

PII: S0040-4020(97)00077-X

On the Faciality of Intramolecular Palladium(0)-Catalysed "Metallo-Ene-Type" Cyclisations

Wolfgang Oppolzer^{al} and Blanda Stammen^{*2}

^aDépartement de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland

Abstract: The palladium-catalysed "metallo-ene" step in a cyclisation/ β -elimination reaction sequence has been shown to be suprafacial with respect to the olefinic component. This reaction has been applied to the synthesis of a trisubstituted exocyclic alkenyl pyrrolidine with complete stereocontrol. © 1997 Elsevier Science Ltd. All rights reserved.

Introduction

Palladium- and nickel-catalysed intramolecular alkene allylations, combined with β -elimination³, vinylstannane coupling⁴, allylzincations⁵ or CO-insertion⁶ reactions, offer an attractive stereocontrolled route to usefully functionalised five- and six-membered carbo- and heterocyclic systems. We have formalised these transformations as "metallo-ene-type" cyclisations.⁷

It has been demonstrated that palladium-catalysed intramolecular, terminal alkene additions to cyclic 1,3disubstituted allyl acetates proceed with clean transfer of chirality from C-4 (in A, Scheme 1) to C-2 and C-3' (in C).⁸ Displacement of the acetate by Pd(0) with inversion $(A \rightarrow B)$ is followed by suprafacial attack of the alkene moiety onto the allyl unit $(B \rightarrow C)$.

Scheme 1

This stereospecific tandem oxidative addition/alkylation was also extended to acyclic 1,3-disubstituted allyl acetates D.⁹ As with the cyclic substrates, initial displacement of the acetate group (in D, Scheme 1) proceeds with inversion. For the (*E*)-configured substrate (D, R' = Me, R = H) the palladium complex E immediately undergoes suprafacial allyl palladium-olefin insertion to G, resulting in inversion of the configuration at C-2. For the (*Z*)-configured substrate (D, R' = H, R = Me) the allyl palladium complex isomerises to give the more stable intermediate F *prior* to suprafacial insertion, resulting in overall retention of the configuration at C-2.

These studies showed that the ring closure occurred in a suprafacial manner and under complete stereocontrol relative to the allyl unit. We were interested in the integrity of stereochemically defined (E)- or (Z)-configured alkenes (the 'enophile') in their palladium-mediated addition to allylic acetates which we also anticipated to be suprafacial.

Synthesis

To establish if this was indeed the case we investigated the cyclisation of substrates 6 and 7 (Scheme 2) which contain stereochemically defined terminal substituents on the 'enophile' moiety. These cyclisation substrates were prepared from the corresponding *N*-Boc-tosylamides 2 and 3 by treatment with TFA followed by alkylation with (*Z*)-1-acetoxy-4-chloro-2-butene.¹⁰ *N*-Boc-tosylamide 2 was prepared stereoselectively by Mitsunobu type reaction of *N*-Boc-tosylamide¹¹ with 3-phenyl-2-propyn-1-ol¹² (to give alkyne 1) followed by partial hydrogenation over Lindlar's catalyst. Synthesis of 3 was performed starting from commercially available (*E*)-cinnamyl alcohol *via* an analogous Mitsunobu reaction.

Scheme 2. *Reagents*: a) HNTs(Boc), DEAD, PPh₃, THF; b) H₂, Lindlar, EtOAc; c) TFA, CH₂Cl₂; d) NaH, (Z)-1-acetoxy-4-chloro-2-butene, Pd(PPh₃)₄, THF.

The results of our cyclisation studies are summarised in Scheme 3. Pd(0)-catalysed cyclisation of the (Z)configured substrate 6 furnished (E)-benzylidenepyrrolidine 8 as the only product. The corresponding (Z)benzylidenepyrrolidine 9 was obtained as the exclusive product from the cyclisation of the (E)-configured substrate 7.¹³

The complete fidelity and sense of transfer of stereochemical information (inherent in the 'enophile' geometry of 6 and 7), *via* the chiral secondary alkyl palladium intermediate through to the stereochemically defined benzylidenepyrrolidine products, is consistent with a suprafacial cyclisation process (*i.e.* proceeding *via* C-C and Pd-C bond formation on the same face of the alkene) followed by *syn* elimination of palladium hydride.

We have utilised the suprafaciality of this type of cyclisation reaction for the stereospecific preparation of synthetically useful vinylsilanes.¹⁴ Tosylamide 10¹⁵ was converted into the *N*-Boc-tosylamide 11, and the lithium anion of this amide quenched with TMS chloride to provide silane 12. Reduction of this alkyne¹⁶ provided a mixture of (*E*)- and (*Z*)-vinylsilanes which could be equilibrated to the (*E*)-isomer 13 using NBS ((*E*)/(*Z*) ratio 97:3 by ¹H NMR).¹⁷ Treatment with TFA followed by alkylation with (*Z*)-1-acetoxy-4-chloro-2-butene¹⁰ furnished cyclisation precursor 15. Pd(0)-catalysed cyclisation of 15 proceeded smoothly to give (*Z*)-vinylsilane 16 ((*Z*)/(*E*) ratio 96:4 by ¹H NMR) as the exclusive product.

The utility of vinylsilane **16** was demonstrated by performing a Friedel-Crafts acetylation reaction, known to take place with retention of configuration about the alkene,¹⁴ which provided the trisubstituted exocyclic alkenyl pyrrolidine **17** with complete stereocontrol.

Scheme 4. *Reagents:* a) NaH, Boc₂O; b) LiHMDS, Me₃SiCl, THF; c) 1. (Cy)₂BH, THF; 2. AcOH, reflux; 3. H₂O₂, NaOH; d) NBS, Pyr, Et₂O, hv; e) TFA, CH₂Cl₂; f) NaH, (Z)-1-acetoxy-4-chloro-2-butene, Pd(PPh₃)₄, THF; g) 0.1 eq. Pd(dba)₂, 0.3 eq. P(o-furyl)₃, AcOH, 80°C, 21h; h) AlCl₃, AcCl, CH₂Cl₂.

