Synthesis of New Axially Chiral Iodoarenes

Mathieu Bekkave

Géraldine Masson*

Institut de Chimie des Substances Naturelles CNRS, Univ Paris-Sud. 1 Avenue de la Terrasse. 91198 Gif-sur-Yvette Cedex France geraldine.masson@cnrs.fr

Paper

Received: 27.08.2015 Accepted after revision: 25.09.2015 Published online: 05.11.2015 DOI: 10.1055/s-0035-1560512; Art ID: ss-2015-z0503-op

Abstract A new family of axially chiral iodoarenes derived from commercially available (R)-1,1'-binaphthyl-2,2'-diamine have been synthesized and employed as catalysts in Kita's enantioselective oxidative spirolactonization of propanoic acid tethered 1-naphthol. Through this study, we explored the relationship between the hypervalent iodoarene geometry and enantioselectivity, contributing to the current understanding of axial-to-central chirality transfer in organoiodine(III) catalysis.

Key words chiral iodane, hypervalent iodine, dearomatization, stereoselective synthesis, spirolactonization

The construction of complex molecules from simple and easily available aromatic compounds using a dearomatization strategy has been extensively explored by organic chemists. Among these strategies, enantioselective dearomatization of phenol derivatives¹ mediated by chiral hypervalent iodine reagents (iodanes) has drawn significant attention due to their low toxicity, stability towards moisture, and ease of handling.² Moreover, these oxidants can be selectively generated in situ,³ thus minimizing the accumulation of unwanted waste. In spite of significant advances over the years, the development of catalytic enantioselective dearomatizations still remains one of the most challenging areas in asymmetric hypervalent iodine catalysis.^{2f,m} In 2008, Kita et al. disclosed the first example of a highly enantioselective oxidative spirolactonization of propanoic acid tethered 1-naphthols with a novel rigid chiral iodane(III) compound based on the spirobiindane backbone 3a (Scheme 1).^{4a} While stoichiometric amounts of precatalyst 3a were required for high enantiomeric excess (86%), moderate enantioselectivity was obtained with catalytic loading. Subsequently, the same group found that substituting the ortho position provided the best enantioselectivity (up to 92%, for **3b**).^{4b} Later, Ishihara et al. reported that a new flexible C_2 -symmetric iodoarene **3c** was an efficient precatalyst for the same reaction, producing spirolactones with high enantioselectivity (up to 92%).^{4c,d} In 2015, Ibrahim et al. identified a new anti-dimethanoanthracene scaffold-based chiral iodoarene **3d** that induced moderate enantioselectivity in the spirolactonization.^{4e} Also in 2015, Ishihara et al. developed highly enantioselective oxidative spirolactonization of 1-naphthol derivatives using chiral ammonium hypoiodite catalysis.^{4f} Despite these achievements,^{4,5} the development of new, efficient chiral hypervalent iodine precursors and a better understanding of the factors controlling the enantioselectivity in iodine(III) catalysis is still highly desirable.^{2,4-6}

Scheme 1 Previous work on enantioselective oxidative spirolactonization of 1-naphthol 1

Based on our experience in organocatalysis7 and motivated by our recent interest in hypervalent iodine chemistry,⁸ we have initiated a research project oriented toward the development of a catalyst family displaying tunable structural properties based on an axially chiral backbone. Wirth et al. first reported, in 2007, the use of 2,2'-diiodo-1,1'-binaphthyl (BINI) as a chiral iodine(III) precursor for the enantioselective α -oxytosylation of ketones.⁹ In 2008

Syn thesis

M. Bekkaye, G. Masson

Kita et al.^{4a} employed this oxidant precursor in stoichiometric amounts for enantioselective spirocyclization. In both studies, the enantioselectivities achieved were low (<10% ee). Due to poor enantioselectivity in both reactions, these structures were overlooked until the Quideau group reintroduced BINOL-derived iodoarenes as a promising backbone in asymmetric hypervalent iodine organocatalysis.¹⁰ In 2013, Berthiol et al. also demonstrated that 3,3'-diiodo-BINOL-fused maleimide derivatives could mediate the α functionalization of ketones with enantioselectivities comparable to the best results reported to date (46%^{5c} vs 54% ee by Legault et al.^{5a}). Despite the potential of axial-to-central chirality transfer in iodide(III) catalysis, existing scaffolds are limited in their tunability and/or synthetically challenging.¹¹ Taking into account the above-mentioned considerations, we designed a family of 2,2'-diiodo-1,1'-binaphthyls containing two main adjustable features: (i) modulation of the steric hindrance surrounding the hypervalent iodine center by introducing 3,3'-diaryl substituents on the binaphthyl 4, (ii) modulation of the rigidity by additional noncovalent interactions between the group **X** and the iodine center (Figure 1). We report our initial efforts toward the development of novel chiral iodoarenes and their evaluation in the enantioselective Kita's spirolactonization.

