Journal of Medicinal Chemistry

Discovery and SAR of 6-Alkyl-2,4-diaminopyrimidines as Histamine H₄ Receptor Antagonists

Brad M. Savall,* Frank Chavez, Kevin Tays, Paul J. Dunford, Jeffery M. Cowden, Michael D. Hack, Ronald L. Wolin, Robin L. Thurmond, and James P. Edwards

Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States

ABSTRACT: This report discloses the discovery and SAR of a series of 6-alkyl-2-aminopyrimidine derived histamine H_4 antagonists that led to the development of JNJ 39758979, which has been studied in phase II clinical trials in asthma and atopic dermatitis. Building on our SAR studies of saturated derivatives from the indole carboxamide series, typified by JNJ 7777120, and incorporating knowledge from the tricyclic pyrimidines led us to the 6-alkyl-2,4-diaminopyrimidine series. A focused medicinal chemistry effort delivered several 6-alkyl-

2,4-diaminopyrimidines that behaved as antagonists at both the human and rodent H_4 receptor. Further optimization led to a panel of antagonists that were profiled in animal models of inflammatory disease. On the basis of the preclinical profile and efficacy in several animal models, JNJ 39758979 was selected as a clinical candidate; however, further development was halted during phase II because of the observation of drug-induced agranulocytosis (DIAG) in two subjects.

INTRODUCTION

Histamine receptors are a class of GPCR targets with a successful history of therapeutic pharmacological intervention.^{1,2} The classical anti-histamines target the H₁ receptor, and this drug class provides relief to many allergy sufferers worldwide.³ Likewise, the role of H₂ antagonists in attenuating gastric acid secretion has aided many patients with GI disorders.⁴ More recently, high-affinity histamine receptors, H_3^5 and H_4^6 were discovered, and ongoing work by several groups is dedicated to determining the mechanism of action and therapeutic potential of these novel histamine receptors.⁷ The H₃ receptor is expressed predominantly in the CNS⁸ and is implicated in the sleep-wake cycle9 and in memory formation and alertness,^{10,11} whereas the histamine H_4 receptor (H_4R) is expressed predominantly on cells of the immune system.^{1,12,13} Preclinical animal studies demonstrated that antagonists of H₄R could be useful in treating diseases such as asthma, rheumatoid arthritis, and atopic dermatitis as well as other immune-driven inflammatory disorders.^{7,14} Significant efforts from both industry and academia have targeted H₄R with the goal of discovering new medicines for immune-mediated inflammatory processes.^{15–17}

The prototypical histamine H_4 antagonist, JNJ 7777120 (1),¹⁸ is one of the most studied compounds in the histamine H_4 field and has been referred as a state-of-the-art¹⁹ ligand that continues to be used to study H_4 R. However, JNJ 7777120 has a short half-life because of rapid demethylation of the terminal *N*-methyl piperazine, therefore limiting the potential of JNJ 7777120 as a therapeutic agent. Over the past few years, reports from several laboratories disclosed the discovery of alternative histamine H_4 R antagonists, with many focusing on amino-substituted heterocycles.^{19–27} Beginning with independent

screening hits, several laboratories have converged on the amino pyrimidine template.¹⁵ In 2011, we disclosed a class of tricyclic aminopyrimidine²¹ antagonists (4) followed by results on triaminoazine-derived²⁰ antagonists. In the course of our work, we discovered a series of 6-alkyl-2,4-diaminopyrimidine H₄R antagonists, culminating in the discovery of JNJ 39758979 (5), which advanced into human clinical trials. This report provides a brief description of our SAR around this template and focuses on the preclinical characterization of JNJ 39758979 and related analogues.

RESULTS AND DISCUSSION

Lead Identification and Analogue Design. Initial highthroughput screening (HTS) of the H₄ receptor identified several promising series (Figure 1), the most tractable of which are the three structurally distinct series: indole/benzimidazole carboxamides typified by JNJ 7777120 (1),²⁸ 2-aryl-benzimidazoles (2),^{29–31} and tricyclic pyrimidines (3). Our first report on the pyrimidine series of H₄R antagonists focused on the discovery of the tricyclic aminopyrimidines, resulting in JNJ 40279486 (4) as a novel and highly selective H₄ receptor ligand with desirable pharmacokinetic (PK) properties and selectivity over the hERG channel.²¹

We previously demonstrated that the tricyclic series (3) served as a constrained version of the carboxamides (1) (Figure 2a), where alignment of the distal nitrogen atoms provides for overlap of the aryl rings. Additionally, chlorine substitution on the aromatic ring increased affinity in this series, a trend shared with the carboxamides. Moreover, we learned that the 2-

ACS Publications © 2014 American Chemical Society

Received: November 8, 2013 Published: February 4, 2014

Article

Figure 1. Lead series of histamine H₄ receptor antagonists.

Figure 2. Overlap of carboxamide (1; cyan) with tricycle (3; green) and 6-alkyl-2-aminopyrimidine (6; magenta).

aminopyrimidines (6) could tolerate a much wider range of diamines versus their analogous 2-*des*-amino counterparts. This increased diamine tolerance hinted that the 2-aminopyrimidine chemotype (6) may be interacting with the receptor in a unique fashion relative to the carboxamide series (1), especially because the 2-amino group does not directly map onto any of the atoms of the carboxamide series (e.g., Figure 2b).

During the course of our benzimidazole/indole carboxamide work, we discovered that compounds containing a saturated ring (e.g., 9 and 10) in place of the aryl ring (1 and 7) maintained significant affinity for the H₄ receptor (Figure 3). The increased diamine tolerance of the 2-aminopyrimidines coupled with the receptors tolerance for alkyl groups in that region prompted us to investigate the 6-alkyl-2-aminopyrimidines series of H_4 modulators represented by compound 11.

Chemistry and SAR Relationships. Synthetically, the amino pyrimidines were assembled by condensation of appropriately functionalized β -keto esters with guanidine hydrochloride in the presence of base to furnish the 4hydroxypyrimidines (Scheme 1). Conversion of the hydroxypyrimidine (12a) to the chloride (13a) with neat POCl₃ was complicated by the formation of 2-aminophosphonic acid derivatives (14a). Fortunately, the use of Et₄NCl as an exogenous chloride source with POCl₃ in acetonitrile resulted in very clean formation of the desired chloro intermediates (e.g., 13a).³² Optimization of the stoichiometry of POCl₃ showed that excess POCl₃ or increasing temperature was detrimental to the yield of the desired product. Ultimately, a 20% excess of POCl₃ in acetonitrile delivered the desired chloride (13a) in >90% yield with none of the chlorophosphamide (14a) detected by standard analytical techniques (Figure 4). Alternately, the amines could be condensed with the pyrimidinone using (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) as a dehydrating reagent (Scheme 2).³³ Analogues containing a C-6 methyl group were prepared from commercially available 2-amino-4chloro-6-methyl pyrimidine. In cases where BOC-protected

Figure 3. Alkyl substitution.

Scheme 1. Synthesis of 2-Amino-6-alkylpyrimidines

Figure 4. Optimization of chlorination of 2-aminopyrimidines.

Scheme 2. Synthesis of 2-Amino-6-alkylpyrimidines with BOP Coupling

amines were used, the BOC group was removed using an excess of HCl(aq) in formic acid.

With a straightforward synthesis of the pyrimidine chloride/ hydroxypyrimidines, we were able to scan both the 4-position diamine and the 6-position alkyl group efficiently. Table 1 shows a scan of several amines and their activities, with piperazines (6 and 15), (R)-3-amino pyrrolidines (16 and 18), and bicyclic 3-amino pyrrolidine (20 and 21) derivatives providing affinities ranging from 0.9-2.9 nM, whereas the (S)-3-amino pyrrolidines (17 and 19) were less potent than the (R)enantiomer. Reducing the ring size to 2-amino cyclobutylamine (20) showed a decrease in affinity ($K_i = 5.5 \text{ nM}$) relative to the (R)-aminopyrrolidine, whereas increasing the ring size to the 3amino-piperidine (21) reduced affinity further ($K_i = 257$ nM). Both the 5,6- and the 5,5-fused aminopyrrolidine derivatives (22 and 23) were potent antagonists, whereas the symmetrical 5,5-derivative was 1 order of magnitude less potent for the N-Me derivative (24) and more than 2 orders of magnitude less potent for the NH analogue (25). The spirocyclic amine (26)was tolerated, whereas oxygenation of the amine portion reduced affinity (27-29).

Similar to the carboxamide JNJ 7777120, the in vitro metabolism assays indicated that the *N*-methyl piperazine (6) was a metabolic liability on the amino pyrimidine template, especially in rodents (data not shown). However, because the equipotent (R)-3-amino pyrrolidine derivatives (16 and 18) were more stable in in vitro metabolic assays, those diamines were used for subsequent SAR studies of the various alkyl derivatives surveyed in the 6 and 5 positions (Table 2).

