Tetrahedron 66 (2010) 1399-1403

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Palladium-catalyzed reduction of alkynes employing HSiEt₃: stereoselective synthesis of *trans*- and *cis*-alkenes

Fang Luo^a, Changduo Pan^b, Wenhui Wang^a, Zhishi Ye^a, Jiang Cheng^{a,*}

^a College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, PR China ^b Wenzhou Institute of Industry & Science, Wenzhou 325000, PR China

ARTICLE INFO

Article history: Received 8 October 2009 Received in revised form 16 November 2009 Accepted 24 November 2009 Available online 27 November 2009

Keywords: Palladium-catalyzed Semi-hydrogenation Alkenes Triethylsilane

ABSTRACT

The palladium-catalyzed semi-hydrogenation of alkynes to *trans*- or *cis*-alkenes employing $HSiEt_3$ as the reductant is developed. The CuSO₄ played a significant role for the *trans/cis* stereoselectivity. The labeling study revealed that the two olefinic hydrogen atoms came from $HSiEt_3$ and H_2O , respectively. © 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The stereoselective semi-hydrogenation of alkynes to alkenes is an important process, which has been extensively used in the construction of bioactive molecules, natural products, and industrial materials.¹ Among the reported examples,² the Lindlar catalyst-catalyzed hydrogenation,³ is probably the most facile procedure to obtain cis-alkenes. Recently, organosilicons have been reported as reductants for the aforementioned transformations. For example, Trost and Braslav reported reduction of alkynes to *cis*-alkenes using tetramethyldihydrosiloxane (TMDHS) as the reductant.⁴ Kini and co-workers described the reduction of alkynes employing hydrosilane immobilized on silica gel, providing the *cis*-alkenes in good yields.⁵ Very recently, Giraud and co-workers demonstrated synthesis of cis-alkenes via a new hydrosilylation-protodesilylation process.⁶ However, examples of semi-hydrogenation of alkynes to trans-alkenes were rarely studied or reported before. The reduction of alkynes by alkali metals (Li, Na) in liquid ammonia is the traditional and powerful method for the synthesis of *trans*-alkenes,⁷ but the harsh reaction condition diminished the functional group tolerance. In 1999, Tani and co-workers reported an efficient iridium-catalyzed selective hydrogenation of alkynes to trans-alkenes using methanol as the hydrogen donor.⁸ In 2005, Shirakawa described reduction of

* Corresponding author. Tel./fax: +86 577 88156826. E-mail address: jiangcheng@wzu.edu.cn (J. Cheng). alkynes with hexamethyldisilane and deuterium oxide to *trans*-1,2-dideuterioalkenes.⁹ From the synthetic point of view, it is a high desired goal to stereoselectively provide *trans/cis* alkenes in a simple way. Herein, we wish to report the stereoselective semihydrogenation of alkynes to *trans*- or *cis*-alkenes employing HSiEt₃ as the reductant, where CuSO₄ played an important role for the *trans/cis* stereoselective.

2. Result and discussion

Initial studies were performed by using diphenylacetylene as a model substrate (Table 1). Only 20% yield of trans-stilbene was obtained with the combination of PdCl₂(dppf)/dppf in toluene/H₂O after 72 h (Table 1, entry 1). Interestingly, the yield was sharply increased to 99% within 24 h when 15 mol % of CuSO₄ was used as an additive (Table 1, entry 2). The ligands used had dramatic effects on the reaction (Table 1, entries 2–7). Dppf was better than dppb, dppe, dppp, and PPh₃. In addition, a profound solvent effect was observed and the co-solvent (toluene/H2O) was tested to be superior to others (Table 1, entries 8-11). Water was essential in the reaction and dry toluene inhibited the reaction (Table 1, entry 2). Among the palladium sources tested, PdCl₂(dppf) was the best, while the use of Pd(OAc)₂ or PdCl₂(CH₃CN)₂ produced only trace amount of product (Table 1, entries 6-11). No product was detected without Pd source. Moreover, the replacement of CuSO₄ with Cu(OAc)₂, Cu(OTf)₂, CuI, or Ag₂O resulted in no reaction or lower vields.