After designing an appropriately modular scaffold starting from commercially available (R)-1,1'-binaphthyl-2,2'diamine [(R)-BINAM, **5**], a late-stage Sandmeyer reaction was chosen to introduce the iodine atoms (Scheme 2), despite the difficulties of such a reaction with hindered substrates.¹² This challenging system provided a platform to develop a highly efficient protocol for the Sandmeyer reaction with various 3,3'-diaryl (R)-BINAMs. First, **5** was reduced to (R)-H₈-BINAM (**6**) with Ni/Al alloy in good yield (Scheme 2).^{13a} Compound **6** was then halogenated selec-

tively at the 3.3'-positions with N-bromosuccinimide allowing subsequent arylation by Suzuki-Miyaura coupling.13b Due to the moderate yield for the rearomatization of 8a (<50%), we decided to continue the synthesis with the octahydrogenated structure.¹⁴ With the desired 3,3'-diphenyl-H₈-BINAM (**8a**) in hand, the stage was set for the proposed Sandmeyer reaction. At this step, we were particularly concerned about partial racemization of 8a during the reaction.¹⁵ Although stepwise methods involving the isolation of diazonium mercurate salts have been developed to overcome this issue,^{15c} we wanted to develop a one-pot diazotization-iodination of the 3.3'-diphenvl (R)-H_o-BINAM (**8a**) without the use of toxic heavy metals (Table 1). Our first attempts under classical conditions were unsuccessful (entries 1–3). However, when the reaction was carried out with sodium nitrite, potassium iodide, and trifluoroacetic acid in water, the desired 3,3'-diphenyl-H₈-BINI (4a) was isolated in 11% vield without noticeable loss of enantiopurity. With this result in hand, a number of experiments were

^a General conditions: amine **7a** (0.05 mmol), nitrile (0.40 mmol), KI (0.80 mmol), solvent (1.0 mL).

^b Yields refer to chromatographically pure product.

^c Undesired rearomatization was observed.¹⁶

 0° C, 1 min; (iii) Pd(OAc)₂ (0.1 equiv), Ph₃P (0.4 equiv), Ba(OH)₂·8H₂O (4 equiv), PhB(OH)₂ (3 equiv), DME–H₂O, reflux, 24 h.

conducted to improve the yield. First, it was observed that the reaction is significantly affected by the acid used, with hydrobromic acid providing the best yield (entries 3–6). We were pleased to see that when 33% hydrobromic acid in acetic acid was employed, the desired product was isolated in higher yield albeit with the formation of a rearomatized side product (entry 7).¹⁶ This side reaction was completely depressed by a modification of the reaction conditions, with only a slight decrease in the yield of **4a** (entry 8). We obtained very similar results when *N*,*N*-dimethylformamide was used as the solvent (entry 9).

With these results in hands, we next synthesized three representative iodoarene precursors **4b**–**d** possessing different steric environments at the 3,3'-positions in modest yields (Scheme 3). A pair of unsubstituted catalysts **4e**^{15e,16} and **4f**¹⁶ were also synthesized to investigate the full range of steric environments (Scheme 3). Next, we focused on the synthesis of non- C_2 -symmetric hypervalent iodine precursors. To that end, (*R*)-BINAM (**5**) and (*R*)-H₈-BINAM (**6**) were monoacylated with acetic anhydride in the presence of acetic acid (Scheme 4). Disappointingly, the monoacylation of 3,3'-diphenyl-H₈-BINAM (**8a**), resulted in an unsatisfactory yield (<20%),¹⁷ so the synthesis was continued with only unsubstituted BINAMs.

