.64 (m, 3 H), 3.53 (s, 3 H, OCH₃), 3.70-4.0 (m, 3 H), 4.54 (d, J = 4.7 Hz, CHOMe), 4.62 (s, 2 H, CH₂Ph), 4.80 (s, 2 H, OCH₂O), 7.36 (s, 5 H, aromatics) ppm. ¹³C NMR (50 MHz): $\delta = 40.54$ (CH₂N), 49.00 (CH₂N), 57.81 (CHN), 59.23 (OCH₃), 67.23, 69.89 (CH₂O), 83.51 (COMe), 95.19 (OCH₂O), 127.70, 127.77, 128.43 (aromatic CH), 137.67 (aromatic quat.), 167.64 (C=O) ppm.

(3*R**,4*S**)-1-(2-Azidoethyl)-4-[(benzyloxymethoxy)methyl]-3phenoxyazetidin-2-one (16d): This compound was prepared (oil) in 91% yield from 9d according to the same procedure employed for 16a. Reaction time of azide substitution: overnight at 40 °C. $R_f =$ 0.43 (PE/EtOAc, 60:40). $C_{20}H_{22}N_4O_4$ (382.41): calcd. C 62.82, H

5.80, N 14.65; found C 62.55, H 6.55, N 14.5. ¹H NMR: δ = 3.32–3.72 (m, 4 H, CH₂CH₂N₃), 3.85 and 3.93 (AB part of ABX system, J_{AB} = 10.7 Hz, J_{AX} = 3.5 Hz, J_{BX} = 8.3 Hz, 2 H, CH₂O), 4.14 (dt, J = 8.4, 4.2 Hz, 1 H, CHN), 4.56 (s, 2 H, CH₂Ph), 4.76 (s, 2 H, OCH₂O), 5.29 (d, J = 4.8 Hz, CHOPh), 6.95–7.10 (m, 3 H, aromatics), 7.20–7.40 (m, 7 H, other aromatics) ppm. ¹³C NMR (50 MHz): δ = 41.03 (CH₂N), 49.19 (CH₂N), 58.27 (CHN), 67.48, 70.12 (CH₂O), 80.32 (COMe), 95.42 (OCH₂O), 115.71, 122.54, 127.89, 127.98, 128.62, 129.75 (aromatic CH), 137.80, 157.69 (aromatic quat.), 166.26 (*C*=O) ppm. IR: \tilde{v}_{max} = 3008, 2932, 2106 (s), 1761 (s), 1599, 1492, 1405, 1349, 1241, 1109, 1044 cm⁻¹. C₁₄H₁₈N₄O₃ (290.32): calcd. C 57.92, H 6.25, N 19.30; found C 58.25, H 6.5, N 18.8.

(3R*,4R*,4'S*)-4-(2,2-Dimethyl-1,3-dioxolan-4-yl)-3-(2-hydroxyethoxy)-1-(4-methoxyphenyl)azetidin-2-one (19): Racemic β-lactam 18 was obtained in 51% yield from racemic isopropylideneglyceraldehyde according to the procedure already described for the optically active compound.^[18] M.p. 94.0-94.2 °C. A solution of 18 (400 mg, 1.2 mmol) in dry CH2Cl2 (30 mL) and dry MeOH (20 mL) was cooled to -78 °C and ozonized until the grey-blue color persisted. Me₂S (2 mL) was added. The temperature was allowed to rise to room temp. and the solution stirred for 3 h at this temperature. The solvent was evaporated to dryness and the residue taken up in dry THF (10 mL) and cooled to 0 °C. A solution of BH₃·THF in THF (1 M, 2.4 mL, 2.4 mmol) was added. After 30 min at 0 °C, the reaction was complete and was quenched with saturated aqueous NH₄Cl. Extraction with EtOAc, concentration and chromatography (PE/EtOAc, 40:60 to 30:70) gave pure alcohol **19** as a white solid (360 mg, 90%). $R_{\rm f} = 0.35$ (PE/EtOAc, 30:70). C₁₇H₂₃NO₆ (337.37): calcd. C 60.52, H 6.87, N 4.15; found C 60.8, H 7.0, N 4.05. GC-MS: $R_t = 10.36$; $m/z = 337 [M^+]$ (15.8), 322 (4.4), 279 (16.7), 234 (6.0), 209 (5.4), 164 (10.2), 160 (6.8), 150 (10.6), 149 (100.0), 136 (7.5), 135 (10.7), 134 (23.1), 117 (5.2), 101 (9.4), 77 (7.3), 73 (25.2), 72 (15.7), 69 (9.8), 45 (12.9), 43 (35.0). ¹H NMR: $\delta = 1.34$ and 1.53 [2 s, 2 × 3 H, (CH₃)₂C], 3.70-4.00 (m, 5 H), 3.80 (s, 3 H, OCH₃), 4.22–4.32 (m, 2 H), 4.39 (dt, J = 8.7, 6.4 Hz, 1 H, CHO), 4.75 (d, J = 5.4 Hz, CHOCH₂), 6.87 (d, J =9.1 Hz, 2 H, aromatics), 7.65 (d, J = 9.1 Hz, 2 H, aromatics) ppm. IR: $\tilde{v}_{max} = 3402, 2990, 2936, 2838, 1731$ (s), 1601, 1505, 1441, 1383, 1298, 1192, 1136, 1069, 1031 cm⁻¹.

(3R*,4R*,4'S*)-3-(2-Azidoethoxy)-4-(2,2-dimethyl-1,3-dioxolan-4yl)-1-(4-methoxyphenyl)azetidin-2-one (20): This compound was prepared (solid) in 76% yield from 19 according to the same procedure employed for 16a. Reaction time of azide substitution: 3 h at 50 °C. $R_{\rm f} = 0.60$ (PE/EtOAc, 50:50). $C_{17}H_{22}N_4O_5$ (362.38): calcd. C 56.34, H 6.12, N 15.46; found C 56.6, H 6.1, N 15.0. GC-MS: $R_t = 10.73$; $m/z = 362 [M^{+}] (6.1)$, 334 $[M^{+} - 28] (13.6)$, 306 (7.0), 304 (6.1), 236 (11.0), 233 (10.5), 205 (46.3), 190 (8.8), 185 (8.3), 178 (15.5), 176 (17.7), 175 (8.3), 160 (19.5), 149 (100.0), 136 (17.4), 135 (20.6), 134 (59.8), 123 (17.7), 114 (27.5), 107 (9.1), 107 (8.9), 101 (19.3), 92 (9.0), 77 (16.9), 72 (32.6), 59 (11.9), 44 (16.9), 43 (81.3), 42 (16.2), 41 (15.1). ¹H NMR: $\delta = 1.34$ and 1.54 [2 s, 2 \times 3 H, (CH₃)₂C], 3.41 and 3.52 (AB part of ABXY system, J_{AB} = 13.5 Hz, $J_{AX} = 3.4$ Hz, $J_{AY} = 7.2$ Hz, $J_{BX} = 3.6$ Hz, $J_{BY} = 5.2$ Hz, 2 H, CH₂N₃), 3.70-3.90 (m, 2 H), 3.80 (s, 3 H, OCH₃), 4.15 (ddd, J = 3.3, 5.3, 10.5 Hz, CHHO), 4.22 (dd, J = 5.6, 8.7 Hz, 1 H, CHN), 4.29 (dd, J = 6.8, 8.8 Hz, 1 H, CHHO), 4.39 (dt, J = 8.7, 6.4 Hz, 1 H, CHO), 4.69 (d, J = 5.6 Hz, 1 H, CHOCH₂), 6.87 (d, J = 9.0 Hz, 2 H, aromatics), 7.65 (d, J = 9.1 Hz, 2 H, aromatics) ppm. IR: $\tilde{v}_{max} = 2988$, 2934, 2835, 2108 (s), 1742 (s), 1602, 1506, 1463, 1440, 1382, 1338, 1298, 1134, 1061, cm⁻¹.

(3R*,4R*,4'S*)-4-(2,2-Dimethyl-1,3-dioxolan-4-yl)-3-(2-propenyloxy)azetidin-2-one (21): A solution of compound 18 (304 mg, 912 µmol) in CH₃CN (10 mL) was cooled to -20 °C and treated with a solution of Ce(NH₄)₂(NO₃)₆ (CAN) (1.513 g, 2.76 mmol) in H₂O (6 mL). After 30 min, the mixture was diluted with 60 mL of icecold water, and rapidly extracted with EtOAc. The organic extracts were washed with a mixture of saturated aqueous NaHCO3 (30 mL) and aqueous Na₂SO₃ (10%, 15 mL). After a final washing with saturated NaCl, the organic phase was concentrated and chromatographed (PE/EtOAc, 70:30 to 50:50) to give pure 21 as a white solid (173 mg, 84%). $R_{\rm f} = 0.12$ (PE/EtOAc, 70:30). $C_{11}H_{17}NO_4$ (227.26): calcd. C 58.14, H 7.54, N 6.16; found C 58.1, H 7.45, N 6.05. GC-MS: $R_t = 6.09$; $m/z = 212 [M^{+} - 15]$ (10.5), 169 (4.0), 154 (5.1), 143 (11.7), 126 (38.8), 113 (21.5), 101 (13.1), 85 (39.6), 84 (9.3), 83 (6.0), 82 (5.5), 72 (96.5), 71 (11.8), 70 (9.1), 69 (36.0), 68 (7.1), 59 (15.2), 57 (9.7), 56 (10.3), 55 (8.5), 43 (88.0), 42 (32.7), 41 (100.0), 39 (24.4). ¹H NMR: $\delta = 1.36$ and 1.43 [2 s, 2 × 3 H, $(CH_3)_2C$], 3.66 [dd, J = 5.7, 8.6 Hz, 1 H, $CHHOC(CH_3)_2$], 3.71 (dd, J = 5.1, 8.9 Hz, 1 H, CHN), 4.05-4.40 [m, 4 H, CHO, CH₂= $CHCH_2O$, $CHHOC(CH_3)_2$], 4.65 (dd, J = 5.1, 2.2 Hz, 1 H, CHOallyl), 5.23 (dq, J = 10.2, 1.4 Hz, 1 H, CHH=CH), 5.30 (dq, J = 17.2, 1.6 Hz, 1 H, CHH=CH), 5.88 (dddd, J = 5.1, 5.9, 10.3,17.3 Hz, 1 H, CH=CH₂), 6.44 (br. s, 1 H, NH) ppm.

(3R*,4R*,4'S*)-1-(tert-Butoxycarbonylmethyl)-4-(2,2-dimethyl-1,3dioxolan-4-yl)-3-(2-propenyloxy)azetidin-2-one (22): A solution of azetidinone 21 (130.5 mg, 0.574 mmol) in dry THF (10 mL) was treated with freshly activated powdered molecular sieves (4 Å, 100 mg) and with *n*Bu₄NI (84.3 mg, 0.228 mmol). The mixture was cooled to -20 °C, and treated in rapid sequence with tBuOK (77 mg, 0.69 mmol) and tert-butyl bromoacetate (102 µL, 0.69 mmol). After 30 min, the reaction was quenched with saturated aqueous NH₄Cl, and extracted with EtOAc. Concentration and chromatography afforded pure 22 as an oil (125 mg, 64%). $R_{\rm f} = 0.27$ (PE/EtOAc, 70:30). $C_{17}H_{27}NO_6$ (341.40): calcd. C 59.81, H 7.97, N 4.10; found C 60.0, H 8.05, N 4.0. GC-MS: $R_t = 8.09$; $m/z = 326 [M^{+} - 15] (3.1), 268 (4.4), 184 (7.0), 182 (22.1), 169$ (6.4), 154 (9.3), 143 (24.6), 126 (63.3), 113 (33.1), 112 (8.5), 101 (16.5), 85 (65.7), 84 (9.0), 83 (7.6), 82 (7.1), 72 (100.0), 71 (10.8), 70 (12.3), 69 (39.9), 68 (11.7), 59 (9.6), 57 (48.9), 56 (11.1), 55 (10.9), 43 (68.1), 42 (27.0), 41 (93.9), 39 (16.1). ¹H NMR: $\delta = 1.33$ and 1.40 [2 s, 2×3 H, $(CH_3)_2$ C], 1.46 [s, 9 H, $(CH_3)_3$ C], 3.68 [dd, J = 5.4, 8.8 Hz, 1 H, CHHOC(CH₃)₂], 3.87 (d, J = 17.7 Hz, 1 H, $CHCO_2 tBu$), 3.89 (dd, J = 5.1, 9.3 Hz, 1 H, CHN), 4.04–4.18 (m, 2 H), 4.18 (d, J = 17.7 Hz, 1 H, CHHCO₂tBu), 4.26–4.44 (m, 2 H), 4.67 (d, J = 5.1 Hz, 1 H, CHOallyl), 5.18–5.36 (m, 2 H, CH₂= CH), 5.87 (ddt, J = 10.6, 16.6, 5.3 Hz, 1 H, $CH=CH_2$) ppm. ¹³C NMR (50 MHz): $\delta = 25.24$ and 26.93 [(CH₃)₂C], 28.06 [(CH₃)₃C], 43.03 (CH₂N), 60.50 (CHN), 66.70 and 72.018 (CH₂O), 76.79 (CH-O), 81.14 (CH-O), 82.18 [C(CH₃)₃], 109.50 (OCO), 117.75 (CH=CH₂), 133.38 (CH=CH₂), 167.03 and 167.62 (C=O) ppm. IR: $\tilde{v}_{max} = 2984, 2935, 1759$ (s), 1597, 1453, 1410, 1394, 1383, 1371, 1334, 1194, 1152, 1067, 1045 990, 930 cm⁻¹.