^{0040-4020/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.11.098

Table 1

Selected results of Pd sources, ligands, additives and solvents screening^a

Entry	Pd source	Ligand	Additive	Solvent	Yield ^b (%)
1	PdCI ₂ (dppf)	dppf		Toluene/H ₂ O	20 ^c
2	PdCI ₂ (dppf)	dppf	CuSO ₄	Toluene/H ₂ O	99 (<5) ^d
3	PdCI ₂ (dppf)	dppe	CUSO ₄	Toluene/H ₂ O	<5
4	PdCI ₂ (dppf)	P(1-nap) ₃	CuSO ₄	Toluene/H ₂ O	88
5	PdCI ₂ (dppf)	PPh ₃	CuSO ₄	Toluene/H ₂ O	<5
6	PdCI ₂ (dppf)	dppp	CuSO ₄	Toluene/H ₂ O	10
7	PdCI ₂ (dppf)	dppb	CuSO ₄	Toluene/H ₂ O	10
8	$PdCI_2(PPh_3)_2$	dppf	CuSO ₄	Toluene/H ₂ O	86
9	$PdCI_2(CH_3CN)_2$	dppf	CuSO ₄	Toluene/H ₂ O	<5
10	PdCI ₂	dppf	CuSO ₄	Toluene/H ₂ O	28
11	$Pd(OAc)_2$	dppf	CuSO ₄	Toluene/H ₂ O	<5
12	PdCI ₂ (dppf)	dppf	CuSO ₄	CH ₃ CN/H ₂ O	30
13	PdCI ₂ (dppf)	dppf	CuSO ₄	DCE/H ₂ O	70
14	PdCI ₂ (dppf)	dppf	CuSO ₄	DME/H ₂ O	40
15	PdCI ₂ (dppf)	dppf	CuSO ₄	DMAc/H ₂ O	<5
16	PdCI ₂ (dppf)	dppf	$Cu(OAc)_2$	Toluene/H ₂ O	<5
17	PdCI ₂ (dppf)	dppf	Cu(OTf) ₂	Toluene/H ₂ O	72
18	PdCI ₂ (dppf)	dppf	Cul	Toluene/H ₂ O	<5
19	PdCI ₂ (dppf)	dppf	Ag ₂ O	Toluene/H ₂ O	<5
20		dppf	CuSO ₄	Toluene/H ₂ O	<5

^a All of the reactions were run with diphenylacetylene (35.6 mg, 0.2 mmol), HSiEt₃ (46.5 mg, 0.4 mmol), Pd source (1.5 mol %), ligand (5 mol %), additive (15 mol %), solvent (1 mL), and H₂O (0.1 mL), reflux, under air, 24 h.

^b Isolated yield.

^c 72 h.

^d Dry toluene.

Finally, the optimized reaction condition to obtain *trans*-alkenes was as follows: $PdCl_2(dppf)$ (1.5 mol%), dppf (5.0 mol%), $HSiEt_3$ (2 equiv), and $CuSO_4$ (15 mol%) in toluene/H₂O (1/0.1 mL), under reflux condition. With the optimized reaction conditions in hand, a series of alkynes were tested. The results are summarized in Table 2.

As expected, the semi-hydrogenation with HSiEt₃-H₂O was applied to various internal alkynes, providing the *trans*-alkenes in good to excellent yields. Aromatic alkynes possessing both electron-withdrawing and electron-donating groups on the phenyl rings worked well under the reaction condition. A range of functional groups, such as chloro, fluoro, methoxy, hydroxyl, acetyl, carbethoxy, cyano and nitro groups were tolerated in this procedure. The alkyne having one hetero aromatic ring also ran smoothly in the procedure (Table 2, entry 15). Moreover, alkyl(aryl)acetylenes was subjected to the procedure and produced the semi-hydrogenation product in 75% yield (Table 2, entry 16). Particularly, the nitro group of **1k** survived under these conditions while this group may transform to amine in hydrogenation reaction (Table 2, entry 11).¹⁰ It is worth noting that semi-hydrogenation of 1,4-diphenylbuta-1,3-diyne to (1*E*,3*E*)-1,4-diphenylbuta-1,3-diene was obtained with 66% yield (Table 2, entry 17). Importantly, the rigorous exclusion of air/moisture was not required in any of these transformations. As such, this represents an exceedingly practical alternative method for the synthesis of trans-alkenes.