Product **9** was subjected to the bromination conditions described above, but a mixture of mono- and dibrominated products were isolated with a combined yield of 24%. Fortunately, with a solution of bromine in acetic acid, the monobrominated H_8 -BINAM **10** could be isolated in 81% yield. Despite all of our attempts to introduce a second bromine on the more electron-poor acetanilide ring of **10**, only degradation was observed. The Suzuki–Miyaura coupling of phenylboronic acid with monobrominated H_8 -BINAM **10** led to the desired coupling product in a good yield, which was carried into a one-pot diazotization–iodination reaction to afford the expected non- C_2 -symmetric product (R)-**4g**. The unsubstituted iodoarene precatalyst **4h** was prepared from **5** by monoacylation and Sandmeyer reaction (Scheme 4).

Scheme 3 Synthesis of new 3,3'-disubstituted H₈-BINIs **4**. *Reagents and conditions*: (i) Pd(OAc)₂ (0.1 equiv), Ph₃P (0.4 equiv), Ba(OH)₂·8H₂O (4 equiv), ArB(OH)₂ (3 equiv), DME-H₂O (10:1), reflux, 24 h; (ii) NaNO₂ (8 equiv), KI (10 equiv), DMSO, 0 °C to r.t.

To test the potential application of these new chiral iodoarenes as hypervalent iodine organocatalysts, we used Kita's spirolactonization as a model reaction (Table 2).⁴ On the basis of previous work,^{4a,b} 10 mol% of (R)-BINI 4e and 1.3 equivalents of 3-chloroperbenzoic acid were premixed for 10 minutes at 0 °C to preform the active hypervalent species,¹⁸ then propanoic acid tethered 1-naphthol **1** was added. Chloroform was selected as a non-coordinating apolar solvent to favor an associative mechanism for the spirocyclization.¹⁹ Precatalyst **4e** afforded the desired spirolactone 7 in 55% yield with <5% ee (entry 1) which is consistent with previous observations reported by Kita's group.^{4a} Interestingly, non- C_2 -symmetric iodoarene precatalyst **4h** gave better enantioselectivity (23% ee) than C_2 -symmetric (R)-BINI 4e (entry 1 vs 2). Similarly, substituting H₈-BINI 4f for BINI 4e in the spirolactonization reaction afforded an increase in enantioselectivity, presumably due to variation in

Scheme 4 Synthesis of non- C_2 -symmetric BINIs **4**. *Reagents and conditions*: (i) AcOH (10.0 equiv) Ac₂O (1.1 equiv), CH₂Cl₂, 0 °C to r.t., 12 h; (ii) Br₂ (20 equiv), AcOH, r.t., 20 min; (iii) Pd(OAc)₂ (0.1 equiv), Ph₃P (0.4 equiv), Ba(OH)₂·8H₂O (4 equiv), PhB(OH)₂ (3 equiv), DME-H₂O, reflux, 24 h; (iv) NaNO₂ (8 equiv), KI (10 equiv), DMSO, 0 °C to r.t., 6 h.

Syn thesis

M. Bekkaye, G. Masson

the dihedral angle of **4**. Strikingly, a reversal of enantioselectivity was observed that is directly related to the presence of the amide function. Indeed, the combination of both features (non- C_2 -symmetric and partially hydrogenated backbone) in **4a** provided the opposite enantiomer as the major product with similar enantioselectivity (entry 4). The introduction of aryl groups at the 3,3'-positions exerted a beneficial effect on the enantioselectivity with the 1naphthyl-substituted catalyst **4b** performing slightly better than the other catalysts (entries 5–8). Finally, lowering the temperature to –30 °C did not improve the enantioselectivity and gave lower yields (entry 10).

Downloaded by: Flinders University of South Australia. Copyrighted material

^a General conditions: **1** (0.05 mmol), CHCl₃ (1.0 mL).

^b Yields refer to chromatographically pure product.

^c Determined by HPLC analysis on chiral stationary phase.

^d Absolute stereochemistry by comparing the optical rotation.⁴

^e AcOH (5 equiv) was added.

^f Reaction conducted at –30 °C.

^g MeCN was used as the solvent.

