
CLAISEN REARRANGEMENT OF ALLYLIC α-ISOCYANO-ESTERS——REGIOSELECTIVE ALLYLATION OF α-ISOCYANOESTERS AT THE α-CARBON

Yoshihiko Ito,* Noriko Higuchi and Masahiro Murakami Department of Synthetic Chemistry, Kyoto University Yoshida, Kyoto 606, Japan

Abstract : A regioselective allylation of α -isocyanoesters at the α -carbon was achieved by the Claisen rearrangement of allylic α -isocyanoesters via the corresponding silyl ketene acetals in situ generated.

Carbon-carbon bond forming reactions at the α -carbon of α -isocyanoester provide a convenient preparative method of α -amino acid derivatives. The carbon-carbon bond formation at the α -carbon of α -isocyanoester has been conveniently achieved by carbon-electrophiles under basic conditions. Recently, we reported the palladium catalyzed allylation of α -isocyanoesters with allylic acetates, in which π -allylpalladium(II) complex intermediates are involved.¹) However, unsymmetrical π -allylpalladium(II) complexes afforded a mixture of regioisomeric allylation products. Now we wish to describe a regioselective allylation of α -isocyanoesters at the α -carbon by the Claisen rearrangement of allylic α -isocyanoesters via the corresponding silyl ketene acetals in situ generated.

The starting allylic α -isocyanoesters (1) were prepared by esterifications of patassium α -isocyanocarboxylates²) either with 2-alkenyl bromides (Method I)³) or with 2-alkenol by means of 2-chloropyridinium salt according to the modified Mukaiyama procedure⁴) (Method II).⁵) Some preparations of 1 are summarized in Table 1.

The Claisen rearrangement of 1 thus far prepared was achieved according to two procedures, [a] and [b], mentioned below.

1	NC				$\xrightarrow{\text{I}}_{\text{I}} = 0.002 \text{ cm} \cdot \text{C} = 0.0 \text{ m}$ $\text{I}_{\text{I}} = 1 \text{ m}$ $\text{NC} = R^2 R^3$ 1			
product	R ¹	R ²	R ³	R ⁴	R ⁵	Method ^{a)}	yield / %	
1a	н	Н	н	Me	Н		85 ^{b)}	
1 b	Ме	н	н	Me	Н	H	59 ^{c)}	
1i	Me	н	н	Me	-CH ₂ CH ₂ CH=CMe	2	66 ^{d)}	
1j	Me	н	н	Ph		-	88 ^{e)}	

 $B^1CHCO_2CH_C=CB^4B^5$

Table 1. Synthesis of Allylic α -Isocyanoesters (1).

R¹CHCO.K

a) Method I; 2-alkenyl bromide, DMF, $50 \sim 60$ °C. Method II; 2-alkenol, 2-chloro-1-methylpyridinium iodide, triethylamine, THF, $40 \sim 50$ °C. b) A mixture of (E)- and (Z)-2-butenyl bromide (E : Z = ~ 85:15) was used. c) (E)-2-Butenol (>95% E) was used. d) Geraniol was used. e) (E)-Cinnamyl alcohol was used.

[a] Claisen Rearrangement of Allylic α-Isocyanoesters (1) Induced by Lithium Diisopropylamide (LDA) and Chlorotrimethylsilane.

Claisen rearrangement of 1 was facilitated via the corresponding silyl ketene acetal⁶) as follows. Lithium enolate (1.0 mmol) of 1 in THF (3 mL), which was in situ generated at -78 °C from 1 and lithium diisopropylamide (LDA), was treated with chlorotrimethylsilane (1.2 mmol) at -78 °C, and then stirred at 0 °C for 15 min and at room temperature for 3 h. The reaction mixture was evaporated in vacuo and subjected to esterification [KF (3.0 mmol), K₂CO₃ (2.0 mmol), DMF (3 ml), room temperature, 1 h, then MeI (2.4 mmol), room temperature, 12 h]. Results of the Claisen rearrangement of 1 were listed in Table 2.

As expected, the Claisen rearrangement of 1 permitted a regioselective carbon-carbon bond formation between the α -carbon of α -isocyanoester and 3-carbon of allylic group. Even 1e having two substituents on 3-carbon of allylic group underwent a regioselective allylation to afford 3e (entry 5). However, the rearrangement did not lead to stereoselective allylation, i.e., allylic α -isocyanoesters, 1a, 1b,⁷⁾ 1c and 1d were all rearranged to the corresponding α allylation products (2) as diastereomeric mixtures with low stereoselectivities (1 : 1 ~ 1 : 2). No stereoselective rearrangement of 1 may be caused by concomitant generation of (E)- and (Z)lithium enolates of 1. Attempts to generate selectively (E)- or (Z)- lithium enolates of 1, e.g., an investigation on effects of solvents and additives such as HMPA,⁶⁾ did not substantially improve the stereoselectivity of the Claisen rearrangement of 1. As shown in entry 8, propargylic α isocyanoester produced the corresponding allenic ester (3h, methyl 2-isocyano-2,3dimethylpenta-3,4-dienoate) via a similar Claisen rearrangement at 50 °C.

entry	1	R ¹	R ²	R ³	R ⁴	R ⁵	3	yield / %
1	1a	н	н	н	Me	н	3 a	68
2	1 b	Me	н	н	Me	н	Зb	74
3	1 C	Et	н	Н	Me	Н	3 c	80
4	1 d	<i>i</i> -Pr	н	н	Me	н	3 d	87
5	1 e	Me	н	н	Ме	Me	3 e	82
6	1f	Me	н	Me	н	Н	3f	65
7	1 g	Me	Me	н	н	н	3 g	84 ^{a)}
8	1 h	Me		-CH ₂ C	≡CMe ^{b)}		3h	50

Table 2. Claisen Rearrangement of 1 Induced by LDA and ClSiMe₃.

a) Only (E)-3g was formed. b) 2-butynyl.