Next, labeling studies were conducted. Interestingly, under the co-solvent (toluene/D₂O), *trans*-1-deuterio-1,2-diphenylethene was formed in 92% yield (Scheme 1). We could conclude that two olefinic hydrogen atoms came from HSiEt₃ and H₂O, respectively, which was different from the previous report of Shirakawa's.⁷ Moreover, it provided a simple method for the synthesis of *trans*-1-deuterio-1,2-diaryl ethene.

Importantly, CuSO₄ had a significant effect on the stereoselectivity. In the absence of CuSO₄, *cis*-alkenes were obtained in a slightly modified procedure. The results are shown in Table 3.

A controlling experiment was run to understand the role of CuSO₄. *cis*-Stilbene was transformed completely to *trans*-stilbene in

the presence of CuSO₄ in two hours, while the reaction was transformed incompletely without CuSO₄ (Scheme 2). It revealed CuSO₄ could accelerate the transformation of *cis*-alkenes to the *trans*analogues.

A working mechanism was proposed as outlined in Scheme 3 on the basis of the previously reported mechanism.^{3a,6} It included reduction of PdCl₂(dppf) to Pd(0) in the presence of dppf and HSiEt₃, releasing a molecular of HCl in the presence of H₂O.^{11,12} Then, hydropalladation of an alkyne with chloropalladium hydride, which was generated by the oxidative addition of hydrochloric acid to a Pd(0) species, occurred to form alkenylpalladium chloride intermediate **A**. The intermediate **A** exchanged the chloro group to hydride with HSiEt₃, producing alkenylpalladium chloride intermediate **B**. The following reductive elimination of the alkenylpalladium hydride **B** afforded *cis*-alkene and regenerated the Pd(0) species. Finally, *cis*-alkenes were converted to *trans*-alkenes in the presence of CuSO₄.

In summary, we have successfully developed the stereoselective semi-hydrogenation of alkynes to *trans*-alkenes or *cis*alkenes employing HSiEt₃ as the reductant. CuSO₄ played an important role for the stereoselectivity. The rigorous exclusion of air/moisture was not required in any of these transformations, as such, it represents a simple and facile way for the synthesis of *trans*- or *cis*-alkenes.

3. Experimental section

3.1. General procedure

Chemicals were either purchased or purified by standard techniques without special instructions. ¹H NMR and ¹³C NMR spectra were measured on a 300 MHz Bruker spectrometer (¹H 300 MHz, ¹³C 75 MHz), using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts are given in δ relative to TMS, the coupling constants *J* are

Table 2

Palladium-catalyzed reduction of alkynes to trans-alkenes^a

 $^{a}\,$ The reactions were run with internal alkynes (0.2 mmol), HSiEt_{3} (0.4 mmol), PdCl₂(dppf) (1.5 mol %), dppf (5 mol %), CuSO₄ (15 mol %), toluene (1 mL), and H₂O (0.1 mL), reflux, under air, 24 h. ^b Isolated vield.

^c 1q (0.2 mmol), HSiEt₃ (0.8 mmol), PdCl₂(dppf)(3 mol %), dppf (10 mol %), CuSO₄ (30 mol %).

Scheme 1. Labeling study using D₂O.

Table 3 Palladium-catalyzed reduction of alkynes to cis-alkenes^a

1

^a All of the reactions were run with internal alkynes (0.2 mmol), HSiEt₃ (0.4 mmol), $PdCl_2(dppf)$ (1.5 mol %), dppf (5 mol %), CH_2Cl_2 (1 mL), and H_2O (0.1 mL), rt, under air, 36 h.