A variety of linear and cycloalkyl groups were scanned, with the 6 position relatively tolerant of substitution from methyl to *t*-butyl (30-43) and even adamantyl (44) retaining good affinity, although medium-sized alkyls were preferred. With methyl substitution at the 6 position, addition of a methyl group to the 5 position (45) caused a loss of affinity. Likewise, a fused 5,6-cyclopentyl (46) was less active compared to the unfused cyclopentyl (39). However, when the ring size was increased to a fused 5,6-cyclohexyl ring (47), affinity was regained. The incorporation of electron-withdrawing substituents such as chloro (48) and trifluoromethyl (49) groups at the 6 position were not tolerated, which may allude to a role of the basicity of the pyrimidine nitrogen for affinity.

Compared to the indole carboxamide series, typified by JNJ 7777120, the 6-alkyl-2,4-diaminopyrimidines tolerated a range of diamines as well as a range of 6-alkyl substituents. Consequently, this series provided a good selection of potent compounds that possessed a range of affinity and acceptable ADME parameters, which made them suitable as in vivo candidates. Several of the compounds were worthy of more advanced profiling, and the remainder of this report will highlight these efforts with a focus on JNJ 39758979 (5). Table 1. Diamine Scan SAR of 2-Amino-6-cyclopentyl Pyrimidine

Entry	Diamine	$hH_4 K_i^{\ a}$	$\begin{array}{c c} hH_4 & hH_4 \\ K_i^{\ a} & EC_{50}^{\ b} \end{array}$		$hH_4 pA_2^d$	
6	N N N/Me	1.4	>10000	N/D	9.9	
15		1.2	>10000	N/D	9.5	
16		1.1	>10000	N/D	9.6	
17	N_S_NH₂	25	>10000	N/D	N/D	
18		0.92	>10000	N/D	9.2	
19		36	>10000	N/D	N/D	
20	-N -NH2	5.5	1300	0.14	7.6	
21		257	N/D	N/D	N/D	
22		1.8	>10000	N/D	>10	
23		2.9	>10000	N/D	10.0	
24	NNN-Me	25	>10000	N/D	7.7	
25		328	N/D	N/D	N/D	
26		11.2	>10000	N/D	8.6	
27		30	>10000	N/D	8.0	
28		56	>10000	N/D	6.9	
29		520	N/D	N/D	N/D	

^{*a*}Displacement of [³H]histamine from the recombinant histamine H₄ receptor. K_i values are the geometric mean of three or more independent determinations and were calculated according to Cheng and Prusoff.³⁴ ^{*b*}Compounds with $K_i > 100$ nM were not tested in functional assays. ^{*c*}Compounds with $\alpha > 0.30$ were not tested in the pA₂ assay. ^{*d*}Antagonism of histamine inhibition of forskolin-stimulated cAMP-mediated reporter gene activity in SK-N-MC cells expressing the human histamine H₄ receptor. N/D = not determined.

In Vivo Profiling of Lead Molecules. Table 3 shows a comparison of several of three of the more extensively profiled molecules. One of the first compounds that progressed into PK studies was compound 15, a potent inhibitor with a $hK_i = 1.2$ nM and a corresponding $pA_2 = 9.5$. The compound was stable in metabolic assays with a $t_{1/2} > 100$ min in human microsomes and 86 min in rat microsomes and showed no interaction with

Table 2. Left-Side Substituent SAR of 2-Amino-6-alkyl Pyrimidines

entry	R	(R ⁵ , R ⁶)	$hH_4 K_i^a$	hH ₄ EC ₅₀ ^b	alpha ^c	$hH_4 pA_2^d$
30	Me	6-methyl	77	N/D	N/D	N/D
31	Me	6-ethyl	21	>10 000	N/D	8.0
32	Н	6-ethyl	21	>10 000	N/D	7.9
33	Me	6- <i>i</i> -propyl	12	>10 000	N/D	7.9
5	Н	6- <i>i</i> -propyl	12.5	>10 000	N/D	7.9
34	Me	6-butyl	1.5	>10 000	N/D	8.4
35	Me	6-benzyl	36	>10 000	N/D	8.0
36	Н	6-benzyl	100	N/D	N/D	N/D
37	Me	6- <i>c</i> -propyl	28	>10 000	N/D	8.1
38	Me	6- <i>c</i> -butyl	2.4	>10 000	N/D	9.4
39	Me	6-c-pentyl	1.1	>10 000	N/D	9.6
40	Н	6-c-pentyl	0.92	>10 000	N/D	>10
41	Me	6-c-hexyl	2.3	>10 000	N/D	>10
42	Me	6- <i>t</i> -butyl	8.0	>10 000	N/D	8.6
43	Н	6- <i>t</i> -butyl	9.4	>10 000	N/D	8.3
44	Me	6-adamantyl	1.7	>10 000	N/D	>10
45	Me	5,6-dimethyl	357	N/D	N/D	N/D
46	Me	5,6-c-pentyl	159	N/D	N/D	N/D
47	Me	5,6-c-hexyl	43	>10 000	N/D	7.6
48	Me	6-Cl	>10 000	N/D	N/D	N/D
49	Me	6-CF ₃	>10 000	N/D	N/D	N/D

^{*a*}Displacement of [³H]histamine from the recombinant histamine H₄ receptor. K_i values are the geometric mean of three or more independent determinations and were calculated according to Cheng and Prusoff.³⁴ ^{*b*}Compounds with $K_i > 100$ nM were not tested in functional assays. ^{*c*}Compounds with $\alpha > 0.30$ were not tested in the pA₂ assay. ^{*d*}Antagonism of histamine inhibition of forskolin-stimulated cAMP-mediated reporter gene activity in SK-N-MC cells expressing the human histamine H₄ receptor. N/D = not determined.

the hERG channel in a binding assay. There was a slight (21%) reduction in the delayed rectifier current ($I_{\rm Kr}$) at 3 μM in hERG-transfected HEK293 cells, but there were no notable effects on multiple parameters of the isolated rabbit Purkinje fibers. When dosed in rats, this compound demonstrated a moderate C_{max} (0.3 μ M), an oral $t_{1/2}$ of 9 h with a volume of distribution at the steady state $(V_{\rm ss})$ of 2.7 l/kg/h, and bioavailability of F = 20%. The moderate C_{max} and low bioavailability were not predicted by the microsomal data, although alternate routes of clearance were not investigated at this point. Although compound 15 was a suitable lead molecule, it had two liabilities: it had appreciable affinity at the H₃ receptor $(K_i = 24 \text{ nM})$ and it was a partial agonist in mouse (EC₅₀ = 7.3 nM, α = 0.57), the species in which several efficacy studies would be run. Profiling of additional compounds (Table 3) provided a range of half-lives and distribution behaviors providing a suitable range of properties to profile these molecules using mouse in vivo efficacy models.

A comparison of compound **31** to JNJ 39758979 (5) indicates that **31** is superior to JNJ 39758979 from a PK standpoint when comparing i.v. and p.o. $t_{1/2}$, AUC, C_{max} clearance, and bioavailability. Despite **31** having better PK parameters, JNJ 39758979 showed an increased PD effect in inhibition of LPS-induced TNF α release (Figure 5). As seen in

Table 3. Comparison of Lead Molecules

$ \begin{array}{c c} & NH_2 & NH_2 & NH_2 \\ & N \\ & N$						
	15	JNJ 39758979 (5)	31			
(nM)	1.2	12.5	21			
DA ₂	9.5	7.9	8.0			

Human H ₄ K _i (nM)	1.2	12.5	21	
Human $H_4 pA_2$	9.5	7.9	8.0	
Mouse H ₄ K _i (nM)	20	5.3	62	
Mouse $H_4 pA_2$	8	8.3	7.3	
Metabolism t ½	hu >100	hu >180	hu >120	
(Min)	rat 86	rat 61	rat 63	
Human H ₃ K _i (nM)	24	1043	670	
Human H ₁		>1000	>1000	
hERG PC (μM)	>10	>10	>10	
CaCo (cm/s*10 ⁶) A->B/B->A	32 / 16	23 / 22	54 / 14	
PPB %free (h/r/m)	ND	81/83/76	26/ND/ND	
Solubility (pH=7/pH=2)	>0.4 / >0.4	>0.4 / >0.4	ND / ND	
Rat PK				
i.v. (2 mg/kg)				
t _{1/2} (h)	1.1	2.1	5.3	
AUC (µM*h)	5	1.4	11.0	
Cl (L/h)	0.63	2.2	0.3	
Vss (L/kg)	2.7	19.9	6.3	
p.o. (10 mg/kg)				
%F	20	36	50	
t _{1/2} (h)	9	7.5	9.7	
Cmax (µM)	0 31	03	15	

JNJ 39758979 PK vs. LPS inhibition

Assay

31 PK vs. LPS inhibition

Figure 5. Comparison of JNJ 39758979 and 31 in LPS-induced TNF α inhibition to blood levels in the mouse.