In summary, we have demonstrated that palladium-catalysed "metallo-ene-type" cyclisations proceed in a suprafacial manner relative to the 'enophile' moiety, and this, in conjunction with the known stereospecificity of initial allyl palladium formation, can be used for the predictable construction of heterocyclic systems containing stereochemically defined trisubstituted exocyclic alkenes.

EXPERIMENTAL

General. All reactions were carried out under Ar with magnetic stirring, unless otherwise specified. Solvents were dried by distillation from drying agents as follows: Et₂O, THF (Na-benzophenone), toluene (Na), DMF, CH₂Cl₂ (CaH₂), MeOH (Mg). "Degassing" refers to repeated freeze-thawing until evolution of dissolved gas ceased. "Work up" denotes extraction with an organic solvent, drying (MgSO₄) and evaporation *in vacuo*. Column flash chromatography (FC): SiO₂ (*Merck 9385 Kieselgel* 60, 30-60 μ m,). GC: *Hewlett-Packard 5790 A*, integrator *HP 3390*, capillary column (fused silica, *OV-1* (12m x 0.2mm), 10 psi H₂, 5 min 200°C, 10°C/min to 270°C, unless otherwise specified. M.p.: Kofler hot stage; uncorrected. IR: *Perkin-Elmer 1600*, in CHCl₃, unless otherwise specified. ¹H NMR (Bruker AMX-400) in CDCl₃, unless otherwise specified, standard CHCl₃ and TMS (d = 7.27 or 0 ppm), J in Hz. ¹³C NMR at 100.62 MHz in CDCl₃, unless otherwise specified. MS: Varian *CH-4* or *Finnigan 4023* at 70 eV, *m/z* (rel.-%). HR-MS: *VG 7070-E*.

N-tert-Butoxycarbonyl-N-[(3-phenyl-2-propynyl]-4-methylphenylsulfonamide (1): PPh₃ (4.11 g, 15.65 mmol, 2 eq.) was added to a solution of N-Boc-toluenesulfonamide¹¹ (2.13 g, 7.84 mmol, 1 eq.) in dry THF (60 ml). The mixture was cooled under argon to -78°C, and 3-phenyl-2-propynyl-1-ol¹² (1.04 g, 7.84 mmol, 1 eq.) was added followed by DEAD (2.44 g, 14.03 mmol, 1.8 eq.). The reaction mixture was stirred for 1.5 h between -78 and -60°C, warmed up to room temp., concentrated *in vacuo*, and the residue purified by FC (hexane/EtOAc 4:1) to give **1** (1.93 g, 64 %). M.p.: 91°C (EtOAc/hexane). IR: 3032, 2984, 2933, 1731, 1598, 1490, 1363, 1154. ¹H NMR: 1.37 (*s*, 9 H), 2.42 (*s*, 3 H), 4.85 (*s*, 2 H), 7.26-7.33 (*m*, 7 H), 7.97 (*d*, *J* = 8, 2 H). ¹³C NMR: 150.3 (*s*), 144.3 (*s*), 136.8 (*s*), 131.7 (*2d*), 129.1 (*2d*), 128.5 (*d*), 128.3 (*4d*), 122.5 (*s*), 84.7 (*s*), 84.4 (*s*), 83.8 (*s*), 36.7 (*t*), 27.9 (*3q*), 21.6 (*q*). MS: 330 (4, [C₂₁H₂₃NO₄S-C₄H₇]⁺), 175 (9), 174 (75), 139 (9), 130 (13), 115 (23), 105 (14), 103 (36), 96 (23), 91 (41), 65 (23), 57 (100). HR-MS: 330.0773 ([C₂₁H₂₃NO₄S-C₄H₇]⁺, calc. 330.0800).

N-tert-Butyloxycarbonyl-N-[3-phenyl-(2Z)-propenyl]-4-methylphenylsulfonamide (2): Alkyne 1 (1.55 g, 4.02 mmol) and quinoline (0.11 g, 0.85 mmol) were vigorously stirred in EtOAc (20 ml) at room temp. under H₂ atmosphere (1 atm.) for 24 h. Filtration through Celite, evaporation of the solvent and FC (hexane/EtOAc 4:1) furnished the (Z)-alkene 2 (1.33 g, 85%). The reaction was monitored by GC ((min): 8.27 (2), 8.68 (1)). M.p.: 120°C (CH₂Cl₂/hexane). IR: 3029, 3011, 2984, 2932, 1727, 1598, 1495, 1357, 1155. ¹H NMR: 1.31 (*s*, 9 H), 2.43 (*s*, 3 H), 4.77 (*dd*, J = 6, 2, 2 H), 5.70 (*dt*, J = 11.5, 6, 1 H), 6.57 (*d*, J = 11.5, 1 H), 7.21-7.39 (*m*, 5 H), 7.35 (*d*, J = 8.5, 2 H), 7.80 (*d*, J = 8.5, 2 H). ¹³C NMR: 150.8 (*s*), 144.1 (*s*), 137.3 (*s*), 136.3 (*s*), 131.0 (*d*), 129.2 (2*d*), 128.8 (2*d*), 128.3 (3*d*), 128.0 (2*d*), 127.2 (*d*), 84.2 (*s*), 45.3 (*t*), 27.8 (3*q*), 21.6 (*q*). MS: 331.0900 ([C₂₁H₂₅NO₄S-C₄H₈]⁺, calc. 331.0878).