Isolated yield.

given in Hertz. Column chromatography was performed using EM Silica gel 60 (300-400 mesh).

3.2. Typical experimental procedure for palladium-catalyzed reduction of alkynes into trans-alkenes

Under air atmosphere, a reaction tube was charged with internal alkynes (0.2 mmol), HSiEt₃ (46.5 mg, 0.4 mmol), PdCl₂(dppf) (2.2 mg, 1.5 mol %), dppf (5.5 mg, 5 mol %), CuSO₄ (4.8 mg, 15 mol %), toluene/H₂O (1/0.1 mL). After the mixture was refluxed for 24 h, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on a silica gel to give the product.

$$Ph Ph + HSiEt_{3} + HSiEt_{3$$

Scheme 2. The role of CuSO₄.

Scheme 3. Possible mechanism.

3.3. Typical experimental procedure for palladium-catalyzed reduction of alkynes into *cis*-alkenes

Under air atmosphere, a reaction tube was charged with internal alkynes (0.2 mmol), $HSiEt_3$ (46.5 mg, 0.4 mmol), $PdCl_2(dppf)$ (2.2 mg, 1.5 mol%), dppf (5.5 mg, 5 mol%), CH_2Cl_2/H_2O (1/0.1 mL). After the mixture was stirred at rt for 36 h, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on a silica gel to give the product.

3.3.1. (*E*)-1,2-Diphenylethene (**2a**)¹³. ¹H NMR (CDCl₃, 300 MHz): δ 7.56–7.53 (m, 4H), 7.41–7.36 (m, 4H), 7.31–7.28 (m, 2H,), 7.14 (s, 2H). ¹³C NMR (CDCl₃, 75 MHz): δ 137.3, 128.7, 127.6, 126.5.

3.3.2. (*E*)-1-(4-Methoxystyryl)benzene (**2b**)¹⁴. ¹H NMR (CDCl₃, 300 MHz): δ 7.51–7.45 (m, 4H), 7.38–7.33(m, 2H), 7.24–7.22 (m, 1H), 7.08 (d, *J*=16.3 Hz, 1H), 6.94 (d, *J*=16.3 Hz, 1H), 6.90 (d, *J*=7.5 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 159.3, 137.6, 130.1, 128.6, 128.2, 127.7, 127.2, 126.6, 126.2, 114.1, 55.30.

3.3.3. (*E*)-1-Methoxy-3-styrylbenzene (**2c**)¹⁵. ¹H NMR (CDCl₃, 300 MHz): δ 7.55–7.52 (m, 2H), 7.40–7.35 (m, 2H), 7.30–7.27 (m, 2H), 7.15–7.07 (m, 4H), 6.86–6.84 (m, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ 159.9, 138.8, 137.2, 129.6, 129.0, 128.7, 128.6, 127.7, 126.5, 119.2, 113.3, 111.8, 55.2.

3.3.4. (*E*)-1-Methyl-2-styrylbenzene (**2d**)¹³. ¹H NMR (CDCl₃, 300 MHz): δ 7.62–7.60 (m, 1H), 7.56–7.53 (m, 2H), 7.41–7.19 (m, 7H), 7.01 (d, *J*=16.1 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 137.7, 136.4, 135.8, 130.4, 129.9, 128.7, 127.6, 127.5, 126.5, 126.2, 125.4, 19.9.

3.3.5. (*E*)-1-Methyl-4-styrylbenzene (**2e**)¹³. ¹H NMR (CDCl₃, 300 MHz): δ 7.54 (d, *J*=7.5 Hz, 2H), 7.45–7.36 (m, 4H), 7.30–7.28 (m, 1H), 7.20 (d, *J*=7.9 Hz, 2H), 7.12 (s, 2H), 2.40 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 137.5, 134.5, 129.4, 128.7, 128.6, 127.7, 127.4, 126.43, 126.40, 21.3.