Figure 5, JNJ 39758979 showed inhibition when plasma concentrations were at or above the mouse K_i , whereas 31 had plasma concentrations that were above the mouse K_i during then entire dose range but only showed inhibition at the high doses. The only parameter that we measured that could explain this difference is that JNJ 39758979 had a significantly higher volume of distribution relative to 31. It should be noted that for 31 the volume of distribution was measured only in the rat and dog and in both cases is lower than for JNJ 39758979. After significant in vitro and in vivo characterization, JNJ 39758979 was found to be most efficacious in a range of in vivo models and was selected to move forward as the clinical candidate.

Characterization of JNJ 39758979. JNJ 39758979 is a selective, high-affinity histamine H_4 receptor antagonist with a K_i of 12.5 nM versus the human H_4 receptor and functionally antagonizes histamine-induced cAMP inhibition with a pA₂ of 7.9 in transfected cells. At the mouse H_4R , the $K_i = 5.3$ nM and

the $pA_2 = 8.3$. At the monkey H_4R , the $K_i = 25$ nM and the pA_2 = 7.5. The affinity for the rat ($K_i = 188$ nM, pA₂ = 7.2) and guinea pig H₄R (K_i = 306 nM) is moderate, and JNJ 39758979 has little if any affinity for the dog H₄R ($K_i \ge 10 \mu$ M). The compound is highly selective for H₄R, as it exhibits low affinity for the H₁, H₂, and H₃ receptors. In addition, JNJ 39758979 was screened through a broad panel of kinases, receptors, and channels without any significant cross-reactivity.³⁵ Furthermore, the compound was also selective for the mouse H_4 receptor over mouse H₁ and H₃ receptors (the mouse H₂ receptor was not studied). JNJ 39758979 was negative in the Ames test and showed no inhibition of CYP450 3A4, 2C9, 2D6, or 1A2 at concentrations of 50–100 μ M. The compound did not inhibit astemizole binding to the hERG channel at concentrations up to 30 μ M and showed no inhibition of the hERG-mediated K⁺ current in transfected cells at concentrations up to 10 μ M.

JNJ 39758979 is metabolically stable ($t_{1/2} > 120 \text{ min}$) when incubated in vitro with human, rat, dog, or monkey liver microsomes. This compound exhibited excellent exposure, bioavailability, and half-life in mouse, rat, and dog (Figure 6 and

Figure 6. JNJ 39758979 PK curves in mouse and dog and scaling PK in rat.

Table 4). There was also no difference in pharmacokinetic properties between Balb/c mice (shown) and C57/Bl6 mice (data not shown). JNJ 39758979 showed dose-proportional PK in the rat in the range of 2-500 mpK (Figure 6).

The tissue distribution of JNJ 39758979 was determined following a single 5 mg/kg oral dose in mice. The brain, liver, and kidneys from three mice per time point were surgically removed up to 96 h after dosing to determine JNJ 39758979 concentrations with a liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) assay (lower limit of quantitation = 1 ng/g). JNJ 39758979 rapidly reached the kidneys and liver (mean $t_{max} = 2.0$ h). In comparison, distribution to the brain was slow (mean $t_{max} = 6.0$ h). The elimination of JNJ 39758979 was slow from the brain, liver, and kidneys, with mean $t_{1/2}$ values of 42.5, 22.3, and 20.5 h, respectively. The highest exposure (based on C_{max} and AUC_{0-inf} values) was observed in the liver followed by the kidney and brain. Tissue-to-plasma ratios for liver and kidney ranged from 23.2 to 95.8; the tissue-to-plasma ratios in brain increased with time from 0.256 to 22.7 up to 48 h after dosing.

The pruritic effect of histamine is well-documented, and recent reports have described the contribution of the H_4R to the itch induced by histamine and other pruritogens.³⁶ JNJ 39758979 was able to inhibit histamine-induced itch at doses of 5 and 20 mg/kg in mice to a similar extent as JNJ 7777120 (Figure 7). There is some indication that efficacy in this model requires that the compound reach the central nervous system. Although JNJ 39758979 crosses the blood-brain barrier, at the end point of the itch study, the brain concentration relative to the plasma concentration is low because of the delay in C_{max} for the brain, which may explain the shift in efficacy relative to the LPS-induced TNF α model.

Preclinical efficacy has also been reported for H_4R antagonist in models of arthritis.³⁷ JNJ 39758979 exhibits dose-dependent inhibition of the clinical score in a mouse collagen-induced arthritis model (Figure 8). The efficacy of a second H_4R antagonist, JNJ 28307474, is shown for comparison and is similar to that previously reported.³⁷

In summary, JNJ 39758979 is a potent and selective H_4 receptor antagonist that shows good anti-inflammatory and antipruritic activity in vivo. In tolerability studies, JNJ 39758979 was well-tolerated in rats and dogs and no systemic toxicity risks were identified.

CONCLUSIONS

Taking a cue from two classes of H₄R antagonists, the saturated carboxamide derivatives and the tricyclic aminopyrimidines, we arrived at the 6-alkyl-2,4-diaminopyrimidine class of H₄R antagonists. The 6-alkyl-2,4-diaminopyrimidine class of antagonists is particularly noteworthy in the field of H₄ receptor pharmacology because they behave as antagonists at both the human and the rodent H₄ receptor. During the course of these investigations, we selected JNJ 39758979 as a clinical candidate on the basis of the desirable in vitro and in vivo profile in several animal PK/PD models. JNJ 39758979 was studied in phase II clinical trials in asthma and atopic dermatitis; however, further clinical progression was halted during phase II because of the observation of idiosyncratic drug-induced agranulocytosis (DIAG) in two subjects (NCT01497119). DIAG is an idiosyncratic drug reaction occurring across many classes of drugs due to off-target effects.³⁸ The mechanisms are still not completely understood for any of the drugs that cause DIAG, but it is postulated that this is due to off-target effects of JNJ 39758979 such as the formation of reactive metabolites and or intermediates, as has been shown for other drugs that cause agranulocytosis.39

EXPERIMENTAL SECTION

Histamine-Induced Itch in Mice. The model of histamineinduced scratching in C57/bl6 mice (n = 6-8 per group) was used to judge the antipruritic effects of JNJ 39758979 as previously described.³⁶ The compound was given p.o. in 20% hydroxypropyl- β cyclodextran 30 min before an intradermal injection of histamine (100 μ g). Bouts of scratching were calculated using an automated system. Immediately after histamine injection, mice were placed in containers above a solenoid, and magnets previously placed on the mouse ear generated scratch-specific signals that were counted over a 20 min time span.

LPS-Induced TNF α in Mice. The effect of JNJ 39758979 on LPSinduced TNF α production was studied as previously described.⁴⁰ In each experiment, mice (Balb/*c*, *n* = 7–9 per group) were dosed with JNJ 39758979 p.o. in 20% hydroxypropyl- β -cyclodextran 30 min before on i.p. administration of 200 μ L of 0.1 mg/mL LPS. Plasma was collected 2 h later, and the levels of TNF α were quantitated by ELISA.

Journal of Medicinal Chemistry

Article

compound	species	route (dose)	$t_{\rm max}$ (h)	$C_{\max}^{a}(\mu M)$	AUC (h μ M)	Cl (L/h/kg)	$V_{\rm ss}~({\rm L/kg})$	$t_{1/2}$ (h)	% F
JNJ 39758979 (5)	Balb/c mice	i.v. (2 mg/kg)		1.02	3.27	2.4	31.00	7.8	
		p.o. (5 mg/kg)	2	0.79	9.69			6.8	84
		p.o. (20 mg/kg)	0.50	5.03	24.60			4.7	75
	Sprague-Dawley rats	i.v. (2 mg/kg)		1.1	1.4	5.5	19.9	2.1	
		p.o. (10 mg/kg)	2.4	0.3	2.6			5.7	38
		p.o. (10 mg/kg)	2.00	0.26	2.43			9.41	35
		p.o. (50 mg/kg)	2.00	1.25	13.39			5.45	38
		p.o. (200 mg/kg)	8.00	4.91	71.25			6.16	51
		p.o. (500 mg/kg)	8.00	7.07	184.15			12.00	53
	Beagle dogs	i.v. (2 mg/kg)		4.22	6.7	1.4	19.9	10.2	
		p.o. (10 mg/kg)	0.8	3.9	31.6			11.2	95
15	Sprague-Dawley rats	i.v. (2 mg/kg)		25	20.55	0.422	3.1	2.2	
		p.o. (10 mg/kg)	2	0.6	8.2			8.7	20.7
	Beagle dogs	i.v. (2 mg/kg)		1.76	5.38	21.19	24.42	10.77	
		p.o. (10 mg/kg)	4	1.49	30.8			9.01	114.5
35	Balb/c mice	p.o. (20 mg/kg)	0.5	8.5	60			5.2	NA
	Sprague-Dawley rats	i.v. (2 mg/kg)		19	11	0.33	6.3	5.3	
		p.o. (10 mg/kg)	5	1.6	27.8			9.3	50
	Beagle dogs	i.v. (2 mg/kg)		2.5	8.1	15.5	15.1	9.3	
		p.o. (10 mg/kg)	0.6	4.2	45			10	112
a									

 ${}^{a}C_{0}$ for i.v.