N-[3-Phenyl-(2Z)-propenyl]-4-methylphenylsulfonamide (4): TFA (2.5 ml, 3.7 g, 32.5 mmol) was added to N-Boc-tosylamide 2 (992 mg, 2.56 mmol), dissolved in CH₂Cl₂ (5 ml). The mixture was stirred at room temp. for 30 min. Evaporation of the solvent was followed by FC (hexane/EtOAc 4:1) to provide tosylamide 4 (727 mg, 99%). M.p.: 52° C (CH₂Cl₂/hexane). IR: 3373, 3279, 3025, 3016, 2926, 1599, 1494, 1402, 1333, 1160. ¹H NMR: 2.43 (s, 3 H), 3.85 (ddd, J = 7, 6, 1, 2 H), 4.59 (t broad, J = 6, 1 H), 5.55 (dt, J = 12, 7, 1 H), 6.52 (d, J = 12, 1 H), 7.08 (d, J = 8, 2 H), 7.21-7.32 (m, 5 H), 7.72 (d, J = 8, 2 H). ¹³C NMR: 143.5 (s), 136.8 (s), 135.8 (s), 132.7 (d), 129.8 (2d), 128.6 (2d), 128.3 (2d), 127.2 (d), 127.2 (2d), 126.4 (d), 41.3 (t), 21.5 (q). MS: 287 (2, C₁₆H₁₇NO₂S⁺), 184 (8), 155 (5), 133 (12), 132 (100), 130 (58), 117 (24), 116 (15), 115 (24), 105 (54), 92 (13), 91 (63), 77 (32), 65 (43). HR-MS: 287.0996 (C₁₆H₁₇NO₂S⁺, calc. 287.0980).

N-[4-Acetoxy-(2*E*)-butenyl]-*N*-[3-phenyl-(2*Z*)-propenyl]-4-methylphenylsulfonamide (6): NaH (55%, 70 mg, 1.60 mmol) was added portionwise at room temp. to a solution of tosylamide 4 (320 mg, 1.12 mmol) in THF (24 ml). After stirring the mixture at room temp. for 30 min (*Z*)-1-acetoxy-4-chloro-2-butene¹⁰ (250 mg, 1.68 mmol) and Pd(PPh₃)₄ (60 mg, 0.052 mmol) were added under argon. Stirring of the mixture for 1 h, addition of water (5 ml), extraction (Et₂O) and drying of the combined organic layers, followed by FC of the residue (hexane/EtOAc 5:1) provided acetoxydiene **6** as oil (414 mg, 93%). IR: 3025, 3014, 2927, 1735, 1599, 1494, 1343, 1247, 1159. ¹H NMR: 1.99 (*s*, 3 H), 2.43 (*s*, 3 H), 3.72 (*d*, *J* = 6, 2 H), 4.06 (*dd*, *J* = 6.5, 1.5, 2 H), 4.23 (*dd*, *J* = 5.5, 1, 2 H), 5.31 (*dt*, *J* = 15.5, 5.5, 1 H), 5.41 (*m*, 1 H), 5.47 (*dt*, *J* = 12, 6.5, 1 H), 6.57 (*d*, *J* = 12, 1 H), 7.13 (*d*, *J* = 8, 2 H), 7.22-7.34 (*m*, 5 H), 7.68 (*d*, *J* = 8.5, 2 H). ¹³C NMR: 170.4 (*s*), 143.3 (*s*), 137.3 (*s*), 136.0 (*s*), 132.8 (*d*), 129.7 (*2d*), 128.8 (*d*), 128.7 (*2d*), 128.3 (*2d*), 127.9 (*d*), 127.3 (*d*), 127.2 (*2d*) 126.9 (*d*), 63.5 (*t*), 48.3 (*t*), 44.2 (*t*), 21.5 (*q*), 20.8 (*q*). MS: 399 (1, C₂₂H₂₅NO₄S⁺), 340 (5), 244 (17), 184 (25), 155 (9), 130 (35), 117 (76), 116 (11), 115 (37), 91 (100), 77 (11), 65 (30). HR-MS: 399.1496 (C₂₂H₂₅NO₄S⁺, calc. 399.1504)

N-tert-Butoxycarbonyl-N-[3-phenyl-(2E)-propenyl]-4-methylphenylsulfonamide (3): Employing the Mitsunobu reaction as described for the preparation of 1, cinnamyl alcohol (676 mg, 5.04 mmol) was treated with N-Boc-tosylamide (1.35 g, 4.97 mmol), PPh₃ (2.60 g, 9.93 mmol) and DEAD (1.55 g, 8.90 mmol) in THF (35 ml) to give the diprotected amide 3 (1.48 g, 76%). M.p.: 123° C (CH₂Cl₂/hexane). IR: 3029, 3010, 2984, 2932, 1725, 1598, 1496, 1370, 1218, 1164. ¹H NMR: 1.36 (*s*, 9 H), 2.42 (*s*, 3 H), 4.60 (*dd*, *J* = 7, 1, 2 H), 6.28 (*m*, 1 H), 6.66 (*d*, *J* = 16, 1 H), 7.22-7.41 (*m*, 7 H), 7.80 (*d*, *J* = 8, 2 H). ¹³C NMR: 150.8 (*s*), 144.1 (*s*), 137.5 (*s*), 136.4 (*s*), 133.9 (*d*), 129.2 (*2d*), 128.6 (*2d*), 128.1 (*2d*), 127.9 (*d*), 126.6 (*2d*), 124.3 (*d*), 84.3 (*s*), 48.5 (*t*), 27.9 (*3q*), 21.6 (*q*). MS: 388 (0.2, C₂₁H₂₅NO₄S⁺), 332 (7), 286 (1), 176 (80), 158 (6), 132 (26), 117 (40), 115 (64), 105 (12), 91 (52), 77 (13), 65 (24), 57 (100). HR-MS: 287.0984 ([C₂₁H₂₅NO₄S-C₅H₈O₂]⁺, calc. 287.0980).