[b] Claisen Rearrangement of Allylic α-Isocyanoesters (1) Induced by N,O-Bis(trimethylsilyl)acetamide (BSA).

The Claisen rearrangement of 1 was also accomplished by use of N,O-bis(trimethylsilyl)acetamide (BSA) and a catalytic amount of copper(I) triflate⁸⁾ (Table 3). In the absence of copper(I) triflate, the rearrangement of 1 was sluggish; for instance, 1d produced only a trace amount of 3d on treatment with BSA in THF at 50 °C for 5 h (entry 5). Of interest is that a catalytic amount of copper(I) triflate remarkably accelerated the Claisen rearrangement of 1. The Claisen rearrangement of 1 proceeded well at 50 °C in the presence of BSA (1.5 equiv) and a catalytic amount of copper(I) triflate (~ 3 mol%) to give the rearranged products (2),

entry	1	R ¹	R ²	R ³	R ⁴	R ⁵	catalyst	3	yield / % ^{a)}
1	1 b	Me	н	н	Me	Н			0 ^{b)}
2	1 b	Me	н	н	Me	н	CuOTf	Зb	80 ^{b)}
3	1 b	Me	н	н	Me	н	CuOTf	3b	91
4	1 C	Et	н	н	Me	Н	CuOTf	3 c	87
5	1 d	<i>i</i> -Pr	н	н	Me	н		3 d	trace
6	1 d	<i>i</i> -Pr	Н	н	Me	Н	CuOTf	3 d	75
7	1 e	Me	н	н	Me	Me	CuOTf	3 e	74
8	1i	Me	Н	Н	Me	-CH ₂ CH ₂ CH=CMe ₂	CuOTf	3 i	66
9	1j	Me	н	н	Ph	н	CuOTf	3 j	71

Table 3. Claisen Rearrangement of 1 Induced by BSA.

a) The reaction was conducted in THF at 50 °C for 3 ~ 10 h, unless otherwise noted.
b) The reaction was conducted at room temperature for 10 h.

which were esterified by a similar procedure used in [a]. Since coordination of the isocyano carbon of 1 to cationic copper(I) enhances acidity of the α -hydrogen, 1 would be more susceptible to silylation with BSA and more readily rearranged than in the absence of copper(I) triflate (entries 1 and 2, 5 and 6). The regioselective allylation was also achieved in case of geranyl α -isocyanopropionate (entry 8). Further, cinnamyl α -isocyanopropionate, whose rearrangement was unsuccessful by the procedure [a], afforded 3j in a good yield by the reaction with BSA (entry 9).

References and Notes.

- 1) Y. Ito, M. Sawamura, M. Matsuoka, Y. Matsumoto, and T. Hayashi, Tetrahedron Lett., <u>28</u>, 4849 (1987).
- 2) D Hoppe and U. Schöllkopf, Chem. Ber., <u>109</u>, 482 (1971).
- 3) M. Suzuki, K. Nunami, K. Matsumoto, N. Yoneda, O. Kasuga, H. Yoshida, and T. Yamaguchi, Chem. Pharm. Bull., <u>28</u>, 2374 (1980).
- 4) K. Saigo, M. Usui, K. Kikuchi, E. Shimada, and T. Mukaiyama, Bull. Chem. Soc. Jpn., <u>50</u>, 1863 (1977).
- 5) Representative procedure is as follows: To the mixture of potassium α-isocyanopropionate (4.0 mmol) and 2-chloro-1-methylpyridinium iodide (4.8 mmol) in THF (12 ml) were added 2-butenol (6.2 mmol) and triethylamine (20 mmol) at room temperature. After stirring at 45 °C for 2 h, insoluble materials were filtered off and column chromatography (silica gel) of the filtrate gave 1b (59 %).
- 6) R. E. Ireland, R. H. Mueller, and A. K. Willard, J. Am. Chem. Soc., <u>98</u>. 2868 (1976).
- 7) α-Isocyanoesters (1b) of different E : Z ratios were prepared by Method I using 2-butenyl bromide (E : Z = ~ 85:15) and by Method II using (E)-2-butenol (>95% E). Both 1b gave 3b of almost 1 : 1 diastereomers ratio.
- 8) The isolated copper(I) triflate benzene complex was used; R. G. Salomon and J. K. Kochi, J. Am. Chem. Soc., <u>95</u>, 1889 (1973).

(Received in Japan 27 July 1988)