Figure 7. JNJ 39758979 inhibits histamine-induced itch.

Figure 8. JNJ 39758979 is efficacious in a mouse collagen-induced arthritis model.

Collagen-Induced Arthritis Model. The effect of JNJ 39758979 on collagen-induced arthritis was studied as previously described.³⁷ The compounds were dosed orally in 20% hydroxypropyl- β -cyclodextran. Eight mice were used per group.

In Vitro Pharmacology. Histamine receptor K_{ν} EC₅₀, and pA₂ determinations were carried out using transfected cells as previously described.⁴¹ All assays were carried out in triplicate.

In Vivo Pharmacokinetics. In vivo pharmacokinetic data are given in Table 4.

Chemistry. Chemicals and Reagents. Solvents and reagents were purchased from commercial suppliers and used as received. The diamines used were obtained from commercial sources, with the exception of the oxygenated diamines used in the synthesis of compounds 27–29, which were synthesized according to procedures in the literature.^{42,43} Silica gel was used for all chromatographic purification unless otherwise noted. Unless otherwise specified, reaction solutions were stirred at room temperature (rt) under a nitrogen atmosphere. Where solutions are dried, they are generally dried over a drying agent such as Na₂SO₄ or MgSO₄. Where mixtures, solutions, and extracts were concentrated, they were typically concentrated on a rotary evaporator under reduced pressure.

The purity of all tested compounds was >95% by HPLC, performed by analytical HPLC. Reversed-phase HPLC was performed on a Hewlett-Packard HPLC Series 1100 with a Phenomenex ONYX monolithic C18 (5 μ m, 4.6 × 100 mm) column. Detection was done at λ = 230, 254, and 280 nm. The flow rate was 1 mL/min. The gradient was 10 to 90% acetonitrile/water (20 mM NH₄OH) over 5.0 min. NMR spectra were obtained on Bruker model DRX spectrometers. The format of the ¹H NMR data is as follows: chemical shift in ppm downfield of the tetramethylsilane reference (multiplicity, coupling constant, J, in Hz, integration). Mass spectra were obtained on an Agilent series 1100 MSD using electrospray ionization (ESI) in either positive or negative mode as indicated. Calculated mass corresponds to the exact mass. Enantiomeric purity was determined on an Agilent 1260 infinity series analytical SFC using a Chiralpak IC column (5 μ m, 250×4.6 mm, Chiral Technologies) with a mobile phase of 30% ethanol containing either 0.2% isopropylamine or 0.2% triethylamine in CO₂ at a flow rate of 2 mL/min. Column temperature was set to 40 °C, and backpressure regulator was set to 60 °C and 150 Bar. Unless otherwise noted, the optical purity of all compounds tested was greater than 98.5%.

Example 14 provides a typical procedure beginning with the β -keto ester all the way through to the final product. Other derivatives were made in an analogous fashion.

Example 15: 4-Cyclopentyl-6-(4-methyl-piperazin-1-yl)-pyrimidin-2-ylamine Hydrochloride. Step A: 2-Amino-6-cyclopentyl-3Hpyrimidin-4-one. To a solution of 3-cyclopentyl-3-oxo-propionic acid ethyl ester (5.0 g, 27.4 mmol) and guanidine hydrochloride (3.1 g, 33.0 mmol) in MeOH (50 mL) at 23 °C was added potassium *tert*butoxide portionwise (16.7 g. 149 mmol) over 15 min with vigorous stirring, and the reaction was warmed to 60 °C. The reaction was cooled to 23 °C and stirred overnight, and the precipitated salt was removed by filtration. The solution was concentrated to ~10 mL, diluted with 10 mL of water, and adjusted to pH 5 by the addition of 6.0 N HCl (6.1 mL). The resulting precipitate was filtered and dried via suction and then vacuum to yield a white solid (4.3 g, 87%) that was used without further purification. ¹H NMR (MeOD): 10.71–10.54 (m, 1H), 6.58–6.32 (m, 2H), 5.44–5.37 (m, 1H), 2.66 (p, J = 8.1 Hz, 1H), 1.91–1.73 (m, 2H), 1.72–1.48 (m, 6H).

Step B: 2-Amino-4-chloro-6-cyclopentylpyrimidine. A suspension of 2-amino-6-cyclopentyl-3H-pyrimidin-4-one (1.52 g, 8.4 mmol), tetraethyl ammonium chloride (2.8 g 16.9 mmol), and dimethylaniline (1.1 mL, 8.4 mmol) in acetonitrile (16 mL) was treated with phosphorus oxychloride (4.7 mL, 51 mmol) and plunged into a preheated 110 °C bath for 20 min. The resulting solution was cooled to 23 °C, concentrated to a minimum volume, diluted with CHCl₃ and ice, and stirred for 30 min. The layers were separated, and the organic was washed with water (3 × 50 mL) and 5% NaHCO₃, separated, dried over Na₂SO₄, filtered, and concentrated to yield 2.0 g of crude product that was used without purification.

Step C: 4-Cyclopentyl-6-piperazin-1-yl-pyrimidin-2-ylamine. A solution of crude 2-amino-4-chloro-6-cyclopentylpyrimidine (150 mg, 0.76 mmol), N-Boc piperizine (184 mg, 0.99 mmol), and Et₃N (210 uL, 1.5 mmol) in EtOH (2 mL) was heated to 70 °C for 16 h. The reaction was cooled to room temperature and concentrated, and the crude residue was purified (4 g SiO₂, 0 to 10% NH₃/MeOH/ CH₂Cl₂) to yield a white solid (34 mg, 11%). MS (ESI) *m/z*: [M + H]⁺ calcd for C₁₈H₂₉N₅O₂, 347.2; found, 348.3. ¹H NMR (MeOD): 6.01 (s, 1H), 3.66–3.58 (m, 4H), 3.53–3.43 (m, 4H), 3.33 (td, J = 3.28, 1.64, Hz, 1H), 2.90–2.75 (m, 1H), 2.05–1.90 (m, 2H), 1.87–1.77 (m, 2H), 1.77–1.62 (m, 4H), 1.53–1.46 (m, 9H).

Step D: 4-Cyclopentyl-6-piperazin-1-yl-pyrimidin-2-ylamine. A solution of 4-cyclopentyl-6-piperazin-1-yl-pyrimidin-2-ylamine (34 mg, 0.10 mmol) in formic acid (3 mL) was treated with 6.0 N HCl (0.1 mL) and stirred for 2 h. The reaction was diluted with MeOH and concentrated. This process was repeated two times to remove the formic acid to yield a white solid (30 mg, 97%). MS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₂₁N₅, 247.2; found, 248.2. ¹H NMR (MeOD): 6.45 (s, 1H), 4.34–4.16 (m, 2H), 4.13–3.96 (m, 2H), 3.42–3.34 (m, 4H), 3.08–2.97 (p, J = 8.0 Hz, 1H), 2.22–2.08 (m, 2H), 1.99–1.83 (m, 2H), 1.83–1.65 (m, 4H).

The following examples were prepared in a manner analogous to Example 15.

Example 5: (*R*)-4-(3-Amino-pyrrolidin-1-yl)-6-isopropyl-pyrimidin-2-ylamine Hydrochloride. MS (ESI): mass calcd for C₁₁H₁₉N₅, 221.16; *m*/*z* found, 222.2 [M+H]⁺. ¹H NMR (MeOD); mixture of forms): 6.10 (s, 0.67H), 6.08 (s, 0.33H), 4.16-3.68 (m, 5H), 2.89 (sept, *J* = 6.9, 1H), 2.60–2.50 (m, 0.67H), 2.50–2.42 (m, 0.33H), 2.32–2.22 (m, 0.67H), 2.22–2.14 (m, 0.33H), 1.33 (d, *J* = 7.0, 6H); $[\alpha]_{D}^{20} = -29.3$ (c 1.00, MeOH).