(3*R**,4*r**,4′*S**)-1-(*tert*-Butoxycarbonylmethyl)-4-(2,2-dimethyl-1,3dioxolan-4-yl)-3-(2-hydroxyethyloxy)azetidin-2-one (23): This compound was prepared from ester 22 (96 mg, 0.280 mmol) according to the same procedure described for conversion of 18 into 19. Yield: 70 mg (72%) (also 11 mg of the corresponding aldehyde were recovered). $R_{\rm f} = 0.20$ (PE/EtOAc, 30:70). $C_{16}H_{27}NO_7$ (345.39): calcd. C 55.64, H 7.88, N 4.06; found C 55.9, H 8.05, N 3.95. GC-MS: $R_{\rm t} = 8.78$; m/z = 330 [M⁺⁺-15] (3.9), 272 (3.7), 244 (7.0), 214 (7.2), 188 (10.4), 186 (19.8), 158 (10.5), 130 (62.4), 117 (34.5), 113 (7.4), 101 (14.2), 99 (7.6), 87 (19.7), 85 (6.5), 82 (5.6), 73 (100.0), 72 (99.2), 71 (18.2), 70 (13.1), 69 (59.0), 68 (9.9), 59 (10.0), 57 (45.5), 45 (26.4), 43 (66.6), 42 (19.4), 41 (32.2) ¹H NMR: $\delta = 1.33$ and 1.41 [2 s, 2 × 3 H, (CH₃)₂C], 1.47 [s, 9 H, (CH₃)₃C], 3.69 [dd, J =5.2, 8.9 Hz, 1 H, CHHOC(CH₃)₂], 3.62–3.94 (m, 3 H), 3.90 (d, J = 17.8 Hz, 1 H, CHCO₂*t*Bu), 3.96 (dd, J = 5.2, 9.4 Hz, 1 H, CHN), 4.05–4.20 (m, 2 H), 4.17 (d, J = 17.7 Hz, 1 H, CHHCO₂*t*Bu), 4.37 (ddd, J = 5.2, 6.5, 9.2 Hz, 1 H, CHOC(CH₃)₂], 4.71 (d, J = 5.2 Hz, 1 H, CHOCH₂) ppm.

(3R*,4R*,4'S*)-3-(2-Azidoethyloxy)-1-(tert-butoxycarbonylmethyl)-4-(2,2-dimethyl-1,3-dioxolan-4-yl)azetidin-2-one (24): This compound was prepared in 67% yield from alcohol 23 following the same procedure employed for 16a. Reaction time of azide substitution: 4 h at 50 °C and overnight at room temp. $R_{\rm f} = 0.58$ (PE/ EtOAc, 30:70). C₁₆H₂₆N₄O₆ (370.40): calcd. C 51.88, H 7.08, N 15.13; found C 52.1, H 7.2, N 14.75. ¹H NMR: $\delta = 1.32$ and 1.41 $[2 \text{ s}, 2 \times 3 \text{ H}, (CH_3)_2\text{C}], 1.47 \text{ [s}, 9 \text{ H}, (CH_3)_3\text{C}], 3.32 \text{ (ddd, } J = 3.3, 3.32 \text{ (ddd, } J =$ 5.2, 13.5 Hz, 1 H, CHHN₃), 3.48 (ddd, J = 3.2, 7.6, 13.5 Hz, 1 H, $CHHN_3$), 3.71 [dd, J = 4.9, 9.0 Hz, 1 H, $CHHOC(CH_3)_2$], 3.77 $(ddd, J = 3.2, 7.6, 10.5 \text{ Hz}, 1 \text{ H}, N_3 \text{CH}_2 \text{C} H \text{H}), 3.89 (d, J =$ 17.8 Hz, 1 H, $CHCO_2tBu$), 3.92 (dd, J = 5.2, 9.4 Hz, 1 H, CHN), 4.08 (ddd, J = 3.2, 5.2, 10.5 Hz, 1 H, N₃CH₂CHH), 4.13 [dd, J =6.6, 9.0 Hz, 1 H, CHHOC(CH₃)₂], 4.18 (d, J = 17.8 Hz, 1 H, $CHCO_2 tBu$) 4.38 [ddd, $J = 4.9, 6.6, 9.4 Hz, 1 H, CHOC(CH_3)_2$], 4.66 (d, J = 5.2 Hz, 1 H, CHOCH₂) ppm. ¹³C NMR (50 MHz): δ = 25.11 and 26.94 [(CH_3)_2C], 28.04 [(CH_3)_3C], 43.11 (CH_2N), 50.73 (CH₂N), 60.17 (CHN), 66.66 and 70.29 (CH₂O), 76.57 (CHO), 82.08 [C(CH₃)₃], 82.28 (CHO), 109.59 (OCO), 166.99 and 167.04 (*C*=O) ppm. IR: \tilde{v}_{max} = 2983, 2934, 2109 (s), 1757 (s), 1601, 1408, 1394, 1383, 1371, 1337, 1286, 1246, 1151, 1113, 1062, 951 cm^{-1} .

Allyloxymethyl Benzyl Ether (26): A solution of Et₃N (8.02 mL, 57.52 mmol) in dry CH₃CN (50 mL) was cooled to 0 °C and treated, by addition through a dropping funnel, with freshly distilled benzyl chloromethyl ether (8.0 mL, 57.52 mmol). Then the mixture was stirred for 2 h at room temp. Allyl alcohol (4.89 mL, 71.9 mmol) was added and the mixture heated under reflux for 5 h. On cooling an abundant white precipitate was formed. The suspension was filtered and the precipitate washed with Et₂O/PE (1:1, 120 mL). The filtrate was diluted with aqueous $(NH_4)H_2PO_4$ (5%, 65 mL). The phases were separated and the organic one washed with $(NH_4)H_2PO_4$ (5%), and the solvents evaporated to dryness. The crude oil was distilled at 6×10^{-2} mbar to give pure **26** (6.73 g, 67%). B.p. 65-70 °C. C₁₁H₁₄O₂ (178.23): calcd. C 74.13, H 7.92; found C 74.2, H 7.9. GC-MS: $R_t = 4.07$; $m/z = 177 [M^{+}]$ (0.02), 148 (4.1), 120 (5.7), 119 (6.7), 107 (14.3), 92 (53.3), 91 (100), 79 (9.1), 77 (8.4), 65 (14.5), 51 (6.7), 41 (31.6), 39 (15.8). ¹H NMR: $\delta = 4.13$ (dt, J = 5.6, 1.4 Hz), 4.63 (CH₂Ph), 4.79 (OCH₂O), 5.20 (dq, J = 10.4, 1.4 Hz, 1 H, CHH=CH), 5.31 (dq, J = 17.2, 1.6 Hz, 1 H, CHH=CH), 5.94 (ddt, J = 10.4, 17.2, 5.7 Hz, 1 H, CH= CH₂), 7.25-7.40 (m, 5 H, aromatics) ppm. ¹³C NMR (20 MHz): $\delta = 68.51$ and 69.48 (CH₂O), 93.89 (O-C-O), 117.14 (CH₂=CH), 127.69, 127.87, 128.42 (aromatic CH), 134.35 (CH=CH₂), 137.89 (aromatic quat.) ppm.

 $(3R^*,4S^*)$ -4-[(Benzyloxymethoxy)methyl]-1-(4-methoxyphenyl)-3-(2-propenyloxy)azetidin-2-one (27): A solution of ether 26 (1.17 g, 6.56 mmol) in dry CH₂Cl₂ (14 mL) and dry MeOH (21 mL) was cooled to -78 °C and ozonized until the grey-blue color persisted. At this point, Me₂S (1.5 mL) was added. The solution was stirred at room temp. for 5 h and then concentrated to dryness and chromatographed (PE/Et₂O, 20:80 to 0:100) to give the aldehyde (1.268 g) as an oil. The weight higher than expected is due to the presence of mixed hemiacetal adducts with formaldehyde. In any case, this aldehyde was taken up in CH₂Cl₂ (20 mL) and treated with freshly activated powdered molecular sieves (4 Å, 1.8 g) and p-anisidine (807 mg, 6.56 mmol). After stirring at room temp. for 2.5 h, the suspension was filtered and the filtrate concentrated to give crude imine (1.94 g) as an oil. This imine was taken up in dry CH₂Cl₂ (35 mL), cooled to 0 °C, and treated with Et_3N (3.93 mL, 28.21 mmol) and then (through a dropping funnel during 1 h) with a solution of allyloxyacetyl chloride (1.84 g, 13.70 mmol) in dry CH₂Cl₂ (25 mL). After stirring at room temp. overnight, the mixture was poured into aqueous (NH₄)H₂PO₄ (5%, 70 mL) and extracted with CH₂Cl₂. The organic extracts were washed with saturated aqueous NaCl, concentrated and chromatographed twice (PE/EtOAc, 50:50) to give 27 (1.578 g, 63%), about 80% pure by NMR (real yield 51%). $R_f = 0.56$ (PE/EtOAc, 50:50). GC-MS: $R_{\rm t} = 12.23; m/z = 383 \, [{\rm M}^{+}] (6.0), 312 (14.9), 149 (93.2), 148 (8.2),$ 134 (22.8), 91 (100.0), 77 (6.0), 71 (8.5), 65 (5.7), 41 (21.9). ¹H NMR: $\delta = 3.78$ (OCH₃), 3.93 and 3.99 (AB part of ABX system, $J_{AB} = 10.9 \text{ Hz}, J_{AX} = 4.7 \text{ Hz}, J_{BX} = 6.0 \text{ Hz}, 2 \text{ H}, CH_2O),$ 4.15-4.50 (m, 3 H), 4.53 (s, 2 H, CH₂Ph), 4.78 (s, 2 H, OCH₂O), 4.79 (d, J = not determined, 1 H, CHOallyl), 6.86 (d, J = 9.1 Hz, 2 H, aromatics), 7.20-7.40 (m, 5 H, aromatics), 7.48 (d, J =9.1 Hz, 2 H, aromatics) ppm.

(3R*,4S*)-4-[(Benzyloxymethoxy)methyl]-3-(2-hydroxyethyloxy)-1-(4-methoxyphenyl)azetidin-2-one (28): This compound was prepared from 80% pure 27 in 62% yield (77% taking into account the purity of starting material) using the same procedure already described for the synthesis of 19. $R_{\rm f} = 0.40$ (EtOAc). $C_{21}H_{25}NO_6$ (387.43): calcd. C 65.10, H 6.50, N 3.62; found C 64.65, H 6.8, N 3.3. GC-MS: $R_t = 13.23$; m/z = 387 [M⁺⁻] (8.3), 357 (6.5), 286 (6.3), 178 (6.1), 149 (100.0), 148 (11.9), 134 (21.0), 91 (97.1), 77 (8.3), 73 (39.4), 70 (8.5), 65 (6.5), 57 (9.3), 45 (17.9). ¹H NMR: $\delta =$ 3.62 (broad s, 1 H, OH), 3.78 (s, 3 H, OCH₃), 3.70-3.90 (m, 4 H, HOCH₂CH₂O), 3.95 and 4.02 (AB part of ABX system, J_{AB} = 11.0 Hz, $J_{AX} = 5.0$ Hz, $J_{BX} = 5.5$ Hz, 2 H, CH_2OBOM), 4.40 (q, J = 5.3 Hz, 1 H, CH-N), 4.54 (s, 2 H, CH₂Ph), 4.78 (s, 2 H, OCH_2O), 4.81 (d, J = 5.2 Hz, 1 H, CHO), 6.87 (d, J = 9.0 Hz, 2 H, aromatics), 7.25 - 7.36 (m, 5 H, aromatics), 7.46 (d, J = 9.0 Hz, 2 H, aromatics) ppm. ¹³C NMR (50 MHz): $\delta = 55.48$ (OCH₃), 58.13 (CH-N), 62.22 (CH₂O), 65.40 (CH₂O), 69.73 (CH₂O), 74.80 (CH₂O), 82.12 (CHO), 94.89 (OCH₂O), 114.35, 119.05, 127.85, 128.46 (aromatic CH), 130.40, 137.44, 156.62 (aromatic quat.), 165.59 (C=O) ppm. IR: $\tilde{v}_{max} = 3433$ (broad), 2998, 2938, 1742 (s), $1613, 1504, 1454, 1395, 1299, 1196, 1138, 1113, 1040 \text{ cm}^{-1}.$

(3R*,4S*)-3-(2-Azidoethyloxy)-4-[(benzyloxymethoxy)methyl]-1-(4methoxyphenyl)azetidin-2-one (29): This compound was prepared in 58% yield from alcohol 28 according to the same procedure employed for 16a. Reaction time of azide substitution: 4 h at 50 °C and overnight at room temp. $R_{\rm f} = 0.37$ (PE/EtOAc, 60:40). C₂₁H₂₄N₄O₅ (412.44): calcd. C 61.15, H 5.87, N 13.58; found C 61.5, H 6.0, N 13.05. ¹H NMR: $\delta = 3.37$ (ddd, J = 3.5, 5.1, 13.3 Hz, 1 H, CHHN₃), 3.54 (ddd, J = 3.5, 7.4, 13.3 Hz, 1 H, CHHN₃), 3.78 (s, 3 H, OCH₃), 3.80-4.10 (m, 4 H, CH₂O), 4.38 $(q, J = 5.3 \text{ Hz}, 1 \text{ H}, CHN), 4.53 (s, 2 \text{ H}, CH_2Ph), 4.77 (d, J \text{ not})$ determined, 1 H, CHO), 4.78 (s, 2 H, OCH₂O), 6.86 (d, J = 9.1 Hz, 2 H, aromatics), 7.25-7.40 (m, 5 H, aromatics), 7.48 (d, J =9.0 Hz, 2 H, aromatics) ppm. ¹³C NMR (50 MHz): $\delta = 50.71$ (CH₂N₃), 55.48 (OCH₃), 57.46 (CHN), 65.81 (CH₂O), 69.64 (CH₂O), 70.60 (CH₂O), 81.50 (CHO), 94.94 (OCH₂O), 114.28, 119.04, 127.76, 127.82, 128.43 (aromatic CH), 130.65, 137.60, 156.52 (aromatic quat.), 163.99 (C=O) ppm. IR: $\tilde{v}_{max} = 2999$, 2935, 2887, 2837, 2107 (s), 1745 (s), 1609, 1503, 1463, 1441, 1386, 1341, 1298, 1191, 1135, 1113, 1042 cm^{-1} .