Since iodanes generally adopt a T-shaped conformation²⁰ with elongated I–O bonds,²¹ the hypervalent form of 4 can exist as an iodine(III) tetracarboxylate 12 or a µ-oxobridged diodine(III) 13, the latter being demonstrated by the group of Ochiai with the X-ray crystal structure of diacetoxy- λ^3 -iodobinaphthyl (Ar¹ = Ar² = H, L = OAc, Scheme 5).^{6d} In addition, other, X-ray crystallographic studies have shown that $aryl-\lambda^3$ -iodanes free of acid can exist in an oligomeric state where they are linked by µ-oxo bridges.²¹ On the other hand, $aryl-\lambda^3$ -iodanes mainly adopt an unbridged structure where two carboxylate groups are attached to the same iodine in the presence of an external acid source. This difference in structure is mainly due to the lability of µ-oxo-bridged iodine(III) under acidic conditions.^{6d,22} Thus, the generation of 3-chlorobenzoic acid in the course of the spirolactonization should favor the formation of iodine(III) tetracarboxylate **12** (Scheme 5).^{6d} As a result, the active catalyst could be 12 rather than µ-oxobridged species 13. To support this, a control experiment was performed in which the oxidative lactonization was

M. Bekkaye, G. Masson

carried out in the presence of excess acetic acid (Table 2, entry 9). As expected, the desired spirolactone **2** was isolated with similar yield and enantioselectivity, indicating the possibility of an unbridged active catalyst.^{22a}

To rationalize the moderate enantiomeric excess obtained for this new series of chiral precatalysts 4, we hypothesize that the iodine(III) tetracarboxylate 12 may interconvert between four transient intermediates **A**-**D** through ligand-exchange reactions between the phenol and iodine(III) carboxylate (Scheme 6). Accordingly, two subunits of **4** (i.e., 1.1'-binaphthyl moiety and 3.3'-diaryl-substituents) could govern the stereocontrol of the spirocyclization. Of the four transition state models, **A** and/or **B** are expected to be favored for the catalyst bearing substituents on the 3,3'-positions of BINI 4a-d because C and D exhibit a destabilizing interaction between the aryl group of 4a-d and naphthol derivative 1. This could explain the better enantioselectivities observed with disubstituted precatalysts **4a–d**. Alternatively, the unsubstituted C_2 -symmetric precatalyst 4e could coexist in the four transition states leading

to the formation of racemic product **1**. By analogy with Ishihara's catalyst,^{4c,d} two possible conformations are conceivable for the iodane precatalysts **4g,h** containing an amide group. The first conformer **14** would form a hydrogen bond between the amide and the ligands attached to the iodine atom, while the second one **15** could be stabilized by $n-\sigma^*$ interactions between the iodine(III) center and carbonyl oxygen (Figure 2). These additional non-covalent interactions may favor the transition states leading to the opposite enantiomer of **1** with the same enantioselectivity as obtained with **4a–d**.

Paper

Figure 2 Two possible conformations of the active catalyst derived from 4q,h

In summary, we have developed a suitable pathway to access a new family of axially chiral iodoarenes derived from commercially available (*R*)-BINAM. We have demonstrated the efficiency of these new iodoarenes as catalysts in Kita's spirolactonization of propanoic acid tethered 1-naphthol. Both the 3,3'-diaryl substituents and the H-bond amide donor in the octahydrogenated BINI backbone were key structural features for controlling stereoselectivity. The highly versatile synthetic approach should allow for modulation and optimization of the catalytic behavior of these precatalysts. Efforts towards achieving this goal are underway in our laboratory and will be reported in due course.

All reagents were obtained from commercial suppliers and used without further purification unless otherwise noted. Analytical TLC was performed on plates precoated with silica gel layers. NMR spectra (¹H, ¹³C) were recorded with 500 and 300 MHz spectrometers. Flash column chromatography was carried out using Merck Geduran 40–63 μ m particle size silica gel. Preparative TLC was performed using Merck silica gel 60 F254. HRMS were recorded using ESI and a TOF analyzer, in positive-ion or negative-ion detection mode.