Example **6**: 4-Cyclopentyl-6-(4-methyl-piperazin-1-yl)-pyrimidin-2-ylamine. A solution of crude 2-amino-4-chloro-6-cyclopentylpyrimidine (92 mg, 0.47 mmol) and N-methyl piperizine (0.15 mL, 1.4 mmol) in EtOH (2 mL) was heated at 70 °C for 2 h. The reaction was cooled to room temperature and concentrated, and the crude residue was purified (12 g SiO₂, 0 to 10% NH₃/MeOH/CH₂Cl₂) to yield an oil (81 mg, 66%). HRMS (ESI) *m/z*: mass calcd for C₁₄H₂₃N₅, 262.2026; found, 262.2020 (-2.4 ppm). ¹H NMR (CDCl₃): 5.85 (s, 1H), 4.78 (s, 2H), 3.59 (t, *J* = 5.0 Hz, 4H), 2.81 (q, *J* = 8.7 Hz, 1H), 2.44 (t, *J* = 5.0 Hz, 4H), 2.32 (s, 3H), 2.04–1.89 (m, 2H), 1.82–1.59 (m, 6H).

Example 16: (R)-4-Cyclopentyl-6-(3-methylamino-pyrrolidin-1yl)-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd for C₁₄H₂₃N₅, 262.2026; found, 262.2017 (-3.5 ppm). ¹H NMR (MeOD): 5.75 (s, 1H), 3.74–3.51 (m, 2H), 3.52–3.39 (m, 1H), 3.37–3.30 (m, 2H), 2.86–2.75 (m, 1H), 2.41 (s, 3H), 2.27–2.14 (m, 1H), 2.05–1.92 (m, 2H), 1.93–1.83 (m, 1H), 1.84–1.73 (m, 2H), 1.73–1.60 (m, 4H).

Example 17: (S)-4-Cyclopentyl-6-(3-methylamino-pyrrolidin-1yl)-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd for $C_{14}H_{23}N_{5}$, 262.2026; found, 262.2017 (-3.5 ppm). ¹H NMR (MeOD): 5.75 (s, 1H), 3.74-3.51 (m, 2H), 3.52-3.39 (m, 1H), 3.37-3.30 (m, 2H), 2.86-2.75 (m, 1H), 2.41 (s, 3H), 2.27-2.14 (m, 1H), 2.05-1.92 (m, 2H), 1.93-1.83 (m, 1H), 1.84-1.73 (m, 2H), 1.73-1.60 (m, 4H).

Example **18**: *4*-((*R*)-3-*Amino-pyrrolidin-1-yl*)-*6*-*cyclopentyl-pyrimidin-2-ylamine*. HRMS (ESI) *m/z*: mass calcd for $C_{13}H_{21}N_5$, 248.1870; found, 248.1860 (-3.9 ppm). ¹H NMR (MeOD): 5.72 (s, 1H), 3.85–3.54 (m, 3H), 3.54–3.32 (m, 1H), 3.32–3.15 (m, 1H), 2.92–2.71 (m, 1H), 2.24 (ddd, *J* = 12.8, 12.7, 6.42 Hz, 1H), 2.03–1.94 (m, 2H), 1.95–1.75 (m, 3H), 1.74–1.63 (m, 4H).

Example **19**: 4-((*S*)-3-*Amino-pyrrolidin-1-yl*)-6-cyclopentyl-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd for $C_{13}H_{21}N_5$, 248.1870; found, 248.1860 (-3.9 ppm). ¹H NMR (MeOD): 5.72 (*s*, 1H), 3.85–3.54 (m, 3H), 3.54–3.32 (m, 1H), 3.32–3.15 (m, 1H), 2.92–2.71 (m, 1H), 2.24 (ddd, *J* = 12.8, 12.7, 6.42 Hz, 1H), 2.03–1.94 (m, 2H), 1.95–1.75 (m, 3H), 1.74–1.63 (m, 4H).

Example **20**: 4-(3-Amino-azetidin-1-yl)-6-cyclopentyl-pyrimidin-2-ylamine hydrochloride. HRMS (ESI) m/z: mass calcd for $C_{12}H_{19}N_5$, 234.1713; found, 234.1707 (-2.7 ppm). ¹H NMR (MeOD): 10.97-8.73 (br s, 3H), 7.73 (s, 2H), 5.98 (s, 1H), 4.38 (s, 2H), 4.30-4.07 (m, 3H), 2.96-2.84 (m, 1H), 2.11-1.89 (m, 2H), 1.89-1.71 (m, 2H), 1.73-1.52 (m, 4H).

Example 21: (R)-4-(3-Amino-piperidin-1-yl)-6-cyclopentyl-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd, 262.2026; found, 262.2020 (-2.4 ppm).

Example **22**: 4-Cyclopentyl-6-((*R*,*R*)-octahydro-pyrrolo[3,4-b]-pyridin-6-yl)-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd for C₁₆H₂₅N₅, 288.2183; found, 288.2181 (-0.6 ppm). ¹H NMR (MeOD): 5.77–5.68 (m, 1H), 3.65–3.25 (m, 5H), 2.91 (td, *J* = 12.3, 3.8 Hz, 1H), 2.86–2.74 (m, 1H), 2.66–2.55 (m, 1H), 2.47–2.25 (m, 1H), 2.05–1.89 (m, 2H), 1.88–1.73 (m, 4H), 1.75–1.58 (m, 4H), 1.54–1.44 (m, 1H).

Example **23**: 4-Cyclopentyl-6-((*R*,*R*)-hexahydro-pyrrolo[3,4-b]-pyrrol-5-yl)-pyrimidin-2-ylamine. MS (ESI) m/z: $[M + H]^+$ calcd for C₁₅H₂₃N₅, 273.2; found, 274.2. ¹H NMR (CDCl₃): 5.63 (s, 1H), 5.36–5.13 (m, 2H), 3.97–3.85 (m, 1H), 3.78–3.63 (m, 1H), 3.64–3.54 (m, 1H), 3.56–3.42 (m, 1H), 3.38–3.22 (m, 1H), 3.20–3.04 (m, 2H), 3.05–2.92 (m, 2H), 2.92–2.75 (m, 2H), 2.11–1.89 (m, 3H), 1.86–1.57 (m, 7H).

Example 24: 4-Cyclopentyl-6-(cis-5-methyl-hexahydro-pyrrolo-[3,4-c]pyrrol-2-yl)-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd for C₁₆H₂₅N₅, 288.2183; found, 288.2181 (-0.6 ppm). ¹H NMR (CDCl₃): 5.77 (s, 1H), 3.64–3.56 (m, 2H), 3.46–3.37 (m, 3H), 3.04–2.95 (m, 2H), 2.85–2.75 (m, 2H), 2.44 (dd, J = 9.8, 4.1 Hz, 2H), 2.32 (s, 3H), 2.03–1.92 (m, 2H), 1.84–1.75 (m, 2H), 1.73–1.62 (m, 4H).

Example **25**: 4-Cyclopentyl-6-(hexahydro-pyrrolo[3,4-c]pyrrol-2yl)-pyrimidin-2-ylamine hydrochloride. HRMS (ESI) m/z: mass calcd for C₁₅H₂₃N₅, 274.2026; found, 274.2018 (-3.0 ppm).

Example **26**: 4-Cyclopentyl-6-(cis-1,7-diaza-spiro[4.4]non-7-yl)pyrimidin-2-ylamine. MS (ESI) m/z: $[M + H]^+$ calcd for $C_{16}H_{25}N_5$, 287.2; found, 288.2. ¹H NMR (MeOD): 5.72 (s, 1H), 3.68–3.27 (m, 4H), 3.07–2.88 (m, 2H), 2.85–2.74 (m, 1H), 2.08– 1.92 (m, 4H), 1.93–1.74 (m, 6H), 1.74–1.57 (m, 4H).

Example 27: trans-1-(2-Amino-6-cyclopentyl-pyrimidin-4-yl)-4methylamino-pyrrolidin-3-ol. HRMS (ESI) m/z: mass calcd for C₁₄H₂₃N₅O 278.1975; found, 278.1970 (-1.9 ppm). ¹H NMR (CDCl₃): 5.52 (s, 1H), 5.34–5.17 (m, 2H), 4.17–4.07 (m, 1H), 3.75–3.56 (m, 2H), 3.40–3.08 (m, 4H), 3.10–3.02 (m, 1H), 2.78–2.66 (m, 1H), 2.37 (s, 3H), 1.96–1.84 (m, 2H), 1.75–1.63 (m, 2H), 1.63–1.49 (m, 4H).