 $(3R^*, 4R^*)$ -4-(Hydroxymethyl)-1-(4-methoxyphenyl)-3-vinylazetidin-2-one (32): A suspension of finely ground anhydrous CaCl₂ (536 mg, 4.83 mmol) in dry THF (15 mL) and absolute EtOH (7.5 mL) was cooled to -20 °C, and treated with NaBH₄ (308 mg, 8.14 mmol). After stirring for 15 min, a solution of racemic β-lactam 31^[19] (397 mg, 1.52 mmol) in dry THF (15 mL) was slowly added during 5 min. The suspension was stirred at -20 °C for 15 min, and at 0 °C for 6 h. The reaction was quenched with saturated aqueous NH4Cl and extracted with EtOAc. The organic phase was washed with saturated NaCl, concentrated and chromatographed (PE/EtOAc, 50:50) to give pure 32 as an oil (276 mg, 76%). $R_{\rm f} = 0.32$ (PE/EtOAc, 50:50). $C_{13}H_{15}NO_3$ (233.26): calcd. C 66.94, H 6.48, N 6.00; found C 66.7, H 6.5, N 5.8. GC-MS: $R_{\rm t} =$ 8.62; $m/z = 233 [M^{+}]$ (6.1), 174 (1.5), 165 (1.7), 149 (100.0), 136 (10.5), 134 (38.7), 106 (5.1), 92 (6.2), 78 (4.8), 77 (10.2), 64 (5.4), 55 (4.5), 41 (4.6), 39 (7.6). ¹H NMR: $\delta = 3.78$ (s, 3 H, OCH₃), 3.97 (d, J = 4.8 Hz, 2 H, CH₂OH), 4.06 (m_c) (m, 1 H, CHCH=CH₂, on decoupling at 6.02 ppm, it becomes a d, J = 5.5 Hz), 4.28 (q, J = 5.2 Hz, 1 H, CHN), 5.38 (dt, J = 10.3, 1.0 Hz, 1 H, CHH= CH), 5.48 (dt, J = 17.2, 1.0 Hz, 1 H, CHH=CH), 6.02 (ddd, J =8.0, 10.3, 17.2 Hz, 1 H, CH=CH₂), 6.86 (d, J = 9.0 Hz, 2 H, aromatics), 7.42 (d, J = 9.0 Hz, 2 H, aromatics) ppm.

(3*R**,4*R**)-4-{[(Benzyloxy)methoxy]methyl}-1-(4-methoxyphenyl)-3vinylazetidin-2-one (33): This compound was prepared in 85% yield from 32 according to the same procedure reported for 15. $R_f =$ 0.55 (PE/EtOAc, 50:50). $C_{21}H_{23}NO_4$ (353.41): calcd. C 71.37, H 6.56, N 3.96; found C 71.0, H 6.7, N 3.75. ¹H NMR: $\delta = 3.77$ (s, 3 H, OCH₃), 3.84 and 3.88 (AB part of ABX system, $J_{AB} =$ 11.0 Hz, $J_{AX} = 4.6$ Hz, $J_{BX} = 5.7$ Hz, 2 H, CH₂OBOM), 4.07 (m_c) (m, 1 H, CHCH=CH₂), 4.32 (q, J = 5.4 Hz, 1 H, CHN), 5.35 (dt, J = 10.3, 1.3 Hz, 1 H, CHH=CH), 5.48 (dt, J = 17.2, 1.4 Hz, 1 H, CHH=CH), 5.94 (ddd, J = 8.0, 10.3, 17.2 Hz, 1 H, CH=CH₂), 6.86 (d, J = 9.1 Hz, 2 H, aromatics), 7.18–7.40 (m, 5 H, aromatics), 7.45 (d, J = 9.1 Hz, 2 H, aromatics) ppm. IR: $\tilde{v}_{max} = 3085$, 2999, 2937, 2890, 2837, 1738 (s), 1500, 1454, 1441, 1382, 1297, 1193, 1169, 1112, 1043, 989, 928 cm⁻¹.

(3R*,4R*)-4-[(Benzyloxymethoxy)methyl]-3-(2-hydroxyethyl)-1-(4methoxyphenyl)azetidin-2-one (34): A solution of compound 33 (176 mg, 0.497 mmol) in dry THF (8 mL) was cooled to 0 °C and treated with solid 9-borabicyclononane (186 mg, 1.52 mmol). The resulting solution was stirred at room temp. for 5 h and then cooled again to 0 °C and treated with a solution of KHCO₃ (1.5 g) and 35% H₂O₂ (2.1 mL) in H₂O (2.1 mL). After stirring for 1 h at room temp., the mixture was diluted with H₂O and extracted with EtOAc. The organic phase was washed with saturated NaCl, concentrated and chromatographed (PE/EtOAc, 30:70 to 10:90) to give pure 34 (134 mg, 72%). $R_{\rm f} = 0.41$ (EtOAc). $C_{21}H_{25}NO_5$ (371.43): calcd. C 67.91, H 6.78, N 3.77; found C 68.2, H 6.7, N 3.5. GC-MS: $R_{\rm t} = 13.38$ (during GC, 34 in part isomerizes to the corresponding lactone, $R_t = 12.74$; $m/z = 371 [M^{+1}]$ (16.8), 341 (17.2), 310 (12.5), 232 (5.8), 220 (45.6), 186 (5.7), 164 (5.3), 149 (28.9), 148 (7.0), 134 (32.2), 107 (6.1), 91 (100.0), 77 (9.7), 65 (7.1). ¹H NMR: $\delta =$ 1.84-2.20 (m, 2 H, CH₂CH₂OH), 3.46 (dt, J = 10.4, 5.8 Hz, 1 H, CHC=O), 3.78 (s, 3 H, OCH₃), 3.75-3.90 (m, 2 H, CH₂OH), 3.91 (d, J = 5.4 Hz, 2 H, CH₂OBOM), 4.31 (q, J = 5.4 Hz, 1 H, CHN), 4.46 (s, 2 H, CH_2Ph), 4.72 and 4.75 (AB system, J = 6.9 Hz, 2 H, OCH_2O), 6.86 (d, J = 9.1 Hz, 2 H, aromatics), 7.20–7.38 (m, 5 H, aromatics), 7.41 (d, J = 9.1 Hz, 2 H, aromatics) ppm. ¹³C NMR $(50 \text{ MHz}): \delta = 27.85 (CH_2CH_2OH), 50.06 (CHC=O), 53.95$ (CH-N), 55.49 (OCH₃), 61.47, 65.75, 69.85 (CH₂O), 94.93 (OCH₂O), 114.38, 118.96, 127.80, 127.84, 128.45 (aromatic CH), 130.94, 137.48, 156.41 (aromatic quat.), 167.91 (C=O) ppm. IR:

 $\tilde{v}_{max} = 3442$ (broad), 3046, 2997, 2936, 1726 (s), 1603, 1504, 1454, 1440, 1396, 1298, 1193, 1111, 1046, 961 cm⁻¹.

(3R*,4R*)-3-(2-Azidoethyl)-4-[(benzyloxymethoxy)methyl]-1-(4methoxyphenyl)azetidin-2-one (35): This compound was prepared in 94% yield from alcohol 34 according to the same procedure employed for 16a. Reaction time of azide substitution: 3 h at 50 °C and overnight at room temp. $R_{\rm f} = 0.71$ (PE/EtOAc, 30:70). C21H24N4O4 (396.44): calcd. C 63.62, H 6.10, N 14.13; found C 63.95, H 6.3, N 13.8. GC-MS: $R_t = 13.50$ (it decomposes in part); $m/z = 368 [M^{+-} - 28]$ (3.2), 286 (8.5), 256 (4.7), 245 (5.3), 164 (7.3), 149 (28.3), 148 (7.9), 134 (24.4), 113 (14.4), 108 (7.4), 107 (6.9), 98 (17.0), 96 (9.6), 91 (100.0), 83 (9.9), 82 (17.1), 77 (11.3), 65 (7.4) ¹H NMR: $\delta = 1.87 - 2.24$ (m, 2 H, CH₂CH₂N₃), 3.40 - 3.70 (m, 3 H, CH_2N_3 and CHC=O), 3.77 (s, 3 H, OCH_3), 3.91 (d, J =5.0 Hz, 2 H, CH_2OBOM), 4.28 (q, J = 5.2 Hz, 1 H, CHN), 4.45 (s, 2 H, CH_2Ph), 4.71 and 4.75 (AB system, J = 6.9 Hz, 2 H, OCH_2O), 6.85 (d, J = 9.1 Hz, 2 H, aromatics), 7.20–7.38 (m, 5 H, aromatics), 7.39 (d, J = 9.1 Hz, 2 H, aromatics) ppm. ¹³C NMR $(20 \text{ MHz}): \delta = 24.65 (CH_2CH_2N_3), 48.64, 49.79 \text{ and } 53.95 (CH_2N_3)$ CHC=O, and CHN), 55.47 (OCH₃), 65.36, 69.88 (CH₂O), 94.90 (OCH2O), 114.31, 118.70, 127.74, 128.35 (aromatic CH), 130.91, 137.38, 156.12 (aromatic quat.), 166.25 (C=O) ppm. IR: \tilde{v}_{max} = 3005, 2938, 2100 (s), 1739 (s), 1506, 1454, 1394, 1297, 1192, 1111, $1045, 907 \text{ cm}^{-1}.$

General Procedure for Reduction of Azides 16a-d, 20, 24, 29 and 35 to Amines 2a-d, 3a-c and 4: A solution of azide (0.2 mmol) in THF (5 mL) was treated at room temp. with Ph₃P (0.4 mmol) and, after 10 min, with H₂O (250 μ L). After stirring for 15 h, the solution was diluted with CH₂Cl₂, dried (Na₂SO₄), concentrated to dryness, and chromatographed [CHCl₃ to CHCl₃/MeOH, 9:1 + 2% *i*Pr₂NH]. The amines always contained small percentages of the corresponding transamidated products. Therefore elemental analyses were not performed on these products. They were used at once for the following reactions or else kept in a freezer for a minimum amount of time. They were characterized by transformation into acetamides or phenylacetamides.

General Procedure for Rearrangement of Amines 2a-d, 3a-c and 4: The amines were dissolved in the solvent indicated in Table 1, and stirred at the appropriate temperature. Small aliquots of the crude reaction mixtures were taken from time to time, rapidly concentrated, taken up in CDCl₃ and examined by ¹H NMR spectroscopy. Integration of the developing amide NH unit allowed the conversion to be estimated in all cases . In most cases other signals could also be used for integration. For a control, a spectrum was taken also of the starting amine at the beginning of the reaction, in order to evaluate the amount of transamidated product already present. At the end of reaction, the solvent was evaporated and the transamidated product purified by chromatography (CHCl₃/ MeOH).

rac-1-(2-Aminoethyl)-4-[(benzyloxymethoxy)methyl]azetidin-2-one (2a): $R_{\rm f} = 0.22$ and 0.29 (CHCl₃/MeOH, 95:5). ¹H NMR: $\delta = 2.70$ (dd, J = 1.8, 14.4 Hz, 1 H, CHHC=O), 2.90 (t, J = 6.0 Hz, 2 H, CH₂NH₂), 2.99 (dd, J = 4.7, 14.4 Hz, 1 H, CHHC=O), 3.15–3.50 (m, 2 H), 3.56–3.86 (m, 3 H), 4.61 (s, 2 H, CH₂Ph), 4.79 (s, 2 H, OCH₂O), 7.34 (s, 5 H, aromatics) ppm. This amine was better characterized as the corresponding acetamide, which was obtained in 90% yield by reaction with Et₃N (3.3 equiv.) and Ac₂O (2 equiv.) in dry CH₂Cl₂ at 0 °C. The reaction was complete in 4 h. Workup with saturated aqueous NH₄Cl followed by extraction with EtOAc, concentration and chromatography (EtOAc/MeOH, 80:20), gave the acetamide of **2a**. $R_{\rm f} = 0.55$ (EtOAc/MeOH, 80:20). $\begin{array}{l} C_{16}H_{22}N_2O_4\ (306.36):\ calcd. C\ 62.73, H\ 7.24, N\ 9.14;\ found C\ 63.0, \\ H\ 7.4, N\ 8.95. \ GC-MS:\ R_t\ =\ 10.49;\ m/z\ =\ 278\ [M^{+\cdot}\ -\ 28]\ (0.1), \\ 247\ (0.1),\ 235\ (0.2),\ 217\ (1.3),\ 155\ (1.8),\ 141\ (8.7),\ 132\ (3.6),\ 114\ (5.1),\ 113\ (4.1),\ 91\ (100.0),\ 86\ (7.9),\ 72\ (6.4),\ 65\ (5.2),\ 44\ (8.9),\ 43\ (14.0),\ 41\ (6.8).\ ^1H\ NMR:\ \delta\ =\ 1.97\ (s,\ 3\ H,\ CH_3C=O),\ 2.67\ (dd,\ J\ =\ 2.2,\ 14.5\ Hz,\ 1\ H,\ CHHC=O),\ 2.96\ (dd,\ J\ =\ 4.8,\ 14.5\ Hz,\ 1\ H,\ CHHC=O),\ 3.18-3.46\ (m,\ 3\ H),\ 3.46-3.72\ (m,\ 2\ H),\ 3.76-3.88\ (m,\ 2\ H),\ 4.61\ (s,\ 2\ H,\ CH_2Ph),\ 4.79\ (s,\ 2\ H,\ OCH_2O),\ 6.54\ (br.\ s,\ 1\ H,\ NH),\ 7.34\ (s,\ 5\ H,\ aromatics)\ ppm.\ IR:\ \tilde{v}_{max}\ =\ 3442,\ 3357,\ 2997,\ 2932,\ 1737\ (s),\ 1665\ (s),\ 1513,\ 1402,\ 1376,\ 1331,\ 1240,\ 1168,\ 1111,\ 1040\ cm^{-1}. \end{array}$