(R)-5,5',6,6',7,7',8,8'-Octahydro-1,1'-binaphthyl-2,2'-diamine (6)

(*R*)-BINAM (**5**, 1 g, 3.52 mmol) and Ni–Al alloy (1:1, 7.04 g) were suspended in H_2O –*i*-PrOH (1:1, 800 mL). The mixture was heated to reflux with intensive stirring, and then 1% aq NaOH solution (800 mL) was added dropwise via an addition funnel over 1 h. When the addition was complete, the mixture was stirred vigorously at reflux for 5 d. The mixture was then cooled to r.t., filtered through a pad of Celite and the Celite was washed with EtOAc. The resulting biphasic solution was transferred into a separatory funnel, the layers were separated, and the aqueous layer was extracted with EtOAc (3 ×). The combined organic extracts were washed with water (2 ×) and brine, and

IR (neat): 3446, 3360, 3008, 2950, 2937, 2911, 1561, 1473, 1410, 1362, 1251, 1189, 1141, 1080, 1010, 805, 701 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): δ = 6.91 (d, J = 8.0 Hz, 2 H), 6.60 (d, J = 8.0 Hz, 2 H), 3.32 (br s, 4 H), 2.73–2.69 (m, 4 H), 2.32–2.11 (m, 4 H), 1.76–1.61 (m, 8 H).

 ^{13}C NMR (75 MHz, CDCl_3): δ = 141.6 (2 Cq), 136.2 (2 Cq), 129.3 (2 CH), 127.7 (2 Cq), 122.0 (2 Cq), 113.1 (2 CH), 29.4 (2 CH_2), 27.0 (2 CH_2), 23.5 (2 CH_2), 23.3 (2 CH_2).

HRMS (ES⁺): m/z [M + Na]⁺ calcd for C₂₀H₂₄N₂Na: 315.1832; found: 315.1837.

(*R*)-3,3'-Dibromo-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2,2'-diamine (7)

To a stirred suspension of (*R*)-H₈-BINAM **6** (537 mg, 1.84 mmol) in THF, cooled to approx. 0 °C with an NaCl/ice-water bath, was added NBS (720 mg, 4.04 mmol, 2.2 equiv) in one portion. The mixture was stirred vigorously at 0 °C for 1 min, during which time the solution progressively turned dark brown. The mixture was then quenched with sat. NaHCO₃ and sat. Na₂SO₃ at 0 °C, and stirred vigorously for several minutes. The mixture was then diluted with EtOAc and H₂O and poured into a separatory funnel, the layers were separated, and the aqueous layer was extracted with EtOAc (3 ×). The combined organic extracts were washed with brine and dried (Na₂SO₄). The inorganic salt was removed by filtration, and the organic layer was concentrated under reduced pressure with silica gel to afford crude residue that was purified by chromatography (silica gel, heptane–EtOAc, gradient from 99:1 to 90:10) to afford the product as a brownish solid; yield: 780 mg (90%); mp 170–172 °C.

IR (neat): 3468, 3376, 2926, 2854, 1602, 1457, 1276, 1260, 762, 751 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 7.21 (s, 2 H), 3.69 (br s, 4 H), 2.70 (t, J = 6.0 Hz, 4 H), 2.30–2.01 (m, 4 H), 1.77–1.58 (m, 8 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 139.2 (2 Cq), 135.7 (2 Cq), 132.3 (2 CH), 129.0 (2 Cq), 122.4 (2 Cq), 107.0 (2 CH), 29.0 (2 CH₂), 26.7 (2 CH₂), 23.2 (2 CH₂), 23.0 (2 CH₂).

HRMS (ES⁺): m/z [M + Na]⁺ calcd for C₂₀H₂₂Br₂N₂Na: 471.0042; found: 471.0046.

(*R*)-3,3'-Diphenyl-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2,2'diamine (8a); Typical Procedure

This compound was prepared according to the procedure of Maruoka et al.:^{13b} In an oven-dried flask, equipped with a stir bar and a reflux condenser, were placed (R)-3,3'-dibromo-H₈-BINAM **7** (177 mg, 395 µmol), Pd(OAc)₂ (9 mg, 39.5 µmol, 0.1 equiv), phenylboronic acid (144.6 mg, 1185 µmol, 3 equiv), Ph₃P (42 mg, 160 µmol, 0.4 equiv), and Ba(OH)₂·8H₂O (498 mg, 1580 µmol, 4 equiv), and the flask was purged with argon. Then, a degassed mixture of DME-H₂O (10:1, 10 mL) was added through the condenser. The resulting mixture was stirred vigorously and refluxed for 24 h under argon. The brown mixture was cooled to r.t., diluted with brine and EtOAc, and transferred to a separatory funnel; the layers were separated and the aqueous layer was extracted with EtOAc (3 ×). The combined organic extracts were washed with brine and dried (Na₂SO₄). The inorganic salts were removed by filtration through a short pad of Celite. The filtrate

Paper

residue that was purified by chromatography (silica gel, heptane– EtOAc, gradient from 99:1 to 95:5) to afford the product as a white solid; yield: 166 mg (90%); mp 228–230 °C.