Example **28**: 4-Cyclopentyl-6-(trans-hexahydro-pyrrolo[3,4-b]-[1,4]oxazin-6-yl)-pyrimidin-2-ylamine. MS (ESI) m/z: $[M + H]^+$ calcd for C₁₆H₂₃N₅O, 289.2; found, 290.2. ¹H NMR (MeOD): 5.62 (s, 1H), 4.72 (s, 2H), 3.99 (dd, J = 11.7, 2.5 Hz, 2H), 3.77 (dt, J = 11.7, 2.9 Hz, 1H), 3.67–3.49 (m, 2H), 3.20 (t, J = 9.8, Hz, 1H), 3.13–3.03 (m, 2H), 2.98 (dd, J = 12.3, 1.9 Hz, 2H), 2.86–2.76 (m, 1H), 2.07–1.91 (m, 4H), 1.83–1.57 (m, 4H).

Example **29**: 4-Cyclopentyl-6-(cis-hexahydro-pyrrolo[3,4-b][1,4]oxazin-6-yl)-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd for $C_{15}H_{23}N_5O$, 290.1975; found, 290.1975 (-0.1 ppm). Example 30: 4-Methyl-6-(3-methylamino-pyrrolidin-1-yl)-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd, 208.1557; found, 208.1559 (1.1 ppm).

Example 31: 4-Ethyl-6-R-(3-methylamino-pyrrolidin-1-yl)-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd for $C_{12}H_{20}N_5$, 222.1713; found, 222.1713 (-0.1 ppm). ¹H NMR (CDCl₃): 5.61 (s, 1H), 5.21 (s, 2H), 3.72-3.12 (m, 5H), 2.55-2.41 (m, 5H), 2.22-2.09 (m, 1H), 1.93-1.77 (m, 1H), 1.27-1.15 (t, J = 7.3 Hz, 3H). $[\alpha]_D^{20} =$ -27.6 (c 0.40, MeOH).

Example **32**: 4-(*R*)-(3-Amino-pyrrolidin-1-yl)-6-ethyl-pyrimidin-2ylamine Hydrochloride. MS (ESI) m/z: $[M + H]^+$ calcd for $C_{10}H_{17}N_5$, 207.3; found, 208.2. ¹H NMR (DMSO): 8.85–8.58 (m, 2H), 8.32–7.18 (m, 1H), 6.17–6.10 (m, 1H), 4.04–3.85 (m, 1H), 3.85–3.53 (m, 4H), 2.66–2.53 (q, J = 7.5, 15.1 Hz, 2H), 2.41–2.09 (m, 2H), 1.28–1.19 (t, J = 7.5, 15.1 Hz, 3H)

Example **33**: (*R*)- 4-*IsopropyI*-6-(3-*methylamino-pyrrolidin*-1-*yI*)*pyrimidin*-2-*ylamine*. HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{12}H_{21}N_5$, 236.1870; found, 236.1867 (-1.2 ppm). ¹H NMR (CDCl₃): 5.66 (s, 1H), 5.00-4.87 (m, 2H), 3.75-3.56 (m, 2H), 3.56-3.43 (m, 1H), 3.43-3.23 (m, 2H), 2.71 (q, *J* = 6.9 Hz, 1H), 2.53 (s, 3H), 2.22 (dt, *J* = 13.4, 6.1 Hz, 1H), 1.98-1.81 (m, 1H), 1.26 (d, *J* = 6.9 Hz, 6H).

Example **34**: 4-Butyl-6-((*R*)-3-methylamino-pyrrolidin-1-yl)-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd for $C_{13}H_{23}N_5$, 250.2026; found, 250.2023 (-1.3 ppm). ¹H NMR (CDCl₃): 5.57 (s, 1H), 5.22 (s, 2H), 3.75-3.07 (m, 5H), 2.45 (s, 3H), 2.43-2.38 (m, 2H), 2.18-2.08 (m, 1H), 1.88-1.73 (m, 1H), 1.66-1.55 (m, 2H), 1.42-1.30 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H).

Example **35**: (*R*)-*Benzyl*-6-(3-*methylamino-pyrrolidin*-1-*yl*)-*pyrimidin*-2-*ylamine*. MS (ESI) m/z: $[M + H]^+$ calcd for $C_{16}H_{21}N_5$, 283.37; found, 284.2. ¹H NMR (400 MHz, CDCl₃): 7.18–7.32 (m, SH), 5.50 (s, 1H), 4.83–4.85 (bs, 2H), 3.78 (s, 3H), 3.2–3.7 (m, 4H), 2.44 (s, 3H), 2.05–2.15 (m, 1H), 1.74–1.84 (m, 1H).

Example **36**: 4-((*R*)-3-Amino-pyrrolidin-1-yl)-6-benzyl-pyrimidin-2-ylamine. MS (ESI) m/z: $[M + H]^+$ calcd for $C_{15}H_{19}N_5$, 269.2; found, 270.12. ¹H NMR (CDCl₃) (free base): 7.21–7.34 (m, 5H), 5.72 (bs, 2H), 5.45 (s, 1H), 3.83 (s, 2H), 3.60–3.71 (m, 2H), 2.84–3.60 (bm, 5H), 2.04–2.21 (m, 1H), 1.63–1.84 (m, 1H).

Example **37**: 4-Cyclopropyl-6-(*R*)-(3-methylamino-pyrrolidin-1yl)-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd for $C_{12}H_{19}N_5$, 234.1713; found, 234.1710. ¹H NMR (CDCl₃): 5.58 (s, 1H), 5.30 (s, 1H), 4.73–4.63 (m, 1H), 3.75–3.11 (m, 5H), 2.46 (s, 3H), 2.21–2.10 (m, 1H), 2.04–2.00 (m, 1H), 1.88–1.77 (m, 1H), 1.77–1.67 (m, 1H), 1.00–0.91 (m, 2H), 0.89–0.82 (m, 2H).

Example **38**: 4-Cyclobutyl-6-(3-methylamino-pyrrolidin-1-yl)-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd for $C_{13}H_{21}N_5$, 248.1870; found, 248.1862 (-3.1 ppm). ¹H NMR (CDCl₃): 5.62 (s, 1H), 4.71 (s, 2H), 3.75–3.52 (m, 2H), 3.50–3.39 (m, 1H), 3.38–3.20 (m, 3H), 2.52–2.44 (s, 3H), 2.33–2.10 (m, 5H), 2.09–1.76 (m, 5H).

Example **39**: (*R*)-4-Cyclopentyl-6-(3-methylamino-pyrrolidin-1yl)-pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd for $C_{14}H_{23}N_5$, 262.2026; found, 262.2017. ¹H NMR (MeOD): 5.75 (s, 1H), 3.74–3.51 (m, 2H), 3.52–3.39 (m, 1H), 3.37–3.30 (m, 2H), 2.86–2.75 (m, 1H), 2.41 (s, 3H), 2.27–2.14 (m, 1H), 2.05–1.92 (m, 2H), 1.93–1.83 (m, 1H), 1.84–1.73 (m, 2H), 1.73–1.60 (m, 4H).

Example **40**: 4-((*R*)-3-Amino-pyrrolidin-1-yl)-6-cyclopentyl-pyrimidin-2-ylamine. MS (ESI) m/z: $[M + H]^+$ calcd for $C_{13}H_{21}N_5$, 247.2; found, 248.2. ¹H NMR (MeOD): 5.72 (s, 1H), 3.85–3.54 (m, 3H), 3.54–3.32 (m, 1H), 3.32–3.15 (m, 1H), 2.92–2.71 (m, 1H), 2.24 (ddd, *J* = 12.8, 12.7, 6.42 Hz, 1H), 2.03–1.94 (m, 2H), 1.95–1.75 (m, 3H), 1.74–1.63 (m, 4H).

Example 41: 4-Cyclohexyl-6-(R)-(3-methylamino-pyrrolidin-1-yl)pyrimidin-2-ylamine. HRMS (ESI) m/z: mass calcd for $C_{15}H_{25}N_5$, 276.2183; found, 276.2178 (-1.7 ppm). ¹H NMR (CDCl₃): 5.59 (s, 1H), 5.30 (s, 2H), 4.69 (s, 2H), 3.71–3.51 (m, 2H), 3.46–3.38 (m, 1H), 3.37–3.29 (m, 1H), 2.47 (s, 3H), 2.36–2.26 (m, 1H), 2.22–2.12 (m, 1.5H), 1.95–1.77 (m, 5.5H), 1.76–1.68 (m, 1H), 1.47–1.17 (m, 6H).