N-[3-Phenyl-(2*E*)-propenyl]-4-methylphenylsulfonamide (5): Employing the deprotection reaction as described for the preparation of **4**, the N-Boc-tosylamide **3** (1.51 g, 3.89 mmol) was treated with TFA (2.5 ml, 3.7 g, 32.5 mmol) in CH₂Cl₂ (5 ml). Evaporation of the solvent and the acid, followed by FC (hexane/EtOAc 2:1), furnished the tosylamide **5** (722 mg, 65%). M.p.: 109-110°C (CH₂Cl₂/hexane). IR: 3386, 3240, 3020, 2926, 1599, 1495, 1406, 1334, 1161. ¹H NMR: 2.41 (*s*, 3 H), 3.75 (*dd*, J = 6, 5, 2 H), 4.65 (*s* broad, 1 H), 6.02 (*dt*, J = 16, 6, 1 H), 6.44 (*d*, J = 16, 1 H), 7.23-7.31 (*m*, 7 H), 7.78 (*d*, J = 8, 2 H). ¹³C NMR: 143.5 (*s*), 137.1

(s), 136.1 (s), 133.1 (d), 129.8 (2d), 128.6 (2d), 128.0 (d), 127.2 (2d), 126.4 (2d), 124.1 (d), 45.5 (t), 21.6 (q). MS: 287 (5, $C_{16}H_{17}NO_2S^+$), 155 (4), 133 (11), 132 (100), 130 (65), 115 (23), 105 (52), 104 (14), 91 (61), 77 (26), 65 (36). HR-MS: 287.0977 ($C_{16}H_{17}NO_2S^+$, calc. 287.0980).

N-[4-Acetoxy-(2E)-butenyl]-N-[3-phenyl-(2E)-propenyl]-4-methylphenylsulfonamide (7): NaH (55%, 71 mg, 1.63 mmol) was added portionwise at room temp. to a solution of amide **5** (319 mg, 1.11 mmol) in THF (24 ml). After stirring the mixture at room temp. for 20 min, Pd(PPh₃)₄ (62 mg, 0.054 mmol), followed by (*Z*)-1-acetoxy-4-chloro-2-butene (278 mg, 1.87 mmol) were added under Ar. Stirring of the mixture for 2.5 h, quenching with water (20 ml), extraction (EtOAc) and drying of the extracts followed by FC of the residue (hexane/EtOAc 4:1) provided acetoxydiene **7** (343 mg, 77%). M.p.: 49-50°C (EtOAc/hexane). IR: 3028, 3012, 2926, 1736, 1598, 1495, 1339, 1236, 1159. ¹H NMR: 2.03 (*s*, 3 H), 2.43 (*s*, 3 H), 3.85 (*d*, *J* = 6, 2 H), 3.96 (*dd*, *J* = 6.5, 1, 2 H), 4.50 (*dd*, *J* = 5.5, 0.5, 2 H), 5.61 (*dt*, *J* = 15.5, 6, 1 H), 5.67 (*dt*, *J* = 15.5, 4.5, 1 H), 5.94 (*dt*, *J* = 16, 6.5, 1 H), 6.40 (*d*, *J* = 16, 1 H), 7.21-7.35 (*m*, 7 H), 7.73 (*d*, *J* = 8, 2 H). ¹³C NMR: 170.5 (*s*), 143.3 (*s*), 137.3 (*s*), 136.1 (*s*), 134.1 (*d*), 129.7 (*2d*), 128.8 (*d*), 128.6 (*2d*), 128.5 (*d*), 127.9 (*d*), 127.2 (*2d*), 126.4 (*2d*), 123.7 (*d*), 63.8 (*t*), 49.2 (*t*), 48.3 (*t*), 21.5 (*q*), 20.8 (*q*). MS: 399 (14, C₂₂H₂₅NO₄S⁺), 340 (18), 244 (67), 184 (47), 155 (17), 130 (51), 117 (87), 115 (41), 91 (100), 68 (16), 65 (20). HR-MS: 399.1501 (C₂₂H₂₅NO₄S⁺, calc. 399.1504)

(Z)-3-Benzylidene-1-(4-methylphenylsulfonyl)-4-vinylpyrrolidine (8): The allylic acetate **6** (32 mg, 0.080 mmol), Pd(dba)₂ (5 mg, 0.009 mmol, 0.1 eq.) and PPh₃ (6 mg, 0.023 mmol, 0.3 eq.) were dissolved in degassed AcOH (1 ml) and stirred at 80°C for 1 h. Evaporation of the solvent and FC (hexane/EtOAc 20:1) furnished pyrrolidine **8** (16 mg, 59%). M.p.: 81-82°C. (Et₂O/pentane). IR: 3030, 2926, 2857, 1598, 1495, 1346, 1159. ¹H NMR: 2.43 (*s*, 3 H), 3.26 (*dd*, J = 10, 6.5, 1 H), 3.46 (*dd*, J = 10, 1.5, 1 H), 3.63 (*m* broad, 1 H), 3.86 (*dd*, J = 14, 2, 1 H), 4.15 (*d*, J = 14, 1 H), 5.05 (*d*, J = 10, 1 H), 5.08 (*d*, J = 17, 1 H), 5.74 (*ddd*, J = 17, 10, 6, 1 H), 6.43 (*s* broad, 1 H), 7.18-7.35 (*m*, 7 H), 7.72 (*d*, J = 8, 2 H). ¹³C NMR: 143.6 (*s*), 137.7 (*s*), 136.5 (*d*), 136.0 (*s*), 133.2 (*s*), 129.6 (2*d*), 128.3 (2*d*), 127.8 (2*d*), 127.2 (*d*), 124.8 (*d*), 116.6 (*t*), 54.5 (*t*), 53.1 (*t*), 44.4 (*d*), 21.5 (*q*). MS: 339 (6, C₂₀H₂₁NO₂S⁺), 248 (4), 184 (31), 183 (16), 156 (17), 155 (35), 141 (17), 130 (31), 115 (35), 104 (27), 92 (11), 91 (100), 77 (18), 65 (40). HR-MS: 339.1264 (C₂₀H₂₁NO₂S⁺), calc. 339.1293).