3.3.6. (*E*)-2-Styrylnaphthalene (**2f**)¹⁶. ¹H NMR (CDCl₃, 300 MHz): δ 8.25 (d, *J*=7.5 Hz, 1H), 7.95–7.76 (m, 4H), 7.65–7.63 (m, 2H), 7.57–7.52 (m, 3), 7.44–7.41 (m, 1H), 7.19 (d, *J*=16.0 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ 137.6, 135.0, 133.7, 131.7, 131.4, 128.8, 128.6, 128.0, 127.8, 126.7, 126.1, 125.8, 125.79, 125.70, 123.8, 123.6.

3.3.7. (*E*)-1,2-Bis(3-methoxyphenyl)ethene (**2g**)¹⁷. ¹H NMR (CDCl₃, 300 MHz): δ 7.31–7.28 (m, 2H), 7.15–7.08 (m, 6H), 6.85 (d, *J*=8.1 Hz, 2H), 3.87 (s, 6H). ¹³C NMR (CDCl₃, 75 MHz): δ 159.9, 138.7, 129.7, 128.9, 119.3, 113.4, 111.7, 55.2.

3.3.8. (*E*)-1,2-Dip-tolylethene (**2h**)¹⁸. ¹H NMR (CDCl₃, 300 MHz): δ 7.43 (d, *J*=8.1 Hz, 4H), 7.18 (d, *J*=8.0 Hz, 4H), 7.07 (s, 2H), 2.38 (s, 6H). ¹³C NMR (CDCl₃, 75 MHz): δ 137.3, 134.7, 129.4, 127.6, 126.3, 21.2.

3.3.9. (*E*)-1-Chloro-4-styrylbenzene (**2i**)¹³. ¹H NMR (CDCl₃, 300 MHz): δ 7.51 (m, 2H), 7.45 (m 2H), 7.40–7.30 (m, 5H), 7.07 (s, 2H). ¹³C NMR (CDCl₃, 75 MHz): δ 136.9, 135.8, 133.1, 129.3, 128.8, 128.7, 127.8, 127.6, 127.3, 126.5.

3.3.10. (*E*)-1-Fluoro-4-styrylbenzene (**2***j*)¹⁴. ¹H NMR (CDCl₃, 300 MHz): δ 7.50–7.44 (m, 4H), 7.37–7.32 (m, 2H), 7.27–7.24 (m, 1H), 7.07–6.97 (m, 4H). ¹³C NMR (CDCl₃, 75 MHz): δ 162.4, 137.1, 133.5, 128.7, 128.5 (d, *J*=2.4 Hz), 127.9 (d, *J*=7.8 Hz), 127.6, 127.5, 126.4, 115.6 (d, *J*=21.4 Hz).

3.3.11. (*E*)-1-*Nitro*-4-styrylbenzene (**2***k*)¹⁹. ¹H NMR (CDCl₃, 300 MHz): δ 8.23 (d, *J*=8.8 Hz, 2H), 7.64 (d, *J*=8.8 Hz, 2H), 7.56 (d, *J*=8.3 Hz, 2H), 7.44-7.26 (m, 4H), 7.15 (d, *J*=16.3 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ 143.8, 136.2, 133.3, 128.9, 128.85, 128.84, 127.0, 126.8, 126.3, 124.1.

3.3.12. (*E*)-1-(4-Styrylphenyl)ethanone (**2l**)²⁰. ¹H NMR (CDCl₃, 300 MHz): δ 7.95 (d, *J*=8.4 Hz, 2H), 7.59–7.53 (m, 4H), 7.41–7.30 (m, 3H), 7.22 (d, *J*=16.4 Hz, 1H), 7.13 (d, *J*=16.3 Hz, 1H), 2.60 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 197.5, 141.9, 136.7, 135.9, 131.4, 128.8, 128.7, 128.3, 127.4, 126.8, 126.5, 26.5.