Example **42**: 4-tert-Butyl-6-((*R*)-3-methylamino-pyrrolidin-1-yl)pyrimidin-2-ylamine. MS (ESI) m/z: $[M + H]^+$ calcd for $C_{13}H_{23}N_5$, 249.4; found, 250.2. ¹H NMR (CDCl₃): 5.71 (s, 1H), 4.80 (s, 1H), 3.72-3.51 (m, 2H), 3.49-3.40 (m, 1H), 3.38-3.22 (m, 2H), 2.47 (s, 3H), 2.21-2.10 (m, 1H), 1.91-1.76 (m, 1H), 1.25 (s, 9H).

Example **43**: 4-((*R*)-3-Amino-pyrrolidin-1-yl)-6-tert-butyl-pyrimidin-2-ylamine Hydrochloride. MS (ESI) m/z: $[M + H]^+$ calcd for $C_{12}H_{21}N_5$, 235.3; found, 236.3. ¹H NMR (MeOD): 6.11–5.99 (m, 1H), 4.22–3.96 (m, 2H), 3.95–3.70 (m, 3H), 2.64–2.40 (m, 1H), 2.39–2.12 (m, 1H), 1.40 (s, 9H).

Example 44: 4-Adamantan-1-yl-6-((R)-3-methylamino-pyrrolidin-1-yl)-pyrimidin-2-ylamine. MS (ESI) m/z: $[M + H]^+$ calcd for $C_{19}H_{29}N_5$, 327.5; found, 328.4. ¹H NMR (CDCl₃) 5.92 (s, 1H), 4.71 (s, 2H), 3.71–3.17 (m, 5H), 2.48 (s, 3H), 1.99–1.92 (m, 6H), 1.81– 1.72 (m, 6H), 1.38 (s, 1H), 1.15 (s, 1H).

Example **45**: (*R*)-4,5-Dimethyl-6-(3-methylamino-pyrrolidin-1-yl)pyrimidin-2-ylamine. HRMS (ESI) *m*/*z*: mass calcd, 222.1713; found, 222.1712 (-0.5 ppm).

Example **46**: 4-(3-*Methylamino-pyrrolidin-1-yl)-6,7-dihydro-5H-cyclopentapyrimidin-2-ylamine.* HRMS (ESI) m/z: mass calcd for C₁₂H₁₉N₅, 234.1713; found, 234.1706 (-3.1 ppm). ¹H NMR (CDCl₃): 4.88 (s, 2H), 3.84–3.74 (m, 2.7H), 3.72–3.61 (m, 1.3H), 3.49–3.41 (m, 2H), 3.27–3.20 (m, 1H), 3.08–2.92 (m, 2H), 2.82–2.61 (m, 2H), 2.46 (s, 3H), 2.14–2.04 (m, 1H), 2.02–1.90 (m, 2H), 1.83–1.74 (m, 2H).

Example **47**: (*R*)-4-(3-Methylamino-pyrrolidin-1-yl)-5,6,7,8-tetrahydro-quinazolin-2-ylamine. HRMS (ESI) m/z: mass calcd for $C_{13}H_{21}N_5$, 248.1870; found, 248.1866 (-1.5 ppm). ¹H NMR (MeOD): 3.67-3.55 (m, 2H), 3.53-3.45 (m, 1H), 3.28 (dd, J = 11.0, 5.5 Hz, 1H), 3.06 (p, J = 6.0 Hz, 1H), 2.58-2.45 (m, 2H), 2.38 (t, J = 6.4 Hz, 2H), 2.24 (s, 3H) 2.01-1.90 (m, 1H), 1.68-1.45 (m, SH).

AUTHOR INFORMATION

Corresponding Author

*E-mail: bsavall@its.jnj.com.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We express our gratitude to Patti McGovern for the determination of the $H_4 EC_{50}$ and pA_2 values and to Nicholas Carruthers and Jennifer Venable for insightful scientific discussions and the proofing of this manuscript.

REFERENCES

(1) Jutel, M.; Blaser, K.; Akdis, C. A. The role of histamine in regulation of immune responses. *Chem. Immunol. Allergy* **2006**, *91*, 174–87.

(2) Akdis, C. A.; Blaser, K. Histamine in the immune regulation of allergic inflammation. *J. Allergy Clin. Immunol.* **2003**, *112*, 15–22.

(3) Banu, Y.; Watanabe, T. Augmentation of antigen receptormediated responses by histamine H1 receptor signaling. *J. Exp. Med.* **1999**, *189*, 673–682.

(4) Black, J. W.; Duncan, W. A. M.; Durant, C. J.; Ganellin, C. R.; Parsons, E. M. Definition and antagonism of histamine H2-receptors. *Nature* **1972**, *236*, 385–90.

(5) Schwartz, J.-C. The histamine H3 receptor: From discovery to clinical trials with pitolisant. *Br. J. Pharmacol.* **2011**, *163*, 713–721.

(6) Liu, C.; Ma, X.-J.; Jiang, X.; Wilson, S. J.; Hofstra, C. L.; Blevitt, J.; Pyati, J.; Li, X.; Chai, W.; Carruthers, N.; Lovenberg, T. W. Cloning and pharmacological characterization of a fourth histamine receptor (H₄) expressed in bone marrow. *Mol. Pharmacol.* 2001, *59*, 420–426.
(7) Tiligada, E.; Zampeli, E.; Sander, K.; Stark, H. Histamine H3 and H4 receptors as novel drug targets. *Expert Opin. Invest. Drugs* 2009, *18*, 1519–31.

(8) Bonaventure, P.; Letavic, M.; Dugovic, C.; Wilson, S.; Aluisio, L.; Pudiak, C.; Lord, B.; Mazur, C.; Kamme, F.; Nishino, S.; Carruthers, N.; Lovenberg, T. Histamine H3 receptor antagonists: From target identification to drug leads. *Biochem. Pharmacol.* **2007**, *73*, 1084–96.

Journal of Medicinal Chemistry

(9) Barbier, A. J.; Berridge, C.; Dugovic, C.; Laposky, A. D.; Wilson, S. J.; Boggs, J.; Aluisio, L.; Lord, B.; Mazur, C.; Pudiak, C. M.; Langlois, X.; Xiao, W.; Apodaca, R.; Carruthers, N. I.; Lovenberg, T. W. Acute wake-promoting actions of JNJ-5207852, a novel, diaminebased H3 antagonist. *Br. J. Pharmacol.* **2004**, *143*, 649–661.

(10) Giovannini, M. G.; Bartolini, L.; Bacciottini, L.; Greco, L.; Blandina, P. Effects of histamine H3 receptor agonists and antagonists on cognitive performance and scopolamine-induced amnesia. *Behav. Brain Res.* **1999**, *104*, 147–155.

(11) Haas, H. L.; Sergeeva, O. A.; Selbach, O. Histamine in the nervous system. *Physiol. Rev.* 2008, 88, 1183–241.

(12) Zhang, M.; Thurmond, R. L.; Dunford, P. L. The histamine H4 receptor: A novel modulator of inflammatory disorders. *Pharmacol. Ther.* **2007**, 594–606.

(13) Schneider, E.; Leite-de-moraes, M.; Dy, M. Histamine, immune cells and autoimmunity. *Adv. Exp. Med. Biol.* **2010**, *709*, 81–94.

(14) Thurmond, R. L.; Gelfand, E. W.; Dunford, P. J. The role of histamine H_1 and H_4 receptors in allergic inflammation: The search for new antihistamines. *Nat. Rev. Drug Discovery* **2008**, *7*, 41–53.

(15) Smits, R. A.; Leurs, R.; de Esch, I. J. P. Major advances in the development of histamine H4 receptor ligands. *Drug Discovery Today* **2009**, *14*, 745–753.

(16) Stark, H. Recent advances in histamine H3/H4 receptor ligands. *Expert Opin. Ther. Pat.* **2003**, *13*, 851–865.

(17) Salcedo, C.; Pontes, C.; Merlos, M. Is the H4 receptor a new drug target for allergies and asthma? *Front. Biosci., Elite Ed.* **2013**, *5*, 178–187.

(18) Jablonowski, J. A.; Grice, C. A.; Chai, W.; Dvorak, C. A.; Venable, J. D.; Kwok, A. K.; Ly, K. S.; Wei, J.; Baker, S. M.; Desai, P. J.; Jiang, W.; Wilson, S. J.; Thurmond, R. L.; Karlsson, L.; Edwards, J. P.; Lovenberg, T. W.; Carruthers, N. I. The first potent and selective non-imidazole human histamine H_4 receptor antagonists. *J. Med. Chem.* **2003**, *46*, 3957–3960.