(*E*)-3-Benzylidene-1-(4-methylphenylsulfonyl)-4-vinylpyrrolidine (**9**): The allylic acetate **7** (39 mg, 0.098 mmol), Pd(dba)₂ (6 mg, 0.010 mmol, 0.1 eq.) and PPh₃ (8 mg, 0.030 mmol, 0.3 eq.) were dissolved in degassed AcOH (1 ml) and stirred at 80°C for 5 h. Evaporation of the solvent and FC (hexane/EtOAc 20:1) furnished pyrrolidine **9** (20 mg, 60%). M.p.: 101-102°C (Et₂O/pentane). IR: 3030, 3011, 2926, 2853, 1599, 1494, 1346, 1161. ¹H NMR: 2.43 (*s*, 3 H), 2.85 (*dd*, J = 9, 9, 1 H), 3.43 (*m* broad, J = 7.5, 1 H), 3.64 (*dd*, J = 9, 7.5, 1 H), 4.00 (*dt*, J = 15, 2, 1 H), 4.31 (*d*, J = 15, 1 H), 5.19 (*d*, J = 16, 1 H), 5.20 (*d*, J = 10, 1 H), 5.58 (*m*, 1 H), 6.19 (*s* broad, 1 H), 7.13 (*d*, J = 8, 2 H), 7.21-7.38 (*m*, 5 H), 7.72 (*d*, J = 8, 2 H). ¹³C NMR: 143.7 (*s*), 139.0 (*s*), 136.3 (*s*), 136.0 (*d*), 132.9 (*s*), 129.8 (2*d*), 128.6 (2*d*), 128.1 (2*d*), 127.8 (2*d*), 127.2 (*d*), 124.2 (*d*), 118.6 (*t*), 52.1 (*t*), 50.7 (*t*), 49.3 (*d*), 21.6 (*q*). MS: 339 (6, C₂₀H₂₁NO₂S⁺), 248 (6), 184 (26), 183 (14), 156 (13), 155 (32), 141 (13), 130 (32), 115 (32), 104 (24), 92 (11), 91 (100), 77 (16), 65 (34). HR-MS: 339.1280 (C₂₀H₂₁NO₂S⁺, calc. 339.1293).

N-tert-Butoxycarbonyl-N-(2-propynyl)-4-methylphenylsulfonamide (11): To a solution of N-(2-propynyl)toluene sulfonamide 10¹⁵ (3.50 g, 16.72 mmol) in DMF (150 ml) was added NaH (55% suspension in oil, 0.80 g, 18.33 mmol) at 0°C. After 30 min the reaction was warmed up to room temp., and Boc₂O (4.40 g, 20.16 mmol) was added. The mixture was stirred for 1 h. Addition of water (150 ml), extraction (Et₂O), washing of the combined organic layers with brine, drying and FC (hexanes/EtOAc 3:1) furnished the diprotected amide 11 (4.68 g, 91%). M.p. 95-96°C (CH₂Cl₂/pentane). IR: 3308, 2984, 1731, 1598, 1457, 1362, 1157. ¹H NMR: 1.35 (*s*, 9 H), 2.33 (*t*, *J* = 2.5, 1 H), 2.45 (*s*, 3 H), 4.63 (*d*, *J* = 2.5, 2 H), 7.31 (*d*, *J* = 8, 2 H), 7.91 (*d*, *J* = 8, 2 H). ¹³C NMR: 150.1 (*s*), 144.4 (*s*), 136.7 (*s*), 129.9 (2*d*), 128.2 (2*d*), 84.9 (*s*), 78.9 (*s*), 74.0 (*d*), 35.7 (*t*), 27.8 (3*q*), 21.6 (*q*). MS: 213 (2, [C₁₅H₁₉NO₄S-C₇H₁₂]⁺), 210 (5), 189 (28), 155 (23), 145 (37), 144 (10), 108 (28), 91 (42), 65 (12), 57 (100). HR-MS: 189.0790([C₁₅H₁₉NO₄S-C₄H₈O₂S])⁺, calc. 189.0789).

N-tert-Butoxycarbonyl-N-(3-trimethylsilyl-2-propynyl)-4-methylphenylsulfonamide (12): To a solution of alkyne 11 (2.02 g, 6.53 mmol) in THF (30 ml) at -78°C was added LiHMDS (1 M in THF, 7.2 ml, 7.2 mmol). After 5 min Me₃SiCl (0.92 ml, 0.79 g, 7.3 mmol) was added. After 10 min the mixture was hydrolysed with NH₄Cl (15 ml), extracted (Et₂O) and dried. FC (hexanes/EtOAc 4:1) provided the alkynylsilane 12 (2.47 g, 99%). M.p. 84-85°C (Et₂O/pentane). IR: 2983, 1732, 1599, 1456, 1361, 1156. ¹H NMR: 0.18 (*s*, 9 H), 1.36 (*s*, 9 H), 2.45 (*s*, 3 H), 4.63 (*s*, 2 H), 7.29 (*d*, J = 8, 2 H), 7.96 (*d*, J = 8, 2 H). ¹³C NMR: 150.1 (*s*), 144.2 (*s*), 136.8 (*s*), 129.1 (2*d*), 128.3 (2*d*), 100.6 (*s*), 88.8 (*s*), 84.6 (*s*), 36.7 (*t*), 27.8 (3*q*), 21.6 (*q*), -0.2 (3*q*). MS: 325 (4, [C₁₈H₂₇NO₄SiS-C₄H₈]⁺), 266 (10), 217 (2), 170 (18), 155 (7), 149 (5), 139 (12), 126 (8), 108 (14), 91 (28), 73 (16), 65 (12), 57 (100). HR-MS: 325.0805 ([C₁₈H₂₇NO₄SiS-C₄H₈]⁺, calc. 325.0804).