rac-7-[(Benzyloxymethoxy)methyl]-1,4-diazepan-5-one (17a): $R_{\rm f} = 0.63$ (CHCl₃/MeOH, 95:5). C₁₄H₂₀N₂O₃ (264.32): calcd. C 63.62, H 7.63, N 10.60; found C 63.95, H 7.9, N 10.35. ¹H NMR: $\delta = 2.40$ (dt, J = 14.2, 1.6 Hz, 1 H, CHHC=O), 2.59 (dd, J = 9.8, 14.2 Hz, 1 H, CHHC=O), 2.84 (dd, J = 9.9, 11.8 Hz, 1 H, CHHN), 2.98–3.28 (m, 3 H), 3.34–3.52 (m, 1 H), 3.44 (dd, J = 8.6, 9.6 Hz, 1 H, CHHOBOM), 3.61 (dd, J = 3.9, 9.6 Hz, CHHO-BOM), 4.60 (s, 2 H, CH₂Ph), 4.76 and 4.79 (AB system, J = 6.7 Hz, 2 H, OCH₂O), 6.01 (br. s, 1 H, NH), 7.35 (s, 5 H, aromatics) ppm. ¹³C NMR (50 MHz): $\delta = 42.43$, 44.68, 49.60 (CH₂), 53.37 (CHN), 69.69 and 71.80 (CH₂O), 94.89 (OCH₂O), 127.80, 127.84, 128.45 (aromatic CH), 137.48 (aromatic quat.), 176.34 (C=O) ppm. IR: $\tilde{\nu}_{max} = 3416$, 2998, 2926, 2891, 2824, 1660 (s), 1601, 1466, 1438, 1375, 1351, 1326, 1240, 1167, 1116, 1040, 963, 907 cm⁻¹.

(3*R**,4*S**)-1-(2-Aminoethyl)-3-methoxy-4-(2-phenylethenyl)azetidin-2-one (2b): $R_f = 0.10$ (CHCl₃/MeOH, 95:5). ¹H NMR: $\delta = 2.70-3.30$ (m, 4 H, CH₂CH₂), 3.45 (s, 3 H, OCH₃), 4.37 (dd, J = 4.3, 9.2 Hz, 1 H, CHCH=CH), 4.67 (d, J = 4.3 Hz, 1 H, CHOMe), 6.24 (dd, J = 9.2, 16.0 Hz, 1 H, CH=CHPh), 6.75 (d, J = 16.0 Hz, 1 H, CH=CHPh), 7.22-7.50 (m, 5 H, aromatics) ppm. This amine was better characterized as the corresponding phenylacetamide 37 (see below), which was prepared in 92% yield by treating 2b, isolated soon after chromatography, with phenylacetyl chloride and Et₃N in CH₂Cl₂.

 $(6R^*, 7S^*)$ -Methoxy-7-(2-phenylethenyl)-1,4-diazepan-5-one (17b): $R_{\rm f} = 0.39$ (CHCl₃/MeOH, 95:5). $C_{14}H_{18}N_2O_2$ (246.30): calcd. C 68.27, H 7.37, N 11.37; found C 68.0, H 7.4, N 11.1. GC-MS: $R_{\rm f} =$ 8.88; $m/z = 246 \, [M^{+}]$ (3.8), 231 (43.0), 217 (18.6), 204 (26.2), 203 (8.4), 185 (24.3), 172 (18.6), 160 (94.7), 159 (67.7), 157 (32.9), 156 (51.7), 145 (25.3), 144 (31.2), 132 (31.3), 129 (63.2), 128 (39.7), 127 (25.4), 117 (58.3), 115 (100.0), 91 (45.4), 44 (33.2). ¹H NMR: δ = 2.84-3.10 (m, 3 H), 3.24 (dd, J = 4.8, 14.2 Hz, 1 H), 3.51 (s, 3 H, OCH_3), 3.62-3.84 (m, 1 H), 3.71 (d, J = 6.5 Hz, 1 H, CHN), 3.90 (s, 1 H, CHOMe), 6.10 (br. s, 1 H, CONH), 6.27 (dd, J = 6.4, 16.0 Hz, 1 H, CH=CHPh), 6.63 (d, J = 16.0 Hz, 1 H, CH= CHPh), 7.22-7.50 (m, 5 H, aromatics) ppm. ¹³C NMR (50 MHz): $\delta = 43.74 (CH_2N), 49.39 (CH_2N), 58.16 (OCH_3), 58.60 (CHN),$ 87.75 (CHOMe), 126.48, 127.68, 128.54 (aromatic CH), 129.28, 131.46 (CH=CH), 136.69 (aromatic quat.), 174.70 (C=O) ppm. IR: $\tilde{v}_{max} = 3410, 2927, 2852, 1665$ (s), 1600, 1464, 1376, 1351, 1260, 1167, 1110, 967, 905 cm^{-1} .

(3*R**,4*S**)-1-(2-Aminoethyl)-4-[(benzyloxymethoxy)methyl]-3methoxyazetidin-2-one (2c): $R_f = 0.30$ (CHCl₃/MeOH, 80:20). ¹H NMR: δ = 2.90 (t, *J* = 6.2 Hz, 2 H, *CH*₂N), 3.12–3.45 (m, 2 H, *CH*₂N), 3.53 (s, 3 H, OCH₃), 3.70–3.95 (m, 3 H, *CH*₂O, *CHN*), 4.53 (d, *J* = 4.4 Hz, 1 H, *CHOMe*), 4.62 (s, 2 H, *CH*₂Ph), 4.79 (s, 2 H, OCH₂O), 7.35 (s, 5 H, aromatics) ppm.

(6*R**,7*S**)-7-[(Benzyloxymethoxy)methyl]-6-methoxy-1,4-diazepan-5-one (17c): $R_{\rm f} = 0.72$ (CHCl₃/MeOH, 80:20). C₁₅H₂₂N₂O₄ (294.35): calcd. C 61.21, H 7.53, N 9.52; found C 61.4, H 7.6, N 9.3. GC-MS: $R_t = 9.98$; m/z = 294 [M⁺⁺] (11.2), 279 (5.0), 249 (4.7), 173 (7.0), 171 (5.9), 157 (5.4), 143 (14.7), 100 (11.4), 91 (100.0), 86 (7.6), 85 (6.4), 72 (7.8), 71 (7.9), 65 (6.1), 56 (6.8), 44 (8.8), 42 (5.3), 41 (5.1). ¹H NMR: $\delta = 2.75-2.90$ (m, 1 H), 2.90-3.07 (m, 1 H), 3.09-3.23(m, 2 H), 3.47 (s, 3 H, OCH₃), 3.60 (d, J = 7.0 Hz, 2 H, CH_2OBOM), 3.54-3.80 (m, 1 H), 3.85 (d, J = 1.5 Hz, 1 H, CHOMe), 4.60 (s, 2 H, CH_2Ph), 4.78 (s, 2 H, OCH_2O), 6.55 (br. s, 1 H, CON*H*), 7.34 (s, 5 H, aromatics) ppm. ¹³C NMR (50 MHz): $\delta = 43.77$ (CH_2N), 49.48 (CH_2N), 56.42 (CHN), 57.90 (OCH_3), 68.83, 69.60 (CH_2O), 84.46 (CHOMe), 94.94 (OCH_2O), 127.71, 127.83, 128.42 (aromatic *C*H), 137.76 (aromatic quat.), 174.81 (C=O) ppm. IR: $\tilde{v}_{max} = 3409$, 2998, 2941, 1663 (s), 1467, 1424, 1350, 1249, 1192, 1102, 1042 cm⁻¹.

(3*R**,4*S**)-1-(2-Aminoethyl)-4-[(benzyloxymethoxy)methyl]-3-phenoxyazetidin-2-one (2d): $R_{\rm f} = 0.36$ and 0.40 (CHCl₃/MeOH, 95:5 + 1% Et₃N). ¹H NMR: $\delta = 2.80-3.14$ (m, 2 H), 3.20-3.55 (m, 2 H), 3.85, 3.93 (AB part of ABX system, $J_{\rm AB} = 10.8$ Hz, $J_{\rm AX} = 3.8$ Hz, $J_{\rm BX} = 7.7$ Hz, 2 H, CH₂OBOM), 4.11 (dt, J = 7.4, 4.4 Hz, 1 H, CHN), 4.55 (s, 2 H, CH₂Ph), 4.74 (s, 2 H, OCH₂O), 5.31 (d, J = 4.8 Hz, 1 H, CHOPh), 6.90-7.05 (m, 3 H), 7.20-7.35 (m, 7 H).

(6R*,7S*)-7-[(Benzyloxymethoxy)methyl]-6-phenoxy-1,4-diazepan-5-one (17d): $R_{\rm f} = 0.50$ (CHCl₃/MeOH, 90:10). $C_{20}H_{24}N_2O_4$ (356.42): calcd. C 67.40, H 6.79, N 7.86; found C 67.7, H 6.6, N 7.8. GC-MS: $R_t = 12.35$; m/z = 356 [M^{+·}] (9.3), 235 (5.4), 188 (5.3), 141 (4.0), 129 (6.1), 119 (5.5), 112 (27.3), 107 (4.4), 105 (6.1), 99 (60.0), 91 (100.0), 85 (7.7), 84 (8.0), 83 (5.5), 77 (11.2), 71 (18.0), 65 (9.2), 56 (9.4), 55 (8.4), 44 (10.5), 43 (4.7), 42 (5.1), 39 (5.1). ¹H NMR: $\delta = 2.83 - 3.06$ (m, 2 H), 3.18 - 3.50 (m, 2 H), 3.54 - 3.88(m, 3 H), 4.49 (s, 2 H, CH_2Ph), 4.74 (s, 2 H, OCH_2O), 4.79 (d, J =1.5 Hz, 1 H, CHOPh), 6.20 (br. s, 1 H, NH), 6.95-7.15 (m, 3 H), 7.18–7.36 (m, 7 H) ppm. ¹³C NMR (50 MHz): $\delta = 44.09$ (CH₂N), 49.50 (CH₂N), 56.42 (CHN), 68.39, 69.64 (CH₂O), 80.23 (CHOMe), 94.89 (OCH₂O), 115.75, 122.14, 127.67, 127.84, 128.39, 129.76 (aromatic CH), 137.75, 157.58 (aromatic quat.), 173.97 (C= O) ppm. IR: $\tilde{v}_{max} = 3410, 2998, 2940, 1666$ (s), 1597, 1468, 1349, 1240, 1169, 1115, 1042 cm⁻¹.

(3R*,4R*,4'S*)-3-(2-Aminoethoxy)-4-(2,2-dimethyl-1,3-dioxolan-4yl)-1-(4-methoxyphenyl)azetidin-2-one (3a): $R_{\rm f} = 0.21$ and 0.33 (CHCl₃/MeOH, 75:25). ¹H NMR: $\delta = 1.34$, 1.53 [2 s, 2 × 3 H, $(CH_3)_2CO$, 2.80–3.07 (m, 2 H, CH_2NH_2), 3.64–3.80 (m, 1 H, CH_2CHHO), 3.76 (dd, J = 6.2, 8.6 Hz, 1 H, CHCHHO), 3.79 (s, 3 H, OCH₃), 3.84-3.96 (m, 1 H, CH₂CHHO), 4.21 (dd, J = 5.5, 8.7 Hz, 1 H, CHN), 4.26 (dd, J = 6.7, 8.6 Hz, 1 H, CHCHHO), 4.40 (dt, J = 8.6, 6.5 Hz, 1 H, CHO), 4.68 (d, J = 5.5 Hz, 1 H, CHOCH₂), 6.86 (d, J = 9.1 Hz, 2 H, aromatics ortho to OCH₃), 7.65 (d, J = 9.1 Hz, 2 H, aromatics meta to OCH₃). This compound was best characterized as the acetamide, which was obtained in quantitative yield by reaction with Et₃N (3.3 equiv.) and Ac₂O (2 equiv.) in dry CH₂Cl₂ at 0 °C. C₁₉H₂₆N₂O₆ (378.42): calcd. C 60.30, H 6.93, N 7.40; found C 60.55, H 7.05, N 7.2. GC-MS: $R_{t} =$ 11.80; $m/z = 378 \, [M^{+1}]$ (21.7), 320 (7.7), 165 (11.8), 160 (5.7), 149 (74.6), 136 (7.1), 135 (7.1), 134 (12.7), 101 (6.5), 86 (100.0), 72 (14.4), 44 (31.6), 43 (35.6). ¹H NMR: $\delta = 1.34$, 1.53 [2 s, 2 × 3 H, (CH₃)₂CO], 2.02 (s, 3 H, CH₃CO), 3.30-3.50 (m, 1 H, CHHNH₂), 3.50-3.80 (m, 3 H, CH₂CHHO, CHHNH₂, CHCHHO), 3.80 (s, 3 H, OCH₃), 3.95 (ddd, J = 3.0, 6.0, 11.2 Hz, 1 H, CH₂CHHO), 4.22 (dd, J = 6.8, 8.8 Hz, 1 H, CHCHHO), 4.26 (dd, J = 5.5, 8.5 Hz)1 H, CHN), 4.37 (dt, J = 9.0, 6.4 Hz, 1 H, CHO), 4.65 (d, J =5.5 Hz, 1 H, CHOCH₂), 6.87 (d, J = 9.1 Hz, 2 H, aromatics ortho to OCH₃), 7.64 (d, J = 9.1 Hz, 2 H, aromatics *meta* to OCH₃) ppm. ¹³C NMR (50 MHz): $\delta = 23.21, 24.88, 26.67$ (CH₃), 40.04 (CH₂N), 55.49 (OCH₃), 62.55 (CHN), 66.89 (CH₂O), 72.21

(CH₂O), 76.92, 81.96 (CHO), 109.92 (OCO), 114.10, 119.76 (aromatic CH), 130.82, 156.81 (aromatic quat.), 165.77 (C=O lactam), 170.48 (H₃C-C=O) ppm. IR: $\tilde{v}_{max} = 3449$, 3333, 2991, 2934, 2837, 1734 (s), 1662 (s), 1504, 1455, 1440, 1382, 1297, 1222, 1134, 1066, 905 cm⁻¹.