 $[\alpha]_{D}^{25}$ –40.0 (*c* 0.8, CHCl₃).

IR (neat): 3469, 3374, 3055, 2927, 2854, 2834, 1606, 1495, 1458, 1414, 1264, 776, 738, 703 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 7.54–7.46 (m, 4 H), 7.46–7.36 (m, 4 H), 7.35–7.27 (m, 2 H), 6.92 (s, 2 H), 3.37 (br s, 4 H), 2.86–2.66 (m, 4 H), 2.48–2.18 (m, 4 H), 1.84–1.64 (m, 8 H).

 13 C NMR (75 MHz, CDCl₃): δ = 140.1 (2 C_{Ar}), 138.8 (2 C_{Ar}), 135.6 (2 C_{Ar}), 130.3 (2 C_{Ar}), 129.2 (4 C_{Ar}), 128.6 (4 C_{Ar}), 127.4 (2 C_{Ar}), 126.8 (2 C_{Ar}), 125.7 (2 C_{Ar}), 122.3 (2 C_{Ar}), 29.3 (2 CH₂), 27.0 (2 CH₂), 23.5 (2 CH₂), 23.3 (2 CH₂).

HRMS (ES⁺): m/z [M + Na]⁺ calcd for $C_{32}H_{32}N_2Na$: 467.2458; found: 467.2464.

(*R*)-3,3'-Di(1-naphthyl)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2,2'-diamine (8b)

Following the typical procedure for **8a** using (*R*)-3,3'-dibromo-H₈-BINAM **7** (177 mg, 395 µmol) with naphthalen-1-ylboronic acid (204 mg, 1185 µmol, 3 equiv) afforded the product as a white solid; yield: 125 mg (58%).

 $[\alpha]_{D}^{25}$ –50.0 (*c* 0.4, CHCl₃).

IR (neat): 3465, 3372, 2922, 2853, 1604, 1506, 1452, 1418, 1391, 1353, 1336, 1313, 1263, 1242, 1212, 1084, 976, 913, 879, 822, 801, 776, 733, 666 $\rm cm^{-1}.$

 1H NMR (300 MHz, CDCl_3): δ = 7.99–7.28 (m, 14 H), 6.94 and 6.93 (br s, 2 H), 2.98 (br s, 4 H), 2.87–2.65 (m, 4 H), 2.62–2.31 (m, 4 H), 1.93–1.69 (m, 8 H).

 $^{13}C \ \text{NMR} \ (75 \ \text{MHz}, \text{CDCl}_3): \delta = 139.6 \ (2 \ \text{C}_{\text{Ar}}), 137.6 \ (2 \ \text{C}_{\text{Ar}}), 135.9 \ (2 \ \text{C}_{\text{Ar}}), 133.9 \ (2 \ \text{C}_{\text{Ar}}), 131.0 \ (2 \ \text{C}_{\text{Ar}}), 131.0 \ (2 \ \text{C}_{\text{Ar}}), 131.0 \ (2 \ \text{C}_{\text{Ar}}), 128.3 \ (2 \ \text{C}_{\text{Ar}}), 127.7 \ (2 \ \text{C}_{\text{Ar}}), 127.2 \ (2 \ \text{C}_{\text{Ar}}), 126.3 \ (2 \ \text{C}_{\text{Ar}}), 126.1 \ (2 \ \text{C}_{\text{Ar}}), 126.0 \ (2 \ \text{C}_{\text{Ar}}), 125.8 \ (2 \ \text{C}_{\text{Ar}}), 124.0 \ (2 \ \text{C}_{\text{Ar}}), 122.0 \ (2 \ \text{C}_{\text{Ar}}), 29.3 \ (2 \ \text{CH}_2), 27.1 \ (2 \ \text{CH}_2), 23.7 \ (2 \ \text{CH}_2), 23.4 \ (2 \ \text{CH}_2).$

HRMS (ES⁺): m/z [M + H]⁺ calcd for C₄₀H₃₇N₂: 545.2951; found: 545.2952.