N-tert-Butoxycarbonyl-N-[3-trimethylsilyl-2-propenyl]-4-methylphenylsulfonamide (13): Dicyclohexylborane was prepared by addition of cyclohexene (0.80 ml, 0.65 g, 7.9 mmol) to a solution of BH₃·Me₂S (10 M in THF, 0.40 ml, 4.0 mmol) in THF (5 ml) which had been cooled to -20°C. After stirring for 3 h at 0°C, the mixture was cooled to -20°C and the alkyne **12** (1.51 g, 3.95 mmol) in THF (5 ml) was added. After stirring at room temp. for 2 h, the THF was removed *in vacuo* leaving a viscous residue which was dissolved in glacial acetic acid (2 ml), and the mixture was refluxed for 1 h. After being poured into ice water, the mixture was treated with 3 N NaOH (1.4 ml) and 30% H₂O₂ (0.9 ml) and stirred 30 min at room temp. Ether was added and the layers separated. The aqueous layer was extracted with Et₂O and the combined organic layers were washed sequentially with 20% NaOH, 2 N HCl, saturated NaHCO₃ solution and brine. Drying followed by FC (hexanes/EtOAc $6:1\rightarrow4:1$) provided vinylsilane **13** (1.01 g, 67%) as a mixture of (*E*)- and (*Z*)-isomers. ¹H NMR: 0.07 (*s*, 9 H, E), 0.20 (*s*, 9 H, Z), 1.34 (*s*, E and Z), 2.44 (*s*, E and Z), 4.48 (*dd*, *J* = 5, 1.5, 2 H, E), 4.54 (*dd*, *J* = 6, 2, 2 H, Z), 5.70 (*dt*, *J* = 14.5, 1.5 1 H, Z), 5.84 (*dt*, *J* = 19.5, 1.5, 1 H, E), 6.02 (*dt*, *J* = 19.5, 5, 1 H, E), 6.27 (*dt*, *J* = 14.5, 6, 1 H, Z), 7.2-7.3 (*2d*, Z and E), 7.7-7.8 (*2d*, Z and E).

N-tert-Butoxycarbonyl-N-[3-trimethylsilyl-(2E)-propenyl]-4-methylphenylsulfonamide ((*E*)-13): To a solution of vinylsilane 13 (1.01 g, 2.64 mmol) in Et_2O (12 ml) was added pyridine (210 µl, 0.21 g, 2.61 mmol). While irradiation with a U.V. sunlamp (500 W), the mixture was treated at 25-30°C (water bath, cooled with ice as needed) with three 5 mol-% portions of NBS (75 mg, 0.424 mmol) at 15 min intervals over a 45 min period.

After irradiating for further 30 min the reaction mixture was washed with 10% HCl, 1 M NaOH and brine. FC (hexanes/EtOAc 4:1) furnished vinylsilane (*E*)-**13** (0.96 g, 95%). (*E*)/(*Z*) ratio: 97:3 (GC (min): 6.69 (*Z*) and 7.57 (*E*)). M.p.: 47-48°C (Et₂O/pentane). IR: 3024, 3020, 2984, 2957, 1725, 1599, 1456, 1359, 1154. ¹H NMR: 0.07 (*s*, 9 H), 1.35 (*s*, 9 H), 2.44 (*s*, 3 H), 4.48 (*dd*, *J* = 5, 1.5, 2 H), 5.84 (*dt*, *J* = 19.5, 1.5, 1 H), 6.02 (*dt*, *J* = 19.5, 5, 1 H), 7.29 (*d*, *J* = 8, 2 H), 7.80 (*d*, *J* = 8, 2 H). ¹³C NMR: 150.8 (*s*), 144.1 (*s*), 140.2 (*d*), 137.2 (*s*), 132.8 (*d*), 129.1 (2*d*), 128.3 (2*d*), 84.0 (*s*), 50.8 (*t*), 27.8 (3*q*), 21.6 (*q*), -1.4 (3*q*). MS: 327 (7, [C₁₈H₂₉NO4SiS-C₄H₈]⁺), 312 (9), 270 (9), 268 (90), 228 (22), 180 (41), 172 (62), 155 (34), 149 (97), 128 (47), 112 (26), 91 (100), 73 (74), 57 (56). HR-MS: 327.0957 ([C₁₈H₂₉NO4SiS-C₄H₈]⁺, calc. 327.0961).

N-[3-Trimethylsilyl-(2*E*)-propenyl]-4-methylphenylsulfonamide (14): TFA (1 ml) was added to the diprotected amide (*E*)-13 (1.04 g, 2.714 mmol), dissolved in CH₂Cl₂ (10 ml). The mixture was stirred at room temp. for 2 h. Purification by FC (hexanes/EtOAc 5:1) provided amide 14 as oil (0.77 g, 92%). IR: 3391, 3025, 3015, 2957, 1620, 1599, 1495, 1331, 1160. ¹H NMR: 0.01 (*s*, 9 H), 2.44 (*s*, 3 H), 3.64 (*ddd*, J = 6, 6, 1, 2 H), 4.69 (*t* broad, J = 6, 1 H), 5.76 (*d*, J = 18, 1 H), 5.84 (*dt*, J = 18, 5, 1 H), 7.32 (*d*, J = 8, 2 H), 7.77 (*d*, J = 8, 2 H). ¹³C NMR: 143.4 (*s*), 139.9 (*d*), 137.2 (*s*), 133.0 (*d*), 129.6 (2*d*), 127.1 (2*d*), 47.6 (*t*), 21.4 (*q*), -1.6 (3*q*). MS: 268 (27, [C₁₃H₂₁NO₂SiS-CH₃]+, 228 (9), 180 (26), 155 (12), 149 (47), 128 (61), 112 (20), 98 (23), 91 (100), 73 (91), 65 (52), 59 (32). HR-MS: 268.0808 ([C₁₃H₂₁NO₂SiS-CH₃]+, calc. 268.0827).