 $(3R^*, 1'R^*)$ -2-{[(4S*)-2,2-Dimethyl-1,3-dioxolan-4-yl][4-(methoxyphenyl)amino]methyl}morpholin-3-one (25a): $R_f = 0.44$ (EtOAc/ MeOH, 95:5). C₁₇H₂₄N₂O₅ (336.38): calcd. C 60.70, H 7.19, N 8.33; found C 60.9, H 6.95, N 8.0. GC-MS: $R_t = 11.05$; m/z = 336 $[M^{+-}]$ (28.1), 321 (8.6), 236 (100.0), 235 (68.6), 178 (87.9), 174 (12.0), 164 (5.1), 162 (5.4), 161 (8.7), 160 (41.5), 150 (14.4), 149 (10.6), 148 (28.1), 136 (23.4), 134 (26.3), 133 (11.9), 123 (8.5), 122 (17.5), 121 (15.8), 108 (9.4), 107 (6.4), 102 (6.1), 101 (9.9), 77 (11.1), 72 (12.4), 44 (16.1), 43 (33.5). ¹H NMR: δ = 1.37, 1.41 (2 s, 2 × 3 H, CH₃), 3.15 (br. dt, J = 11.9, 2.9 Hz, 1 H, CHHN), 3.50 (dt, J = 4.0, 11.7 Hz, 1 H, CHHN), 3.72 (s, 3 H, CH₃O), 3.73 (dt, J = 2.9, 11.3 Hz, CH₂-CHHO), 3.86 (t, J = 7.9 Hz, 1 H, CHCHHO), 4.00 (dd, J = 6.4, 8.2 Hz, 1 H, CHCHHO), 4.04-4.20 (m, 2 H,CH₂CHHO, CHN), 4.27 (s, 1 H, CHOCH₂), 4.36 (dt, J = 3.2, 7.3 Hz, CH_2CHO), 6.55 (br. d, J = 4.0 Hz, 1 H, NH), 6.71 (s, 4 H, aromatics) ppm. ¹³C NMR (50 MHz): $\delta = 25.62, 26.48$ (CH₃), 41.72 (CH₂N), 55.76 (OCH₃), 56.83 (CHN), 63.27, 66.70 (CH₂O), 76.93, 78.06 (CHO), 109.50 (OCO), 114.80, 115.75 (aromatic CH), 141.54, 152.57 (aromatic quat.), 169.49 (C=O) ppm. IR: \tilde{v}_{max} = 3405, 2998, 2834, 1673 (s), 1504, 1477, 1383, 1373, 1345, 1190, 1155, 1123, 1071, 1035, 962 cm^{-1} .

(3*R**,4*R**,4′*S**)-3-(2-Aminoethoxy)-1-(*tert*-butoxycarbonylmethyl)-4-(2,2-dimethyl-1,3-dioxolan-4-yl)azetidin-2-one (3b): $R_{\rm f} = 0.40$ (CHCl₃/MeOH, 80:20). ¹H NMR: δ = 1.33, 1.40 (2 s, 2 × 3 H, CH₃), 1.46 [s, 9 H, (CH₃)₃C], 2.84 (ddd, *J* = 4.2, 5.6, 13.6 Hz, 1 H, CHHNH₂), 2.94 (ddd, *J* = 4.1, 6.8, 13.6 Hz, 1 H, CHHNH₂), 3.63 (ddd, *J* = 4.2, 6.8, 9.9 Hz, 1 H, CH₂CHHO), 3.68 (dd, *J* = 5.2, 8.7 Hz, 1 H, CHCHHO), 3.83 (ddd, *J* = 4.1, 5.6, 9.9 Hz, 1 H, CH₂CHHO), 3.88 (d, *J* = 17.7 Hz, 1 H, CHHCO₂tBu), 3.90 (dd, *J* = 5.1, 9.3 Hz, 1 H, CHN), 4.11 (dd, *J* = 6.5, 8.7 Hz, 1 H, CHCHHO), 4.17 (d, *J* = 17.7 Hz, 1 H, CHHCO₂tBu), 4.37 (ddd, *J* = 5.2, 6.5, 9.3 Hz, 1 H, CH₂CHO), 4.65 (d, *J* = 5.1 Hz, 1 H, CHOCH₂) ppm. ¹³C NMR (50 MHz): δ = 25.21, 26.90 (CH₃), 28.06 [C(CH₃)₃], 41.83, 43.09 (CH₂), 60.67 (CHN), 66.72, 74.03 (CH₂O), 76.72, 82.24 (CHO), 109.61 (OCO), 167.05, 167.67 (*C*= O) ppm.

tert-Butyl (3R*,1'R*)-{[(4S*)-(2,2-Dimethyl-1,3-dioxolan-4-yl)-(3oxomorpholin-2-yl)methyl|amino}acetate (25b): $R_{\rm f} = 0.53$ (CHCl₃/ MeOH, 90:10). C₁₆H₂₈N₂O₆ (344.40): calcd. C 55.80, H 8.19, N 8.13; found C 55.85, H 8.3, N 8.05. GC-MS: $R_t = 9.64$; m/z = 329 $[M^{+-} - 15]$ (1.0), 273 (2.3), 244 (15.9), 243 (26.5), 187 (100.0), 185 (10.5), 141 (21.0), 130 (24.8), 113 (20.6), 101 (9.0), 84 (5.8), 72 (14.8), 70 (11.0), 68 (5.0), 57 (18.9), 56 (7.4), 44 (15.5), 43 (23.3), 42 (12.6), 41 (18.3). ¹H NMR: $\delta = 1.35$, 1.42 (2 s, 2 × 3 H, CH₃), 1.45 [s, 9 H, C(CH₃)₃], 3.17-3.30 (m, 1 H, CHHNC=O), 3.35 (dd, J = 1.8, 7.4 Hz, 1 H, CHN), 3.42, 3.51 (AB system, J = 17.5 Hz, 2 H, CH₂CO₂tBu), 3.60–3.82 (m, 2 H, CH₂CHHO, CHHNC=O), 3.81 (t, J = 7.8 Hz, 1 H, CHCHHO), 3.98-4.15 (m, 3 H, CHCHHO, CHOCH₂, CH₂CHHO), 4.28 (q, J = 7.1 Hz, 1 H, CHCHO), 6.42 (br. s, 1 H, NH) ppm. ¹³C NMR (50 MHz): δ = 25.63, 26.71 (CH₃), 28.18 [C(CH₃)₃], 41.90, 50.88 (CH₂), 60.67 (CHN), 63.25, 66.93 (CH₂O), 77.77, 80.75 (CHO), 109.29 (OCO), 169.55, 171.89 (C=O) ppm. IR: $\tilde{v}_{max} = 3406, 2981, 2932, 2871,$ 1726 (s), 1674 (s), 1477, 1451, 1380, 1370, 1343, 1235, 1152, 1120, $1069, 968, 907, 844 \text{ cm}^{-1}.$

 $(3R^*,4S^*)$ -3-(2-Aminoethoxy)-4-[(benzyloxymethoxy)methyl]-1-(4methoxyphenyl)azetidin-2-one (3c): $R_f = 0.10$ and 0.15 (CHCl₃/ MeOH, 75:25). ¹H NMR: δ = 2.88 (ddd, J = 4.3, 5.5, 13.8 Hz, 1 H, CHHNH₂), 2.96 (ddd, J = 4.2, 6.7, 13.8 Hz, 1 H, CHHNH₂), 3.63–3.86 (m, 2 H, OCH₂CH₂N), 3.78 (s, 3 H, OCH₃), 3.93, 3.99 (AB part of ABX system, J_{AB} = 11.4 Hz, J_{AX} = 5.3, J_{BX} = 6.1, 2 H, CH₂OBOM), 4.36 (q, J = 5.4 Hz, 1 H, CHN), 4.53 (s, 2 H, CH₂Ph), 4.75 (d, J = 5.2 Hz, 1 H, CHO), 4.77 (s, 2 H, OCH₂O), 6.86 (d, J = 9.1 Hz, 2 H, H ortho to OCH₃), 7.23–7.40 (m, 5 H, aromatics), 7.48 (d, J = 9.1 Hz, 2 H, H meta to OCH₃) ppm.

(2R*,1'S*)-2-{2-(Benzyloxymethoxy)-1-[(4-methoxyphenyl)amino]ethyl}morpholin-3-one (25c): $R_{\rm f} = 0.75$ (CHCl₃/MeOH, 75:25). C21H26N2O5 (386.44): calcd. C 65.27, H 6.78, N 7.25; found C 65.55, H 6.6, N 7.2. GC-MS: $R_t = 15.09$; $m/z = 386 [M^{+}]$ (7.5), 286 (35.2), 235 (13.9), 180 (4.4), 178 (9.4), 165 (9.0), 148 (20.6), 136 (6.7), 134 (9.3), 133 (7.1), 122 (5.9), 91 (100.0), 44 (6.1). ¹H NMR: $\delta = 3.12 - 3.24$ (m, 1 H, CHHN), 3.50 - 3.85 (m, 4 H, CHHN, CHHOBOM, NCH₂CH₂O), 3.72 (s, 3 H, CH₃O), 4.05 (dd, J =3.7, 11.1 Hz, 1 H, CHHOBOM), 4.28 (m_c, 1 H, CHN), 4.43 (d, J = 1.7 Hz, 1 H, CHO), 4.58 (s, 2 H, CH₂Ph), 4.76 (s, 2 H, OCH₂O), 6.51 (br. d, J = 4.0 Hz, 1 H, NH), 6.68, 6.73 (AB system, J = 9.3 Hz, 4 H, anisyl aromatic), 7.32 (s, 5 H, other aromatics) ppm. ¹³C NMR (50 MHz): $\delta = 41.91$ (CH₂N), 55.41 (CHN), 55.79 (OCH₃), 63.24, 66.16, 69.46 (CH₂O), 76.82 (CHO), 94.75 (OCH₂O), 114.92, 115.77, 127.69, 127.96, 128.41 (aromatic CH), 137.85, 140.91, 152.69 (aromatic quat.), 169.75 (C=O) ppm. IR: $\tilde{\nu}_{max} = 3406, 2996, 2946, 2877, 1675$ (s), 1506, 1478, 1454, 1390, 1345, 1332, 1238, 1112, 1039 cm⁻¹.

(3*R**,4*R**)-3-(2-Aminoethyl)-4-[(benzyloxymethoxy)methyl]-1-(4methoxyphenyl)azetidin-2-one (4): $R_{\rm f} = 0.19$ (CHCl₃/MeOH, 75:25). ¹H NMR: δ = 1.75-2.05 (m, 2 H, CH₂CH₂NH₂), 2.80-3.05 (m, 2 H, CH₂NH₂), 3.45 (dt, J = 9.2, 6.1 Hz, 1 H, CHC=O), 3.77 (s, 3 H, OCH₃), 3.90 (d, J = 5.3 Hz, 2 H, CH₂O-BOM), 4.27 (q, J = 5.5 Hz, 1 H, CHN), 4.46 (s, 2 H, CH₂Ph), 4.72, 4.75 (AB system, J = 6.9 Hz, 2 H, OCH₂O), 6.85 (d, J =9.0 Hz, 2 H, *H ortho* to OCH₃), 7.18-7.40 (m, 5 H, aromatics), 7.42 (d, J = 9.0 Hz, *H meta* to OCH₃) ppm. ¹³C NMR (50 MHz): δ = 28.86 (CH₂CH₂NH₂), 40.77 (CH₂N), 49.69, 54.05 (CHC=O and CHN), 55.48 (CH₃O), 65.95, 69.75 (CH₂O), 94.89 (OCH₂O), 114.31, 118.84, 127.80, 128.44 (aromatic CH), 131.27, 137.51, 156.15 (aromatic quat.), 167.42 (C=O) ppm.