(*R*)-3,3'-Di(phenanthren-9-yl)-5,5',6,6',7,7',8,8'-octahydro-1,1'binaphthyl-2,2'-diamine (8c)

Following the typical procedure for **8a** using (R)-3,3'-dibromo-H₈-BINAM **7** (177 mg, 395 µmol) with phenanthren-9-ylboronic acid (263.2 mg, 1185 µmol, 3 equiv) afforded the product as a white solid; yield: 176 mg (69%).

 $[\alpha]_{D}^{25}$ –63.0 (*c* 1.0, CHCl₃).

IR (neat): 3464, 3375, 2923, 2853, 1602, 1527, 1492, 1461, 1447, 1422, 1354, 1314, 1244, 1212, 1164, 1134, 1115, 1097, 1040, 967, 948, 894, 769, 745, 724, 676 $\rm cm^{-1}.$

 ^1H NMR (300 MHz, CDCl₃): δ = 8.84–8.64 (m, 4 H), 7.97–7.52 and 7.51–7.38 (m, 14 H), 7.02 and 7.00 (br s, 2 H), 3.11 (br s, 4 H), 2.90–2.68 (m, 4 H), 2.66–2.33 (m, 4 H), 1.96–1.70 (m, 8 H).

 $\label{eq:stars} \begin{array}{l} {}^{13}\text{C NMR (75 MHz, CDCl_3): } \delta = 139.8 (2 \ C_{Ar}), 136.1 (2 \ C_{Ar}), 136.1 (2 \ C_{Ar}), 135.9 (2 \ C_{Ar}), 131.9 (2 \ C_{Ar}), 131.1 (2 \ C_{Ar}), 130.7 (2 \ C_{Ar}), 130.1 (2 \ C_{Ar}), 128.7 (2 \ C_{Ar}), 128.3 (2 \ C_{Ar}), 127.3 (2 \ C_{Ar}), 127.0 (2 \ C_{Ar}), 126.8 (4 \ C_{Ar}), 126.6 (4 \ C_{Ar}), 123.9 (2 \ C_{Ar}), 122.9 (2 \ C_{Ar}), 122.5 (2 \ C_{Ar}), 122.0 (2 \ C_{Ar}), 29.3 (2 \ CH_2), 27.2 (2 \ CH_2), 23.7 \text{ and } 23.6 (2 \ CH_2), 23.4 (2 \ CH_2). \end{array}$

HRMS (ES⁺): m/z [M + H]⁺ calcd for C₄₈H₄₁N₂: 645.3264; found: 645.3269.

(*R*)-3,3'-Di(biphenyl-4-yl)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaph-thyl-2,2'-diamine (8d)

Following the typical procedure for **8a** using (*R*)-3,3'-dibromo-H₈-BINAM **7** (177 mg, 395 µmol) with biphenyl-4-ylboronic acid (234.5 mg, 1185 µmol, 3 equiv) afforded the product as a brownish solid; yield: 210 mg (89%).

 $[\alpha]_{D}^{25}$ –340.0 (*c* 1.0, CHCl₃).

IR (neat): 3450, 3366, 3027, 2923, 1602, 1519, 1486, 1436, 1394, 1355, 1308, 1263, 1242, 1075, 1007, 842, 825, 769, 734, 695 $cm^{-1}.$

 1H NMR (300 MHz, $CDCl_3):$ δ = 7.74–7.53 and 7.52–7.40 and 7.40–7.31 (m, 18 H), 6.98 (s, 2 H), 2.85–2.73 (m, 4 H), 2.50–2.21 (m, 4 H), 1.85 (br s, 4 H), 1.90–1.62 (m, 8 H).

 $\label{eq:stars} \begin{array}{l} {}^{13}\text{C NMR (75 MHz, CDCl_3): } \delta = 140.9 \ (2 \ C_{Ar}), 139.7 \ (2 \ C_{Ar}), 139.1 \ (2 \ C_{Ar}), \\ 138.8 \ (2 \ C_{Ar}), 135.8 \ (2 \ C_{Ar}), 130.4 \ (4 \ C_{Ar}), 129.6 \ (4 \ C_{Ar}), 128.9 \ (4 \ C_{Ar}), \\ 127.6 \ (2 \ C_{Ar}), 127.4 \ (4 \ C_{Ar}), 127.3 \ (2 \ C_{Ar}), 127.1 \ (2 \ C_{Ar}), 125.2 \ (2 \ C_{Ar}), \\ 122.5 \ (2 \ C_{Ar}), 29.4 \ (2 \ CH_2), 27.1 \ (2 \ CH_2), 23.6 \ (2 \ CH_2), 23.4 \ (2 \ CH_2). \end{array}$

HRMS (ES⁺): m/z [M + H]⁺ calcd for C₄₄H₄₁N₂: 597.3264; found: 597.3269.