3.3.13. (*E*)-*Ethyl* 4-styrylbenzoate (**2m**)²¹. ¹H NMR (CDCl₃, 300 MHz): δ 8.04 (d, *J*=8.4 Hz, 2H), 7.55 (m, 4H), 7.41–7.36 (m, 2H), 7.32–7.27 (m, 1H), 7.22 (d, *J*=16.3 Hz, 1H), 7.12 (d, *J*=16.3 Hz, 1H), 4.39 (q, *J*=7.1 Hz, 2H), 1.41 (t, *J*=7.1 Hz, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 166.4, 141.7, 136.7, 131.1, 129.9, 129.2, 128.7, 128.2, 127.6, 126.7, 126.2, 60.9, 14.3.

3.3.14. (*E*)-4-Styrylbenzonitrile (**2n**)²². ¹H NMR (CDCl₃, 300 MHz): δ 7.65–7.52 (m, 6H), 7.42–7.32 (m, 3H), 7.22 (d, *J*=16.3 Hz, 1H), 7.08 (d, *J*=16.3 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ 141.8, 136.3, 132.5, 132.4, 128.8, 128.6, 126.9, 126.8, 126.7, 118.9, 110.5.

3.3.15. (*E*)-2-Styrylpyridine (**2o**)¹⁴. ¹H NMR (CDCl₃, 300 MHz): δ 8.62 (s, 1H), 7.72–7.58 (m, 4H), 7.44–7.18 (m, 6H). ¹³C NMR (CDCl₃, 75 MHz): δ 155.4, 149.1, 136.9, 136.5, 133.3, 128.7, 128.6, 128.4, 127.3, 127.2, 122.1.

3.3.16. (*E*)-1-(4-Methoxystyryl)cyclohexanol (**2p**)^{23.} ¹H NMR (CDCl₃, 300 MHz): δ 7.33 (d, *J*=8.5 Hz, 2H), 6.84 (d, *J*=8.5 Hz, 2H), 6.64 (d, *J*=16.0 Hz, 1H), 6.39 (d, *J*=16.1 Hz, 1H), 5.84 (s, 1H), 3.8 (s, 3H), 2.25-2.17 (m, 4H), 1.74-1.61 (m, 4H), 0.87-0.83 (m, 2H). ¹³C NMR (CDCl₃, 75 MHz): δ 158.7, 135.9, 130.8, 130.7, 129.7, 127.2, 124.1, 114.0, 55.3, 26.1, 24.5, 22.6, 22.5.

3.3.17. (1E,3E)-1,4-Diphenylbuta-1,3-diene (**2q**)²⁴. ¹H NMR (CDCl₃, 300 MHz): δ 7.47–7.45 (m, 4H), 7.37–32 (m, 4H), 7.28–7.24 (m, 2H), 7.01–6.95 (dd, 2H, *J*=14.6 Hz, *J*=12.0 Hz), 6.71–6.66 (dd, 2H, *J*=14.6 Hz, *J*=11.9 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 137.3, 132.8, 129.2, 128.6, 127.5, 126.4.

3.3.18. (*Z*)-1,2-Diphenylethene (**3a**)¹³. ¹H NMR (CDCl₃, 300 MHz): δ 7.28–7.21 (m, 10H), 6.63 (s, 2H). ¹³C NMR (CDCl₃, 75 MHz): δ 137.2, 130.2, 128.9, 128.2, 127.1.

3.3.19. (*Z*)-1-*Methyl*-2-styrylbenzene (**3d**)¹³. ¹H NMR (CDCl₃, 300 MHz): δ 7.23–7.06 (m, 9H), 6.66–6.65 (m, 2H). ¹³C NMR (CDCl₃, 75 MHz): δ 137.1, 136.9, 136.1, 130.5, 130.0, 129.5, 128.9, 128.8, 128.0, 127.2, 127.0, 125.7, 19.8.

3.3.20. (*Z*)-1-Methyl-4-styrylbenzene (**3e**)¹³. ¹H NMR (CDCl₃, 300 MHz): δ 8.27–7.20 (m, 5H), 7.16 (d, *J*=8.0 Hz, 2H), 7.05 (d, *J*=7.9 Hz, 2H), 6.58 (s, 2H), 2.33 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 137.5, 136.9, 134.3, 130.2, 129.5, 128.89, 128.87, 128.83, 128.77, 128.2, 127.0, 21.2.