(3*R**,1'*R**)-3-{2-(Benzyloxymethoxy)-1-[(4-methoxyphenyl)amino]ethyl}pyrrolidin-2-one (36): $R_f = 0.71$ (CHCl₃/MeOH, 75:25). C₂₁H₂₆N₂O₄ (370.44): calcd. C 68.09, H 7.07, N 7.56; found C 67.65, H 7.3, N 7.25. ¹H NMR: δ = 2.12-2.32 (m, 2 H, CH₂CH₂N), 2.73 (dt, *J* = 4.0, 9.2 Hz, 1 H, CHHN), 3.25-3.40 (m, 2 H, CHHN, CHC=O), 3.67-3.84 (m, 2 H, CH₂OBOM), 3.74 (s, 3 H, OCH₃), 3.87-3.98 (m, 1 H, CHN), 4.58 (s, 3 H, CH₂Ph), 4.75, 4.77 (AB system, *J* = 6.5 Hz, OCH₂O), 6.72, 6.75 (AB system, *J* = 9.6 Hz, 4 H, aromatics), 7.20-7.40 (m, 5 H, aromatics) ppm. ¹³C NMR (50 MHz): δ = 23.77 (CH₂CH₂N), 40.41 (CH₂N), 42.80 (CHC=O), 54.86 (CHN), 55.80 (OCH₃), 69.02, 69.75 (CH₂O), 95.14 (OCH₂O), 115.08, 116.14, 127.75, 127.87, 128.45 (aromatic CH), 137.81, 141.42, 152.77 (aromatic quat.), 178.57 (*C*=O) ppm. IR: \tilde{v}_{max} = 3437, 3003, 2949, 2887, 1692 (s), 1505, 1452, 1193, 1113, 1042, 907 cm⁻¹.

(3*R**,4*S**,*E*)-3-Methoxy-1-[2-(phenylacetylamino)ethyl]-4-(2-phenylethenyl)azetidin-2-one (37): A solution of azide 16b (141 mg, 0.518 mmol) in THF (5 mL) was treated at room temp. with PPh₃ (204 mg, 0.777 mmol) and H₂O (250 μ L). After stirring at room temp. for 6 h, Et₃N (289 μ L, 2.07 mmol) and phenylacetyl chloride (137 μ L, 1.04 mmol) were added in sequence. After 2 h, the mixture was quenched with saturated aqueous NH₄Cl (15 mL) and NaOH

(1 N, 4 mL). After further stirring for 15 min, the mixture was extracted with $Et_2O(1 \times)$ and $EtOAc(2 \times)$. The combined organic extracts were washed with saturated aqueous NaHCO3, concentrated, and immediately chromatographed (CH2Cl2/EtOAc, 50:50 to 30:70), to give 37 containing a slight impurity of triphenylphosphane oxide. A second chromatography afforded pure 37 as a foam (161 mg, 85%). $R_{\rm f} = 0.21$ (CH₂Cl₂/EtOAc, 50:50). $C_{22}H_{24}N_2O_3$ (364.44): calcd. C 72.50, H 6.64, N 7.69; found C 72.55, H 6.6, N 7.4. GC-MS: $R_t = 12.47$; $m/z = 332 [M^{+-} - 32]$ (4.7), 241 (9.8), 198 (9.4), 197 (12.9), 172 (88.0), 171 (8.8), 162 (37.0), 161 (10.7), 160 (57.5), 159 (29.5), 156 (19.7), 145 (13.1), 144 (24.6), 142 (12.2), 130 (9.6), 129 (28.4), 127 (24.3), 126 (10.5), 117 (31.1), 116 (13.9), 115 (59.4), 91 (100.0), 70 (9.2), 65 (16.3), 44 (10.1), 42 (9.8). ¹H NMR: $\delta = 3.00 - 3.45$ (m, 3 H), 3.42 (s, 3 H, OCH₃), 3.54 (s, 2 H, CH_2Ph), 3.50–3.70 (m, 1 H), 4.29 (dd, J = 4.4, 9.0 Hz, 1 H, CH-N), 4.45 (d, J = 4.4 Hz, 1 H, CH-OMe), 6.15 (dd, J = 9.0, 15.7 Hz, 1 H, CH=CHPh), 6.70 (d, J = 16.2 Hz, 1 H, CH= CHPh), 7.25-7.45 (m, 10 H, aromatics) ppm. ¹³C NMR (50 MHz): $\delta = 37.42, 41.02, 43.84$ (CH₂), 58.63 (OCH₃), 61.09 (CH-N), 85.15 (CH-OMe), 122.70 (CH=CHPh), 126.75, 127.27, 128.46, 128.70, 128.94, 129.45 (aromatic CH), 134.83, 135.82 (aromatic quat.), 137.00 (CH=CHPh), 167.60 and 171.48 (C=O) ppm. IR: \tilde{v}_{max} = 3421, 3039, 2990, 2931, 2833, 1746 (s), 1664 (s), 1600, 1524, 1400, 1349, 1143, 1063, 998, 969 cm⁻¹.

Hydrolysis of Phenylacetamide 37 with Penicillin G Acylase: Penicillin G acylase [activity: 450 U/g dry basis; supported on polyacrylic resin and suspended in glycerol (80%) and 0.02 M phosphate buffer pH = 7.8 (20%); a gift of Unità Biochimici De. Bi. Recordati] was washed with distilled water and dried by suction just before use. A buffer solution (pH = 7.5) was prepared by dissolving 10 mmol of aminotris(hydroxymethyl)methane in distilled water (10 mL), adjusting the pH to 7.5 with 1 N HCl, and then diluting to 50 mL. The washed and dried enzyme (70 mg) was dissolved in the buffer solution (5 mL). A solution of 37 (18.8 mg, 51.6 µmol) in MeOH (500 μ L) was added. The solution became cloudy and was stirred at room temp. for 6 h. At this point TLC (CHCl₃/MeOH, 95:5) showed the complete conversion of 37 into 2b and 17b. The mixture was stirred at 37 °C overnight. The pH was raised to 12 by addition of 1 N NaOH. The mixture was extracted with EtOAc and the organic phase washed with saturated aqueous NaCl. Concentration and preparative TLC (CHCl₃/MeOH, 90:10) furnished azalactam 17b (9.5 mg, 75%).

(3R,4S,E)- and (3S,4R,E)-1-(2-{[(N-tert-Butoxycarbonyl-D-valyl)-Lleucyl-(N-E-tert-butoxycarbonyl)-L-lysyl]amino}ethyl)-3-methoxy-4-(2-phenylethenyl)azetidin-2-ones (39): A solution of freshly prepared amine 2b (51.6 mg, 210 µmol) in dry CH₂Cl₂ (1 mL) was cooled to 0 °C and treated in sequence with [(N-tert-butoxycarbonyl-D-valyl)-L-leucyl]-N-E-tert-butoxycarbonyl-L-lysine (38)^[5] (117.2 mg, 210 µmol), PyBOP (163.4 mg, 314 µmol), and a solution of Et₃N in CH₂Cl₂ (0.5 N, 628 µL, 314 µmol). After stirring at 0 °C for 1 h and at room temp. for 1 h, the solution was diluted with EtOAc (20 mL), MeOH (2 mL) and aqueous (NH₄)H₂PO₄ (5%, 30 mL); the phases were separated and the aqueous one was extracted twice again with EtOAc. Concentration and chromatography (CH₂Cl₂/ MeOH, 98:2) gave a slightly impure product that was further purified by preparative TLC (EtOAc/MeOH, 8:2) to give pure 39 (107 mg, 65%) as a diastereoisomeric mixture. $C_{41}H_{66}N_6O_9$ (787.00): calcd. C 62.57, H 8.45, N 10.68; found C 62.2, H 8.2, N 10.8. ¹H NMR ([D₆]DMSO): $\delta = 0.75 - 0.95$ [m, 12 H, (CH₃)₂CH], 1.10-1.80 [m, 9 H, CH₂CH₂CH₂CH₂N, CH₂CH(CH₃)₂], 1.37 [s, 18 H, $(CH_3)_3$ C], 1.93 (sept, J = 6.5 Hz), 2.80–3.05 (m, 2 H, CH_2 N), 3.07-3.42 (m, 2 H, CH₂N), 3.32 (s, 3 H, OCH₃), (3.78 (t, J =

7.0 Hz, 1 H, C*H*NH), 4.02–4.20 (m, 1 H, C*H*NH), 4.20–4.38 (m, 1 H, C*H*NH), 4.39–4.53 (m, 1 H, CH=CHC*H*N), 4.58 and 4.63 (2 d, J = 4.1 and 4.4 Hz, 1 H, C*H*OMe), 6.22 (dd, J = 8.1, 16.1 Hz, 1 H, C*H*=CHPh), 6.71 (br. s, 2 H, N*H*), 6.79 (d, J = 16.1 Hz, 1 H, CH=C*H*Ph), 7.22–7.44 (m, 3 H, aromatics), 7.50 (d, J = 7.7 Hz, 2 H, aromatics), 7.70–8.20 (m, 3 H, N*H*) ppm. ¹³C NMR ([D₆]DMSO, 50 MHz): $\delta = 18.32$, 19.02, 20.96 (CH₃), 22.85 (CH₂), 23.17 (CH₃), 23.99 (CH), 28.04 and 28.19 [C(CH₃)₂], 29.18 (CH₂), 30.08 (CH), 31.25, 36.23, 36.65, 39.69, 40.06 (CH₂), 50.92, 50.97, 52.72 (CHN), 57.65 (OCH₃), 59.67, 59.90, 59.99 (CHN), 77.25, 78.10 [C(CH₃)₃], 85.03, 85.12 (CHOCH₃), 124.06, 124.17 (CH=CHPh), 126.51, 127.99, 128.60 (aromatic CH), 135.12, 135.24 (CH=*C*HPh), 135.96, 135.99 (aromatic quat.), 155.44, 155.55 (ure-thane carbonyls), 165.95, 166.07 (β-lactam carbonyls), 171.48, 171.53, 171.84, 171.89 (amidic carbonyls) ppm.

Transformation of Compound 39 into (3R,4S,E)- and (3S,4R,E)-1-{2-[(D-Valyl-L-leucyl-L-lysyl)amino]ethyl}-3-methoxy-4-(2-phenylethenyl)azetidin-2-ones (40) and Their Hydrolysis with Plasmin: Plasmin (from porcine blood, Sigma cat. P-8644, 3.2 units/mg; 2.6 mg) was dissolved in buffer [pH = 7.5, 12.8 mL; prepared by]dissolving aminotris(hydroxymethyl)methane (10 mmol) in distilled water (10 mL), adjusting the pH to 7.5 with 1 N HCl, and diluting to 50 mL]. The resulting solution contains 0.65 U/mL of active enzyme. A solution of compound 39 (42.3 mg) in dry CH₂Cl₂ (750 µL) was cooled to 0 °C and treated with CF3CO2H (250 µL). After stirring at 0 °C for 40 min and at room temp. for 2 h, the solvents were evaporated to dryness. The residue was taken up twice with *n*-heptane and the solvents were evaporated again to give a white foam (42.1 mg). This material was taken up in MeOH (0.9 mL). One third of this solution (300 µL) was added to the above-prepared Plasmin solution. The mixture was stirred at room temp. for 30 h. At this point TLC (CHCl₃/MeOH, 75:25) showed complete conversion of 40 into 2b and (mostly) 17b. After a further 18 h, the pH was raised to 12 by addition of 1 N NaOH. The mixture was extracted with EtOAc and the organic phase washed with saturated aqueous NaCl. Concentration and preparative TLC (CHCl₃/ MeOH, 90:10) afforded pure 17b (2.9 mg, 68% from 39).

 $(3R^*, 4S^*, E)$ -1-{2-{[(4,5-Dimethoxy-2-nitrophenyl)methoxy]carbonylamino}ethyl}-3-methoxy-4-(2-phenylethenyl)azetidin-2-one (41): A solution of freshly prepared amine 2b (53.3 mg, 202 µmol) in dry CH₂Cl₂ (1 mL) was kept in the dark, cooled to 0 °C, and treated with Et₃N (181 µL, 1.30 mmol) and 6nitroveratryl chloroformate (179 mg, 650 µmol). After stirring at 0 °C for 3 h, the reaction was quenched with saturated aqueous NH₄Cl (3 mL) and stirred at room temp. for 15 min. The mixture was diluted with NaHCO₃ (5%, 20 mL) and extracted with EtOAc. The organic phase was washed with aqueous $(NH_4)H_2PO_4$ (5%) and saturated aqueous NaCl. Concentration and chromatography (Et₂O/CH₂Cl₂/EtOH, 49:49:2) gave pure 41 as a yellow foam (80.3 mg, 82%). $R_{\rm f} = 0.26 ({\rm Et_2O/CH_2Cl_2/EtOH}, 49:49:2)$. C24H27N3O8 (485.49): calcd. C 59.37, H 5.61, N 8.66; found C 59.4, H 5.75, N 8.7. ¹H NMR: $\delta = 3.10 - 3.65$ (m, 4 H, CH_2CH_2N), 3.43 (s, 3 H, OCH₃), 3.95, 4.00 (2 s, 2×3 H, OCH₃), 4.37 (dd, J = 4.4, 9.2 Hz, 1 H, CHN), 4.56 (d, J = 4.4 Hz, 1 H, CHOMe), 5.45, 5.53 (AB system, J = 15.3 Hz, 2 H, CH_2Ar), 5.73 (br. s, 1 H, NH), 6.22 (dd, J = 9.2, 15.9 Hz, 1 H, CH=CHPh), 6.74 (d, J = 15.9 Hz, 1)H, CH=CHPh), 7.05 (s, 1 H, veratryl aromatic), 7.20-7.46 (m, 5 H, aromatics), 7.71 (s, 1 H, veratryl aromatic) ppm.