N-[*4*-Acetoxy-(2*E*)-butenyl]-*N*-[*3*-trimethylsilyl-(2*E*)-propenyl]-*4*-methylphenylsulfonamide (**15**): NaH (55% suspension in oil, 135 mg, 3.09 mmol) was added portionwise at 0°C to a solution of amide **14** (665 mg, 2.35 mmol) in THF (10 ml). After stirring the mixture at 0°C for 30 min, Pd(PPh₃)₄ (140 mg, 0.121 mmol, 5 mol%) was added, followed by (*Z*)-1-acetoxy-4-chloro-2-butene (370 mg, 2.49 mmol). Warming up to room temp., stirring of the mixture for 30 min, addition of water (10 ml), extraction (Et₂O) and drying of the combined organic layers, followed by FC (hexanes/EtOAc $5:1 \rightarrow 4:1$) gave acetate **15** as oil (815 mg, 88%). IR: 3024, 3016, 2956, 1735, 1618, 1599, 1494, 1346, 1158. ¹H NMR: 0.01 (*s*, 9 H), 2.05 (*s*, 3 H), 2.43 (*s*, 3 H), 3.78 (*d*, *J* = 6, 2 H), 3.81 (*d*, *J* = 4, 2 H), 4.48 (*dd*, *J* = 5.5, 1, 2 H), 5.56-5.78 (*m*, 4 H), 7.29 (*d*, *J* = 8, 2 H), 7.69 (*d*, *J* = 8, 2 H). ¹³C NMR: 170.5 (*s*), 143.2 (*s*), 139.7 (*d*), 137.4 (*s*), 135.0 (*d*), 129.7 (*2d*), 128.9 (*d*), 128.3 (*d*), 127.2 (*2d*), 63.9 (*t*), 51.9 (*t*), 48.4 (*t*), 21.5 (*q*), 20.8 (*q*), -1.5 (*3q*). MS: 322 (3, [C₁9H₂₉NO₄SiS-C₃H₅O₂]+), 256 (15), 240 (45), 228 (15), 180 (89), 155 (31), 149 (56), 139 (20), 117 (26), 113 (54), 91 (100), 73 (85), 59 (40). HR-MS: 322.1310 ([C₁9H₂₉NO₄SiS-C₃H₅O₂]+, calc. 322.1297).

(Z)-3-(2-Trimethylsilyl)-ethylidene-4-vinyl-1-(4-methylphenylsulfonyl)-pyrrolidine (16): The allylic acetate 15 (47 mg, 0.120 mmol), Pd(dba)₂ (7 mg, 0.012 mmol, 0.1 eq.) and PPh₃ (8 mg, 0.035 mmol, 0.3 eq.) were dissolved in degassed AcOH and stirred at 80°C for 21 h. Evaporation of the solvent and FC (hexanes/EtOAc 50:1) furnished pyrrolidine 16 (23 mg, 57%). IR: 3030, 3018, 2956, 1633, 1598, 1473, 1347, 1163. ¹H NMR: 0.07 (s, 9 H), 2.43 (s, 3 H), 2.78 (dd, J = 10, 10, 1 H), 3.21 (dd broad, J = 8.5, 8.5, 1 H), 3.61 (dd, J = 10, 8.5, 1 H), 3.69 (ddd, J = 14.5, 2.5, 2, 1 H), 4.00 (ddd, J = 14.5, 2, 1, 1 H), 5.08 (d, J = 17, 1 H), 5.13 (dd, J = 10, 1.5, 1 H), 5.33 (dt, J = 2.5, 2, 1 H), 5.43 (ddd, J = 17, 10, 8.5, 1 H), 7.35 (d, J = 8, 2 H), 7.71 (d, J = 8, 2 H). ¹³C NMR: 154.1 (s), 143.7 (s), 135.9 (d), 132.6 (s), 129.6 (2d), 127.8 (2d), 122.4 (d), 118.3 (t),

52.4 (*t*), 51.3 (*t*), 50.5 (*d*), 21.5 (*q*), -0.8 (3*q*). MS: 335 (4, $C_{17}H_{25}NO_2SiS^+$), 320 (2), 256 (3), 228 (3), 180 (37), 149 (24), 107 (17), 91 (68), 73 (100), 59 (41). HR-MS: 335.1364 ($C_{17}H_{25}NO_2SiS^+$, calc. 335.1375).