(19) Cowart, M. D.; Altenbach, R. J.; Liu, H.; Hsieh, G. C.; Drizin, I.; Milicic, I.; Miller, T. R.; Witte, D. G.; Wishart, N.; Fix-Stenzel, S. R.; McPherson, M. J.; Adair, R. M.; Wetter, J. M.; Bettencourt, B. M.; Marsh, K. C.; Sullivan, J. P.; Honore, P.; Esbenshade, T. A.; Brioni, J. D. Rotationally constrained 2,4-diamino-5,6-disubstituted pyrimidines: A new class of histamine H4 receptor antagonists with improved druglikeness and in vivo efficacy in pain and inflammation models. *J. Med. Chem.* **2008**, *51*, 6547–6557.

(20) Meduna, S. P.; Savall, B. M.; Cai, H.; Edwards, J. P.; Thurmond, R. L.; McGovern, P. M. Triamino pyrimidines and pyridines as histamine H4 receptor modulators. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 3113–3116.

(21) Savall, B. M.; Gomez, L.; Chavez, F.; Curtis, M.; Meduna, S. P.; Kearney, A.; Dunford, P.; Cowden, J.; Thurmond, R. L.; Grice, C.; Edwards, J. P. Tricyclic aminopyrimidine histamine H4 receptor antagonists. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 6577–6581.

(22) Altenbach, R. J.; Adair, R. M.; Bettencourt, B. M.; Black, L. A.; Fix-Stenzel, S. R.; Gopalakrishnan, S. M.; Hsieh, G. C.; Liu, H.; Marsh, K. C.; McPherson, M. J.; Milicic, I.; Miller, T. R.; Vortherms, T. A.; Warrior, U.; Wetter, J. M.; Wishart, N.; Witte, D. G.; Honore, P.; Esbenshade, T. A.; Hancock, A. A.; Brioni, J. D.; Cowart, M. D. Structure-activity studies on a series of a 2-aminopyrimidinecontaining histamine H4 receptor ligands. *J. Med. Chem.* **2008**, *51*, 6571–6580.

(23) Koenig, J. R.; Liu, H.; Drizin, I.; Witte, D. G.; Carr, T. L.; Manelli, A. M.; Milicic, I.; Strakhova, M. I.; Miller, T. R.; Esbenshade, T. A.; Brioni, J. D.; Cowart, M. Rigidified 2-aminopyrimidines as histamine H4 receptor antagonists: Effects of substitution about the rigidifying ring. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 1900–1904.

(24) Lane, C. A. L.; Hay, D.; Mowbray, C. E.; Paradowski, M.; Selby, M. D.; Swain, N. A.; Williams, D. H. Synthesis of novel histamine H4 receptor antagonists. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 1156–1159.

(25) Carceller Gonzalez, E.; Medina Fuentes, E. M.; Soliva Soliva, R.; Virgili Bernado, M.; Marti Via, J. 4-Aminopyrimidine derivatives as histamine H4 receptor antagonists and their preparation, pharmaceutical compositions and use in the treatment of diseases. Patent US 8431580, 2009.

(26) Raphy, G.; Watson, R. J.; Hannah, D.; Pegurier, C.; Ortmans, I.; Lock, C. J.; Knight, R. L.; Owen, D. A. Preparation of novel 2aminopyrimidine derivatives as histamine receptor H4 antagonists. PCT Int. Appl. 200803155, 2010.

(27) Sato, H.; Tanaka, K.; Shimazaki, M.; Urbahns, K.; Sakai, K.; Gantner, F.; Bacon, K. Preparation of 2-aminopyrimidine derivatives as histamine H4 antagonists for the treatment of asthma. Patent WO 2005054239, 2005.

(28) Venable, J. D.; Cai, H.; Chai, W.; Dvorak, C. A.; Grice, C. A.; Jablonowski, J. A.; Shah, C. R.; Kwok, A. K.; Ly, K. S.; Pio, B.; Wei, J.; Desai, P. J.; Jiang, W.; Nguyen, S.; Ling, P.; Wilson, S. J.; Dunford, P. J.; Thurmond, R. L.; Lovenberg, T. W.; Karlsson, L.; Carruthers, N. I.; Edwards, J. P. Preparation and biological evaluation of indole, benzimidazole, and thienopyrrole piperazine carboxamides: Potent human histamine H4 antagonists. *J. Med. Chem.* 2005, *48*, 8289–8298.
(29) Lee-Dutra, A.; Arienti, K. L.; Buzard, D. J.; Hack, M. D.; Khatuya, H.; Desai, P. J.; Nguyen, S.; Thurmond, R. L.; Karlsson, L.;

Khatuya, H.; Desal, P. J.; Nguyen, S.; Hurmond, R. L.; Karisson, L.; Edwards, J. P.; Breitenbucher, J. G. Identification of 2-arylbenzimidazoles as potent human histamine H4 receptor ligands. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 6043–6048.

(30) Savall, B. M.; Edwards, J. P.; Venable, J. D.; Buzard, D. J.; Thurmond, R.; Hack, M.; McGovern, P. Agonist/antagonist modulation in a series of 2-aryl benzimidazole H4 receptor ligands. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3367–3371.

(31) Cowden, J. M.; Zhang, M.; Dunford, P. J.; Thurmond, R. L. The histamine H_4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation. *J. Invest. Dermatol.* **2010**, *130*, 1023–1033.

(32) Robins, M. J. U.; Bogdan. Nucleic acid related compounds. 33. Conversions of adenosine and guanosine to 2,6-dichloro, 2-amino-6-chloro, and derived purine nucleosides. *Can. J. Chem.* **1981**, *59*, 2601–2607.

(33) Wan, Z.-K.; Sumrit, W.; Levins, C. G.; Lin, M.; Tabei, K.; Mansour, T. S. The scope and mechanism of phosphonium-mediated SNAr reactions in heterocyclic amides and ureas. *J. Org. Chem.* **2007**, 72, 10194–10210.

(34) Cheng, Y.-C.; P., W. H. Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50% inhibition (I_{50}) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, 22.

(35) Thurmond, R. L.; Chen, B.; Dunford, P. J.; Greenspan, A. J.; Karlsson, L.; La, D.; Ward, P.; Xu, X. L. Clinical and preclinical characterization of the histamine H4 receptor antagonist JNJ 39758979. *J. Pharmacol. Exp. Ther.* **2014**, submitted for publication.

(36) Dunford, P. J.; Williams, K. N.; Desai, P. J.; Karlsson, L.; McQueen, D.; Thurmond, R. L. Histamine H_4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. *J. Allergy Clin. Immunol.* **2007**, *119*, 176–183.

(37) Cowden, J. M.; Yu, F.; Banie, H.; Farahani, M.; Ling, P.; Nguyen, S.; Riley, J. P.; Zhang, M.; Zhu, J.; Dunford, P. J.; Thurmond, R. L. The histamine H4 receptor mediates inflammation and Th17 responses in preclinical models of arthritis. *Ann. Rheum. Dis.* **2013**, *73*, 600–608.

(38) Andersohn, F.; Konzen, C.; Garbe, E. Systematic review: Agranulocytosis induced by nonchemotherapy drugs. *Ann. Intern. Med.* **2007**, *146*, 657–665.

(39) Tesfa, D.; Keisu, M.; Palmblad, J. Idiosyncratic drug-induced agranulocytosis: Possible mechanisms and management. *Am. J. Hematol.* **2009**, *84*, 428–434.

(40) Cowden, J. M.; Yu, F.; Challapalli, M.; Huang, J.-F.; Kim, S.; Fung-Leung, W.-P.; Ma, J. Y.; Riley, J. P.; Zhang, M.; Dunford, P. J.; Thurmond, R. L. Antagonism of the histamine H4 receptor reduces LPS-induced TNF production in vivo. *Inflammation Res.* **2013**, *62*, 599–607.

(41) Yu, F.; Wolin, R. L.; Wei, J.; Desai, P. J.; McGovern, P. M.; Dunford, P. J.; Karlsson, L.; Thurmond, R. L. Pharmacological characterization of oxime agonists of the histamine H4 receptor. J. Recept., Ligand Channel Res. 2010, 3, 37–49.

(42) Petersen, U.; Schenke, T.; Krebs, A.; Grohe, K.; Schriewer, M.; Haller, I.; Metzger, K. G.; Endermann, R.; Zeiler, H.-J. Preparation of 7-(1-pyrrolidinyl)-3-quinolonecarboxylic acids and naphthyridone-3carboxylic acid analogs as antibacterial agents and feed additives. Patent US 5607942, 1997.

(43) Tsuzuki, Y.; Tomita, K.; Shibamori, K.-i.; Sato, Y.; Kashimoto, S.; Chiba, K. Synthesis and structure-activity relationships of novel 7-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridine-3-carboxylic acids as antitumor agents. Part 2. *J. Med. Chem.* **2004**, *47*, 2097–2109.