Photochemical Cleavage of Compound 41 To Give Amine 2b: In a quartz test tube, a solution of 41 (20.3 mg, 41.8 μ mol) in ethanol (96%, 1 mL) was treated with H₂SO₄ (11 μ L, 200 μ mol). The solution was placed in a Rayonet "merry-go-round" apparatus and ir-

radiated with 12 lamps (4.5 W, 350 nm) for 24 h. After this time, TLC showed complete disappearance of the starting material. The solution was diluted with CH₂Cl₂ (10 mL) and water (10 mL). The phases were separated and the aqueous one was extracted again with CH₂Cl₂. The combined organic phases were extracted with (NH₄)H₂PO₄ (5%). The combined aqueous phases were brought to pH = 13 by addition of aqueous NaOH (1 N) and extracted with CH₂Cl₂. The solvent was evaporated, and the residue taken up again in THF (500 µL) and treated with Et₃N (35 µL, 251 µmol) and phenylacetyl chloride (17 µL, 125 µmol). After 2 h, the reaction was complete. It was worked up as described for the preparation of **37**. Chromatography gave pure phenylacetamide **37** (10 mg, 65%).

Ethyl (1R*,9R*,10S*,Z)-{9-(tert-Butyldimethylsilyloxy)-12-oxo-11azabicyclo[8.2.0]dodec-5-ene-3,7-diyn-11-yl}acetate (43): A solution of alcohol 42^[2] (150.2 mg. 0.498 mmol) in dry THF (3 mL) was cooled to 0 °C and treated with a solution of KN(SiMe₃)₂ in toluene (0.39 M, 1.40 mL, 0.548 mmol). After 15 min, ethyl bromoacetate (66 µL, 0.598 mmol) was added. After 75 min, the solution was poured into saturated aqueous NH₄Cl. Extraction with Et₂O gave, after concentration and chromatography (PE/Et₂O, 60:40 + 1%) Et₃N, to PE/Et₂O, 50:50), pure **43** as a solid (156.3 mg, 81%). $R_{\rm f} =$ 0.48 (PE/Et₂O, 50:50). M.p. 147.8-148.5 °C. C₂₁H₂₉NO₄Si (387.54): calcd. C 65.08, H 7.54, N 3.61; found C 64.95, H 7.65, N 3.55. GC-MS: $R_t = 10.19$; $m/z = 330 [M^{+-} - 57]$ (100), 284 (6.7), 256 (7.8), 228 (7.8), 217 (6.3), 201 (8.4), 182 (5.1), 177 (28.6), 156 (6.5), 155 (6.5), 154 (18.6), 128 (6.8), 127 (11.6), 126 (7.6), 125 (5.3), 115 (9.9), 105 (6.8), 104 (7.2), 103 (10.8), 77 (8.1), 75 (57.9), 73 (72.4), 59 (13.1), 45 (8.9), 41 (7.6). ¹H NMR: $\delta = 0.17$ and 0.12 [2 s, 2×3 H, $(CH_3)_2$ Si], 0.89 [s, 9 H, $(CH_3)_3$ C], 2.73 (dd, J = 12.5, 17.9 Hz, 1 H, $CHHC \equiv C$), 1.30 (t, J = 7.1 Hz, 3 h, CH_3CH_2), 2.90 (ddd, J = 1.5, 4.4, 17.9 Hz, 1 H, CHHC=C), 3.44 (d, J = 18.0, 1H, CHHCO₂Et), 3.75 (ddd, J = 2.2, 4.3, 12.3 Hz, 1 H, CHC=O), 4.05 (t, J = 2.1 Hz, 1 H, CHN), 4.21 (m_c)(m, 2 H, CH₂CH₃), 4.41 (d, J = 18.0 Hz, 1 H, CHHCO₂Et), 4.72 (t, J = 1.8 Hz, 1 H, CHOSi), 5.94 and 5.88 (AB part of an ABX₂ system, J_{AB} = 10.0 Hz, $J_{AX} = J_{BX} = 0.7$ Hz, 2 H, CH=CH) ppm. ¹³C NMR $(50 \text{ MHz}): \delta = 14.19 (CH_2CH_3), 18.05 [C(CH_3)_3], 19.29$ (*C*H₂C≡C), 25.64 [(*C*H₃)₃C], 41.28 (*C*H₂CO₂Et), 51.83 (*C*HC=O), 59.49 (CHN), 61.73 (CH₂O), 63.57 (CHOSi), 83.68, 86.52, 97.52, 100.60 ($C \equiv C$), 122.16, 125.82 (CH = CH), 167.94, 168.33 (C = O) ppm. IR: $\tilde{v}_{max} = 2954, 2930, 2857, 1756, 1740, 1462, 1410, 1375,$ 1363, 1350, 1316, 1191, 1132, 1115, 1094, 1014, 979, 936, 863, 836 cm^{-1} .

(1R*,9R*,10S*,Z)-9-(tert-Butyldimethylsilyloxy)-11-(2-hydroxyethyl)-11-azabicyclo[8.2.0]dodec-5-ene-3,7-diyn-12-one (44): Powdered anhydrous CaCl₂ (140 mg, 1.26 mmol) was suspended in THF (7 mL) and absolute EtOH (4 mL). The mixture was cooled to -20 °C and treated with NaBH₄ (75 mg, 1.99 mmol). After 30 min, a solution of lactenediyne 43 (153 mg, 0.394 mmol) in THF (4 mL) was added. The temperature was allowed to rise to 0 °C during 2 h and 30 min. At this point TLC showed complete conversion of the starting material. The mixture was poured into a cooled (ice) saturated aqueous NH₄Cl solution and extracted with Et₂O. Immediate chromatography (CH₂Cl₂/EtOAc, 50:50) gave pure 44 as a solid (120.1 mg, 88%). $R_{\rm f} = 0.47$ (CH₂Cl₂/EtOAc, 1:1), $R_{\rm f} =$ 0.68 (EtOAc). M.p. 122.6-123.8 °C. C₁₉H₂₇NO₃Si (345.51): calcd. C 66.05, H 7.88, N 4.05; found C 66.15, H 7.9, N 3.95. GC-MS: $R_{\rm t} = 10.04; \ m/z = 345 \ [{\rm M}^{+-}] \ (0.11), \ 288 \ [{\rm M}^{+-} - 57] \ (19.3), \ 287$ (10.9), 272 (5.1), 271 (15.8), 270 (69.2), 216 (11.4), 186 (7.7), 168 (15.0), 156 (6.7), 143 (7.0), 142 (9.5), 135 (13.1), 127 (12.3), 126 (6.6), 119 (8.1), 115 (11.2), 77 (10.9), 76 (8.9), 75 (100), 73 (76.7), 59 (12.4), 57 (8.1), 47 (7.2), 45 (30.5), 43 (7.0), 41 (9.6). ¹H NMR:

δ = 0.14, 0.20 [2 s, 2 × 3 H, (*CH*₃)₂Si], 0.90 [s, 9 H, (*CH*₃)₃C], 2.63 (dd, *J* = 12.6, 17.9 Hz, 1 H, *CH*HC≡), 2.90 (ddd, *J* = 1.5, 4.0, 17.9 Hz, 1 H, *CH*HC≡), 3.18, 3.30 (AB part of ABX system, *J*_{AB} = 14.4 Hz, *J*_{AX} = 4.5 Hz, *J*_{BX} = 5.0 Hz, 2 H, *CH*₂N), 3.62−3.90 (m, 5 H, *CH*₂OH, *OH*, *CH*N, *CH*C=O), 4.79 (t, *J* = 1.8 Hz, 1 H, *CH*OSi), 5.89, 5.95 (AB part of ABX₂ system, *J*_{AB} = 9.5 Hz, *J*_{AX} = *J*_{BX} = 0.7 Hz, 2 H, *CH*=*CH*) ppm. IR: \tilde{v}_{max} = 3371, 2998, 2954, 2929, 2884, 2856, 1729, 1462, 1406, 1360, 1350, 1314, 1194, 1160, 1138, 1114, 1062, 1028, 1001, 977 cm⁻¹.

(1R*,9R*,10S*,Z)-11-(2-Azidoethyl)-9-(tert-butyldimethylsilyloxy)-11-azabicyclo[8.2.0]dodec-5-ene-3,7-diyn-12-one (45): A solution of alcohol 44 (116.9 mg, 0.338 mmol) in dry CH₂Cl₂ (2 mL) was cooled to -30 °C and treated sequentially with Et₃N (188 μ L, 1.352 mmol) and methanesulfonyl chloride (52 µL, 0.676 mmol). After 50 min, the mixture was poured into saturated aqueous NH₄Cl and extracted with Et₂O. After concentration to dryness, the crude mesylate was taken up in dry DMF (1.0 mL), treated with NaN₃ (66 mg, 1.1014 mmol) and heated at 50 °C for 2 h and 15 min. After cooling, the solution was poured into a mixture of saturated aqueous NH₄Cl and H₂O (2:1), and extracted with Et₂O. Chromatography (PE/EtOAc, 70:30) gave pure 45 as a white solid (105.3 mg, 84%). $R_{\rm f} = 0.74$ (PE/EtOAc, 50:50). M.p. 87.5–88.4 °C. C₁₉H₂₆N₄O₂Si (370.52): calcd. C 61.59, H 7.07, N 15.12; found C 61.8, H 7.25, N 14.95. GC-MS: $R_t = 10.21$; m/z = 342 [M⁺⁻ - 28] (30.3), 313 $[M^{+\cdot} - 57]$ (8.8), 285 (13.8), 257 (6.3), 211 (7.6), 185 (5.4), 184 (6.0), 183 (14.9), 182 (6.7), 181 (6.8), 169 (5.4), 156 (7.6), 154 (8.6), 143 (6.1), 128 (7.6), 127 (13.5), 126 (6.3), 115 (11.5), 101 (6.0), 84 (9.3), 77 (14.0), 76 (9.1), 75 (100), 74 (13.8), 73 (83.5), 69 (13.7), 59 (15.0), 57 (9.0), 47 (9.6), 45 (14.4), 42 (13.5), 41 (12.1). ¹H NMR: $\delta = 0.14, 0.19$ [2 s, 2 × 3 H, (CH₃)₂Si], 0.89 [s, 9 H, $(CH_3)_3C$], 2.65 (dd, J = 12.6, 17.9 Hz, 1 H, $CHHC \equiv C$), 2.90 (ddd, $J = 1.5, 4.0, 17.9 \text{ Hz}, 1 \text{ H}, CHC \equiv C), 2.97 \text{ (ddd, } J = 4.4, 8.1,$ 13.6 Hz, 1 H, CHHNC=O), 3.40-3.77 (m, 4 H, CHC=O, CH₂N₃, CHC=O), 3.87 (t, J = 2.1 Hz, 1 H, CHN), 4.81 (t, J = 1.8 Hz, 1 H, CHOSi), 5.89, 5.94 (AB part of ABX₂ system, $J_{AB} = 9.5$ Hz, $J_{AX} = J_{BX} = 0.7$ Hz) ppm. ¹³C NMR (50 MHz): $\delta = -4.16, -5.04$ $[(CH_3)_2Si]$, 18.02 $[C(CH_3)_3]$, 19.25 $(CH_2C=C)$, 25.64 $[C(CH_3)_3]$, 39.65, 50.05 (CH₂N), 51.67 (CHC=O), 64.16 and 59.49 (CHOSi and CHN), 83.78, 86.68, 97.58, 100.54 (C=C), 122.20, 125.85 (*C*H=*C*H), 168.06 (*C*=O) ppm. IR: \tilde{v}_{max} = 3014, 2955, 2929, 2857, 2105, 1745, 1462, 1400, 1361, 1344, 1315, 1294, 1255, 1160, 116, $1037, 907 \text{ cm}^{-1}.$

(1R*,9R*,10S*,Z)-11-(2-Aminoethyl)-9-(tert-butyldimethylsilyloxy)-11-azabicyclo[8.2.0]dodec-5-ene-3,7-diyn-12-one Hydrochloride (46): A solution of azide 45 (30.0 mg, 81.0 µmol) in THF (1.5 mL) was treated with H_2O (250 μ L) and with Ph_3P (62.0 mg, 236.4 µmol). The mixture was stirred at room temp. for 14 h. The solvent was evaporated and the residue chromatographed (CHCl₃ to CHCl₃/MeOH, 85:15, to CHCl₃/MeOH/*i*PrNH₂, 82.5:15:2.5) to give pure amine 46. This amine was taken up in CH₂Cl₂ (1 mL) and treated with a solution of HCl in Et₂O (1 M, 75 μ L). After concentration, the pure hydrochloride (26.1 mg, 85%) was obtained as a white solid, which was stable in a freezer for several weeks. $R_{\rm f}$ (of free amine) = 0.59 (CHCl₃/MeOH, 85:15). GC-MS: $R_t = 10.08$; $m/z = 344 [M^{+}] (1.2)$, 343 $[M^{+} - 1] (5.1)$, $287 [M^{+-} - 57], (85.9), 269 (6.6), 259 (7.9), 233 (14.8), 228 (5.0),$ 216 (7.8), 215 (5.2), 214 (18.9), 213 (11.5), 212 (5.2), 202 (5.1), 201 (6.4), 186 (10.5), 185 (17.8), 184 (9.2), 183 (12.0), 160 (10.6), 156 (9.0), 154 (12.7), 143 (10.4), 142 (10.6), 141 (7.0), 128 (11.1), 127 (15.1), 126 (8.1), 115 (10.2), 77 (7.6), 75 (51.3), 73 (100), 59 (11.3), 45 (8.8), 44 (19.5). ¹H NMR: $\delta = 0.14$, 0.19 [2 s, 2 × 3 H, $(CH_3)_2$ Si], 0.90 [s, 9 H, C $(CH_3)_3$], 2.64 (dd, J = 12.6, 17.8 Hz, 1 H, CHHC=C), 2.80-3.10 (m, 3 H, CHHNC=O and CHHC=C), 3.43 (dt, J = 10.4, 6.0 Hz, 1 H CHHNC=O), 3.70 (ddd, J = 2.0, 4.0, 12.7 Hz, 1 H, CHC=O), 3.80 (t, J = 3.9 Hz, 1 H, CHN), 4.79 (t, J = 1.8 Hz, 1 H, CHOSi), 5.89, 5.94 (AB system, J = 10.2 Hz, 2 H, CH=CH) ppm.