(Z)-3-(2-Methylcarbonyl)-ethylidene-4-vinyl-1-(4-methylphenylsulfonyl)-pyrrolidine (17): AlCl₃ (50 mg, 0.365 mmol, dried *in vacuo*) and AcCl (22 µl, 24 mg, 0.310 mmol, refluxed for several hours over PCl₅ and distilled) were dissolved in CH₂Cl₂ (0.2 ml). The vinylsilane **16** (35 mg, 0.104 mmol), dissolved in CH₂Cl₂ (4 ml), was added over a period of 2.5 h *via* syringe pump. After further 30 min the mixture was hydrolysed with NaHCO₃. Work-up (CH₂Cl₂), drying and FC provided ketone **17** (21 mg, 66%). IR: 3024, 3016, 2926, 1692, 1629, 1599, 1350, 1164. ¹H NMR: 2.18 (*s*, 3 H), 2.43 (*s*, 3 H), 2.75 (*dd*, J = 9.5, 9, 1 H), 3.41 (*dt* broad, J = 8.5, 8.5, 1 H), 3.68 (*dd*, J = 9, 8, 1 H), 4.03 (*ddd*, J = 19, 2.5, 2.5, 1 H), 4.47 (*dd*, J = 19, 2, 1 H), 5.20 (*d*, J = 17, 1 H), 5.23 (*d*, J = 9.5, 1 H), 5.49 (*ddd*, J = 17, 9.5, 8, 1 H), 6.04 (*dt*, J = 2.5, 2, 1 H), 7.33 (*d*, J = 8, 2 H), 7.73 (*d*, J = 8, 2 H). ¹³C NMR: 197.1 (*s*), 158.6 (*s*), 143.8 (*s*), 134.3 (*d*), 132.4 (*s*), 129.8 (*2d*), 128.0 (*2d*), 120.8 (*d*), 119.7 (*t*), 53.2 (*t*), 51.6 (*t*), 49.2 (*d*), 31.1 (*q*), 21.5 (*q*). MS: 305 (14, C₁₆H₁₉NO₃S⁺), 277 (6), 262 (26), 155 (38), 150 (22), 122 (19), 108 (25), 91 (100), 65 (22). HR-MS: 305.1039 (C₁₆H₁₉NO₃S⁺, calc. 305.1086).

Acknowledgements: Financial support for this work by the Deutsche Forschungsgemeinschaft (scholarship to B.S.), Sandoz Pharma, Ltd., Basel, and Givaudan-Roure AG, Dübendorf, is gratefully acknowledged. We are grateful to Mr. J.P. Saulnier, Mr. A. Pinto and Mrs. C. Clément for NMR and MS measurements.

REFERENCES AND NOTES

- 1. Deceased 15th March 1996.
- 2. Current address: Discovery Chemistry Department, Pfizer Central Research, Ramsgate Road, Sandwich, CT13 9NJ, UK, Fax: +44 (0)1304 618422; E-mail: Blanda_Stammen@sandwich.pfizer.com
- 3. Oppolzer, W.; Gaudin, J.-M.; Bedoya-Zurita, M.; Hueso-Rodriguez, J.; Raynham, T.M.; Robyr, C. *Tetrahedron Lett.* **1988**, *29*, 4709-4712.
- 4. Oppolzer, W.; Ruiz-Montes, J. Helv. Chim. Acta 1993, 76, 1266-1274.
- 5. Oppolzer, W.; Schröder, F. Tetrahedron Lett. 1994, 35, 7939-7942.
- a) Oppolzer, W.; Robyr, C. *Tetrahedron* 1994, 50, 415-424. b) Oppolzer, W.; Bienaymé, H.; Genevois-Borella, A. J. Am. Chem. Soc. 1991, 113, 9660-9661.
- Reviews: a) Oppolzer, W.: Transition Metal Allyl Complexes: Intramolecular Alkene and Alkyne Insertions. In *Comprehensive Organometallic Chemistry*, Abel, E.W., Stone, F.G.A., Wilkinson, G. Eds.; Pergamon, Oxford **1995**, vol. 12, pp. 905-921. b) Oppolzer, W.: Stereocontrolled, Catalytic Transition Metal-Ene Type Cyclizations In Organic Synthesis. In *Organometallic Reagents in Organic Synthesis*; Bateson, J.H.; Mitchell, M. B. Eds.; Academic Press, Ltd.: London **1994**; pp. 161-183. c) Oppolzer, W. *Pure Appl. Chem.* **1990**, *62*, 1941-1948. d) Oppolzer, W. *Angew. Chem. Int. Ed. Engl.* **1989**, *28*, 38-52.
- 8. Oppolzer, W.; Gaudin, J.-M.; Birkinshaw, T.N. Tetrahedron Lett. 1988, 29, 4705-4708.
- 9. Oppolzer, W.;. Birkinshaw, T.N.; Bernadinelli, G. Tetrahedron Lett. 1990, 31, 6995-6998.
- 10. Colonge, J.; Polaine, G. Bull. Soc. Chim. Fr. 1955, 953-955.

- a) Henry, J.R.; Marcin, L.R.; McIntosh, M.C.; Scola, G.D.; Harris Jr., G.D.; Weinreb, S.M. Tetrahedron Lett. 1989, 30, 5709-5712. b) Degerbeck, F.; Fransson, B.; Grehn, L.; Ragnarsson, U. J. Chem. Soc. Perkin Trans. I 1992, 245-253.
- 12. Prepared from phenylacetylene, 1.1 eq. n-BuLi, THF, -30°C, 30 min, then addition to *para*-formaldehyde in THF (83%); based on: Hatch, L.F.; Alexander, H.E. J. Am. Chem. Soc. **1950**, 72, 5643-5645.
- 13. The stereochemistry of these products was determined by NOESY-¹H NMR, see Scheme 3.
- 14. a) Fleming, I.; Chan, T.H. Synthesis 1979, 761-786. b) Luh, T.-Y.; Wong, K.-T. Synthesis 1993, 349-370.
- 15. Oppolzer, W., Ruiz-Montes, J. Helv. Chim. Acta 1993, 76, 1266-1274.
- 16. Miller, R.B.; Reichenbach, T. Tetrahedron Lett. 1974, 543-546.
- 17. Zweifel, G.; On, H.P. Synthesis 1980, 803-805.

(Received in Germany 18 November 1996; accepted 20 January 1997)