3.3.21. (*Z*)-2-Styrylnaphthalene (**3f**)²⁵. ¹H NMR (CDCl₃, 300 MHz): δ 8.11–8.08 (m, 1H), 7.90–7.87 (m, 1H), 7.78–7.76 (m, 1H), 7.52–7.48 (m, 2H), 7.37–7.35 (m, 2H), 7.11–7.04 (m, 6H), 6.85 (d, *J*=12.2 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ 136.7, 135.3, 133.7, 132.0, 131.6, 129.0, 128.5, 128.4, 128.0, 127.5, 127.0, 126.4, 126.0, 125.9, 125.6, 124.9.

3.3.22. (*Z*)-1-Chloro-4-styrylbenzene (**3i**)¹³. ¹H NMR (CDCl₃, 300 MHz): δ 7.27–7.16 (m, 9H), 6.64 (d, *J*=12.2 Hz, 1H), 6.54 (d, *J*=12.2 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ 136.9, 135.6, 132.7, 130.9, 130.2, 128.9, 128.8, 128.4, 128.3, 127.3.

3.3.23. (*Z*)-1-Fluoro-4-styrylbenzene (**3***j*)²⁶. ¹H NMR (CDCl₃, 300 MHz): δ 7.27–7.19 (m, 7H), 6.92 (t, *J*=8.7 Hz, 2H), 6.61 (d, *J*=12.2 Hz, 1H), 6.54 (d, *J*=12.2 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ 163.4, 160.2, 137.0, 133.2, 133.1, 130.5, 130.4, 130.2, 129.0, 128.8, 128.3, 127.2, 115.2, 115.0.

3.3.24. (*E*)-1-Deuterio-1,2-diphenylethene. ¹H NMR (CDCl₃, 300 MHz): δ 7.57–7.54 (m, 3H), 7.42–7.37 (m, 4H), 7.32–7.27 (m, 2H), 7.15 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ 137.3, 137.2, 128.7, 128.6, 128.4, 127.6, 126.5.

Acknowledgements

We thank the National Natural Science Foundation of China (No. 20972115) and the Key Project of Chinese Ministry of Education (No. 209054) for financial support.

Supplementary data

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.tet.2009.11.098.

References and notes

- For reviews, see: (a) Burwell, R. L., Jr. Chem. Rev. 1957, 57, 895; (b) Marvell, E. N.; Li, T. Synthesis 1973, 457; (c) Sanchez-Delgado, R. A.; Rosales, M. Coord. Chem. Rev. 2000, 196, 249.
- For recent selected papers on semi-hydrogenation of alkynes to cis-alkenes:

 (a) van Laren, M. W.; Elsevier, C. J. Angew. Chem., Int. Ed. 1999, 38, 3715;
 (b) van Laren, M. W.; Duin, M. A.; Klerk, C.; Naglia, M.; Rogolino, D.; Pelagatti, P.; Bacchi, A.; Pelizzi, C.; Elsevier, C. J. Organometallics 2002, 21, 1546;
 (c) Costa, M.; Pelagatti, P.; Pelizzi, C.; Rogolino, D. J. Mol. Catal. A: Chem. 2003, 178, 21;
 (d) Frediani, P.; Giannelli, C.; Salvini, A.; Ianelli, S. J. Organomet. Chem. 2003, 667, 197;
 (e) Navarro, J.; Sagi, M.; Sola, E.; Lahoz, F. J.; Dobrinovitch, I. T.; Katho, A.; Joo, F.; Oro, L. A. Adv. Synth. Catal. 2003, 345, 280;
 (f) Pelagatti, P.; Venturini, A.; Leporati, A.; Carcelli, M.; Costa, M.; Bacchi, A.; Pelizzi, G.; Pelizzi, C. J. Chem. Soc., Dalton Trans. 1998, 2715;
 (g) Tani, K.; Ono, N.; Okamoto, S.; Sato, F. J. Chem. Soc., Chem. Commun. 1993, 386.
- (a) Lindlar, H. Helv. Chim. Acta 1952, 35, 446; (b) Lindlar, H.; Dubuis, R. Org. Synth. 1966, 46, 89.
- 4. Trost, B. M.; Braslau, R. Tetrahedron Lett. 1989, 30, 4657.
- 5. Kini, A. D.; Nadkarni, D. V.; Fry, J. L. Tetrahedron Lett. 1994, 35, 1507.
- Giraud, A.; Provot, O.; Hamze, A.; Brion, J.-D.; Alami, M. Tetrahedron Lett. 2008, 49, 1107.
- For selected examples, see: (a) Campbell, K. N.; Eby, L. T. J. Am. Chem. Soc. 1941, 63, 216; (b) Campbell, K. N.; Eby, L. T. J. Am. Chem. Soc. 1941, 63, 2683; (c) Henne, A. L.; Greenlee, K. W. J. Am. Chem. Soc. 1943, 65, 2020; (d) Benkeser, R. A.; Schroll, G.; Sauve, D. M. J. Am. Chem. Soc. 1955, 77, 3378.
- 8. Tani, K.; Iseki, A.; Yamagata, T. Chem. Commun. 1999, 1821.
- 9. Shirakawa, E.; Otsuka, H.; Hayashi, T. Chem. Commun. 2005, 5885.
- Pati, H. N.; Wicks, M.; Holt, H. L.; LeBlanc, J. R.; Weisbruch, P.; Forrest, L.; Lee, M. Heterocycl. Commun. 2005, 11, 117.
- 11. The reduction of PdCl₂(dppf) to Pd(0) in the presence of dppf and NaBH₄ was reported, See: Fang, Z.-G.; Low, P. M. N.; Ng, S.-C.; Hor, T. S. A. *J. Organomet. Chem.* **1994**, 483, 17; Shirakawa reported the reduction of PdCl₂(η^3 -C₃H₅)₂ to Pd(0) by Me₃SiSiMe₃, see Ref. 9.
- When 0.2 M HCl was added to the PdCl₂(dppf)–dppf system instead of H₂O, the hydrogenation was completed within 4 h. The result revealed HCl could activate the catalyst, see Ref. 9.
- 13. Cella, R.; Stefani, H. A. Tetrahedron 2006, 62, 5656.
- 14. Cahiez, G.; Gager, O.; Lecomte, F. Org. Lett. 2008, 10, 5255.
- Liu, J. P.; Zhao, Y. H.; Zhou, Y. Y.; Li, L.; Zhang, T. Y.; Zhang, H. B. Org. Biomol. Chem. 2003, 1, 3227.
- 16. Yi, C.; Hua, R. Tetrahedron Lett. 2006, 47, 2573.
- 17. Chen, Y.-J.; Chen, C. Tetrahedron: Asymmetry 2007, 18, 1313.
- 18. Poeylaut-Palena, A. A.; Testero, S. A.; Mata, E. G. J. Org. Chem. 2008, 73, 2024.
- 19. Wang, R. H.; Twamley, B.; Shreeve, J. M. J. Org. Chem. 2006, 71, 426.
- 20. Zhao, H.; Wang, Y.; Sha, J.; Sheng, S.; Cai, M. Tetrahedron 2008, 64, 7517.
- 21. Zhou, L.; Wang, L. Synthesis 2006, 2653.
- 22. Mu, B.; Li, T.; Xu, W.; Zeng, G.; Liu, P.; Wu, Y. Tetrahedron 2007, 63, 11475.
- 23. Satoh, T.; Kaneko, Y.; Yamakawa, K. *Tetrahedron Lett.* **1986**, *27*, 2379.
- 24. Hashmi, A.; Stephen, K.; Ramamurthi, T. D.; Rominger, F. J. Organometal. Chem.
- **2009**, 694, 592.
- 25. Arai, T.; Takahashi, O.; Asano, T.; Tokumaru, K. Chem. Lett. 1994, 205.
- 26. Sun, X.; Zhu, J.; Zhong, C.; Izumi, K.-J.; Zhang, C. Chin. J. Chem. 2007, 25, 1866.