(5aR*,11R*,11aS*)-11-(tert-Butyldimethylsilyloxy)-1,2,3,4,5a,6, 11,11a-octahydronaphtho[2,3-e]-1,4-diazepin-5-one (48): The hydrochloride salt of amine 46 (23.8 mg, 62.5 µmol) was taken up in THF (2 mL) and treated with Et₃N (100 µL) and 1,4-cyclohexadiene (100 μ L). The solution was heated under reflux for 4 d. The solvent was evaporated. A preparative TLC (CHCl₃/MeOH, 95:5) gave pure 48 (9.7 mg, 45%). $R_{\rm f} = 0.35$ (CHCl₃/MeOH, 95:5). GC-MS: $R_t = 10.50$; $m/z = 289 [M^{+\cdot} - 57]$ (66.3), 234 (71.5), 227 (80.2), 214 (57.0), 163 (100), 129 (77.6), 115 (23.9), 91 (6.9), 75 (99.4), 44 (45.8). ¹H NMR: $\delta = 0.04$, 0.17 [2 s, 2 × 3 H, (CH₃)₂Si], 0.98 [s, 9 H, C(CH₃)₃], 2.80-2.95 (m, 2 H), 2.97-3.10 (m, 3 H), 3.10-3.35 (m, 2 H), 3.50-3.65 (m, 1 H), 4.81 (d, J = 5.1 Hz, 1 H, CHOSi), 5.96 (br. s, NH), 7.31 (s, 5 H, aromatics) ppm. ¹³C NMR $(50 \text{ MHz}): \delta = -4.80 [(CH_3)_2 \text{Si}], 18.25 [C(CH_3)_3], 25.86 [C(CH_3)_3],$ 27.45 (benzylic CH₂), 45.00, 46.64, 49.95 (CH₂N and CHC=O), 60.0 (CHN), 72.27 (CHOSi), 124.79, 126.28, 127.36, 127.73 (aromatic CH), 136.62, 138.18 (aromatic quat.), 179.04 (C=O) ppm. IR: $\tilde{v}_{max} = 3416, 3062, 3020, 2997, 2927, 2856, 1663, 1461, 1237,$ 1105 cm^{-1} .

Acknowledgments

We wish to thank Dr. Katharine Powles and Dr. Giulio Nervi for their collaboration to this work, MIUR (COFIN 98 and COFIN 00), C.N.R., and the University of Genova for financial support, and Recordati (Unità Biochimici De. Bi.) for a kind gift of penicillin G acylase.

- [1] L. Banfi, G. Guanti, Angew. Chem. Int. Ed. Engl. 1995, 34, 2393-2395; L. Banfi, G. Guanti, Eur. J. Org. Chem. 1998, 1543-1548; L. Banfi, G. Guanti, A. Basso, Eur. J. Org. Chem. 2000, 939-946; L. Banfi, G. Guanti, Tetrahedron Lett., submitted.
- [2] L. Banfi, A. Basso, G. Guanti, *Tetrahedron* 1997, 53, 3249-3268.
- ^[3] L. Banfi, G. Guanti, *Tetrahedron Lett.* 2000, 41, 6523-6526.
- ^[4] K. C. Nicolaou, Angew. Chem. Int. Ed. Engl. 1991, 30, 1387–1530; K. C. Nicolaou, A. L. Smith, in Modern Acetylene Chemistry (Eds.: P. J. Stang, F. Diederich), Wiley-VCH, Weinheim, 1995, pp. 203–283; A. L. Smith, K. C. Nicolaou, J. Med. Chem. 1996, 39, 2103–2117.
- [5] G. Eisenbrand, S. Lauck-Birkel, W. C. Tang, *Synthesis* 1996, 1246–1258.
- ^[6] A. M. Rauth, T. Melo, V. Misra, *Int. J. Radiat. Oncol., Biol., Phys.* **1998**, 42, 755–762; B. G. Siim, W. A. Denny, W. R. Wilson, *Oncol. Res.* **1997**, *9*, 357–369.
- I. Niculescu-Duvaz, C. J. Springer, Adv. Drug Delivery Rev. 1997, 26, 151–172; L. N. Jungheim, T. T. Shepherd, Chem. Rev. 1994, 94, 1553–1566.
- ^[8] W. A. Denny, W. R. Wilson, J. Pharm. Pharmacol. **1998**, 50, 387–394; M. P. Hay, W. R. Wilson, W. A. Denny, Bioorg. Med. Chem. Lett. **1995**, 5, 2829–2834; M. P. Hay, W. R. Wilson, W. A. Denny, Bioorg. Med. Chem. Lett. **1999**, 9, 3417–3422.
- [9] P. A. Wender, C. K. Zercher, S. Beckham, E.-M. Haubold, J. Org. Chem. 1993, 58, 5867-5869; K. Nakatani, S. Isoe, S. Maekawa, I. Saito, Tetrahedron Lett. 1994, 35, 605-608.
- ^[10] P. A. Wender, S. Beckham, J. C. O'Leary, Synthesis 1994, 1278-1282.
- ^[11] M. E. Maier, *Synlett* **1995**, 13–26.
- [12] M. J. Begley, L. Crombie, D. Haigh, R. C. F. Jones, S. Osborne, R. A. B. Webster, J. Chem. Soc., Perkin Trans. 1 1993,

2027–2046; Y. Pei, R. A. Houghten, J. S. Kiely, *Tetrahedron Lett.* **1997**, *38*, 3349–3352; H. H. Wasserman, G. D. Berger, *Tetrahedron* **1983**, *39*, 2459–2464.

- ^[13] L. Banfi, G. Guanti, M. Rasparini, *Tetrahedron Lett.* **1998**, 39, 9539-9542.
- ^[14] D. Reuschling, H. Pietsch, A. Linkies, *Tetrahedron Lett.* **1978**, *19*, 615–618.
- ^[15] L. Banfi, G. Guanti, Eur. J. Org. Chem., in press.
- ^[16] H. Staudinger, J. Meyer, *Helv. Chim. Acta* 1919, 2, 635; A. Koziara, K. Osowska-Pacewicka, S. Zawadski, A. Zwierzak, *Synthesis* 1985, 202.
- ^[17] A. M. Felix, M. H. Jimenez, J. Chromatogr. **1974**, 89, 361–364.
- [^{18]} A. K. Bose, V. R. Hegde, D. R. Wagle, S. S. Bari, M. S. Manhas, *J. Chem. Soc., Chem. Commun.* **1986**, 161–162; D. R. Wagle, C. Garai, J. Chiang, M. G. Monteleone, B. E. Kurys, T. W. Strohmeyer, V. R. Hegde, M. S. Manhas, A. K. Bose, *J. Org. Chem.* **1988**, *53*, 4227–4236; D. R. Wagle, C. Garai, M. G. Monteleone, A. K. Bose, *Tetrahedron Lett.* **1988**, *29*, 1649–1652; D. R. Wagle, M. G. Monteleone, L. Krishnan, M. S. Manhas, A. K. Bose, *J. Chem. Soc., Chem. Commun.* **1989**, 915–916.
- ^[19] M. S. Manhas, M. Ghosh, A. K. Bose, J. Org. Chem. **1990**, 55, 575-580.
- ^[20] G. Guanti, L. Banfi, E. Narisano, *Tetrahedron Lett.* **1989**, *30*, 5511–5514.
- ^[21] M. I. Page, Adv. Phys. Org. Chem. 1987, 23, 165–270; M. I. Page, Acc. Chem. Res. 1984, 17, 144–151.
- [22] C. Fuganti, P. Grasselli, S. Servi, A. Lazzarini, P. Casati, J. Chem. Soc., Chem. Commun. 1987, 538-539; C. Fuganti, P. Grasselli, S. Servi, A. Lazzarini, P. Casati, Tetrahedron 1988, 44, 2575-2582; E. Baldaro, P. D'Arrigo, G. Pedrocchi-Fantoni, C. M. Rosell, S. Servi, A. Tagliani, M. Terreni, Tetrahedron: Asymmetry 1993, 4, 1031-1034; T. Pohl, H. Waldmann, Tetrahedron Lett. 1995, 36, 2963-2966; T. Pohl, H. Waldmann, Angew. Chem. Int. Ed. Engl. 1996, 35, 1720-1723; Angew. Chem. 1996, 108, 1829-1832.
- ^[23] H. Waldmann, A. Heuser, A. Reidel, Synlett 1994, 65-67.
- ^[24] D. Rossi, A. Calcagni, A. Romeo, J. Org. Chem. 1979, 44, 2222-2225; D. Rossi, A. Romeo, G. Lucente, J. Org. Chem. 1978, 43, 2576-2581; C. Fuganti, P. Grasselli, P. Casati, Tetrahedron Lett. 1986, 27, 3191-3194; C. Fuganti, P. Grasselli, P. F. Seneci, S. Servi, P. Casati, Tetrahedron Lett. 1986, 27, 2061-2062; A. Romeo, G. Lucente, D. Rossi, G. Zanotti, Tetrahedron Lett. 1971, 21, 1799-1802; M. J. Zmijewski Jr., B. S. Briggs, A. R. Thompson, I. G. Wright, Tetrahedron Lett. 1991, 32, 1621-1622; I. B. Stoineva, B. P. Galunsky, V. S. Lozanov, I. P. Ivanov, D. D. Petkov, Tetrahedron 1992, 48, 1115-1122; R. S. Topgi, J. S. Ng, B. Landis, P. Wang, J. R. Behling, Bioorg. Med. Chem. Lett. 1999, 7, 2221-2229; G. Cainelli, D. Giacomini, P. Galletti, M. DaCol, Tetrahedron: Asymmetry 1997, 8, 3231-3235; A. L. Margolin, Tetrahedron Lett. 1993, 34, 1239-1242; S. Grabowski, J. Armbruster, H. Prinzbach, Tetrahedron Lett. 1997, 38, 5485-5488; V. A. Soloshonok, N. A. Fokina, A. V. Rybakova, I. P. Shishkina, S. V. Galushko, A. E. Sorochinsky, V. P. Kukhar, Tetrahedron: Asymmetry 1995, 6, 1601-1610; H. Waldmann, Justus Liebigs Ann. Chem. 1988, 1175-1180; M. Nettekoven, M. Psiorz, H. Waldmann, Tetrahedron Lett. 1995, 36, 1425-1428; H. Waldmann, A. Heuser, S. Schulze, Tetrahedron Lett. 1996, 37, 8725-8728; H. Waldmann, A. Reidel, Angew. Chem. Int. Ed. Engl. 1997, 36, 647-649.
- V. M. Vrudhula, P. D. Senter, K. J. Fischer, P. M. Wallace, J. Med. Chem. 1993, 36, 919–923; G. S. Bignami, P. D. Senter, P. G. Grothaus, K. J. Fischer, T. Humphreys, P. M. Wallace, Cancer Res. 1992, 52, 5759–5764.
- [^{26]} P. A. Andreasen, R. Egelund, H. H. Petersen, *Cell. Mol. Life Sci.* 2000, *57*, 25–40; U. Reuning, V. Magdolen, O. Wilhelm, K. Eischer, V. Lutz, H. Graeff, M. Schmitt, *Int. J. Oncol.* 1998, 893–906.
- [27] P. K. Chakravarty, P. L. Carl, M. J. Weber, J. A. Katzenellenbogen, J. Med. Chem. 1983, 26, 633-638; P. K. Chakravarty,

P. L. Carl, M. J. Weber, J. A. Katzenellenbogen, J. Med. Chem.
1983, 26, 638-644; F. M. H. de Groot, A. C. W. de Bart, J. H. Verheijen, H. Scheeren, J. Med. Chem. 1999, 42, 5277-5283;
F. M. H. de Groot, L. W. A. van Berkom, H. W. Scheeren, J. Med. Chem. 2000, 43, 3093-3102;
F. M. H. de Groot, W. J. Loos, R. Koekkoek, L. W. A. van Berkom, G. F. Busscher, A. E. Seelen, C. Albrecht, P. de Bruijn, H. W. Scheeren, J. Org. Chem. 2001, 66, 8815-8830;
F. M. H. de Groot, E. W. P. Damen, H. W. Scheeren, Curr. Med. Chem. 2001, 8, 1093-1122;
A. Trouet, A. Passioukov, K. Van Derpoorten, A. M. Fernandez, J. Abarca Quinones, R. Baurain, T. J. Lobl, C. Oliyai, D. Shochat, V. Dubois, Cancer Res. 2001, 61, 2843-2846;

allaro, C. Pitarresi, M. Licciardi, G. Giammona, *Bioconjugate Chem.* 2001, *12*, 143–151; A. M. Fernandez, K. Van Derpoorten, L. Dasnois, K. Lebtahi, V. Dubois, T. J. Lobl, S. Gangwar, C. Oliyai, E. R. Lewis, D. Shochat, A. Trouet, *J. Med. Chem.* 2001, *44*, 3750–3753.

- ^[28] R. T. Cummings, G. A. Krafft, *Tetrahedron Lett.* **1988**, *29*, 65–68.
- ^[29] B. Amit, U. Zehavi, A. Patchornik, J. Org. Chem. **1974**, 39, 192–196; A. Patchornik, B. Amit, R. B. Woodward, J. Am. Chem. Soc. **1970**, 92, 6333–6335.

Received November 5, 2002 [O02614]