(*R*)-2,2'-Diiodo-3,3'-diphenyl-5,5',6,6',7,7',8,8'-octahydro-1,1'binaphthyl (4a); Typical Procedure

In an oven-dried flask equipped with a stir bar, were placed (R)-3,3'diphenyl-H₈-BINAM 8a (223 mg, 500 µmol), NaNO₂ (276 mg, 4 mmol, 8 equiv), and KI (830 mg, 5 mmol, 10 equiv). Then, DMSO (10 mL) was added, and the suspension was gently stirred at r.t. to allow complete dissolution of the solids. The solution was then cooled to approx. 0 °C with an NaCl/ice-water bath, and stirred vigorously to avoid solidification of the solvent. 33% HBr in AcOH (1 mL) was added dropwise quickly, but carefully, leading to a visible gas evolution. The resulting black solution was stirred for several hours, monitoring the reaction by TLC. The solution was then poured into sat. aq NaHCO₃ solution, and diluted with CH₂Cl₂. The resulting biphasic solution was transferred to a separatory funnel and the layers were separated; the aqueous layer was extracted with CH₂Cl₂ (3 ×). The combined organic extracts were washed with NaHSO₃ and brine, and dried (Na₂SO₄). The inorganic salts were removed by filtration, and the organic layer was concentrated under reduced pressure with silica gel to afford a crude residue that was purified by chromatography (silica gel, heptane-CH₂Cl₂, gradient from 100:0 to 85:15) to afford the product as a yellowish solid; yield: 150 mg (45%).

 $[\alpha]_{D}^{25}$ –31.0 (*c* 10.0, CHCl₃).

IR (neat): 3055, 3026, 2929, 1495, 1443, 1432, 1420, 1373, 1352, 1308, 1279, 1170, 1028, 910, 874, 822, 766, 696 $\rm cm^{-1}.$

 1H NMR (300 MHz, CDCl_3): δ = 7.53–7.30 (m, 10 H), 7.07 (s, 2 H), 2.91–2.72 (m, 4 H), 2.53–2.33 and 2.30–2.11 (m, 4 H), 1.88–1.65 (m, 8 H).

 $\label{eq:stars} \begin{array}{l} {}^{13}\text{C NMR (75 MHz, CDCl_3): } \delta = 148.9 (2 \ \text{C}_{\text{Ar}}), 145.4 (2 \ \text{C}_{\text{Ar}}), 145.2 (2 \ \text{C}_{\text{Ar}}), \\ 137.8 (2 \ \text{C}_{\text{Ar}}), 135.3 (2 \ \text{C}_{\text{Ar}}), 131.3 (\text{C}_{\text{Ar}}), 129.8 (2 \ \text{C}_{\text{Ar}}), 129.6 (2 \ \text{C}_{\text{Ar}}), \\ 129.6 (2 \ \text{C}_{\text{Ar}}), 127.9 (\text{C}_{\text{Ar}}), 127.8 (2 \ \text{C}_{\text{Ar}}), 127.3 (2 \ \text{C}_{\text{Ar}}), 102.2 (2 \ \text{C}_{\text{Ar}}), 29.6 \\ (2 \ \text{CH}_2), 29.1 (2 \ \text{CH}_2), 23.5 (2 \ \text{CH}_2), 22.7 (2 \ \text{CH}_2). \end{array}$

HRMS (ES⁺): *m*/*z* [M]⁺ calcd for C₃₂H₂₈I₂: 666.0275; found: 666.0275.

(R)-2,2'-Diiodo-3,3'-di(1-naphthyl)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (4b)

Following the typical procedure for **4a** using (R)-3,3'-di(1-naphthyl)-H₈-BINAM **8b** (150 mg, 276 µmol) afforded the product as a yellowish solid; yield: 149 mg (39%).

 $[\alpha]_{D}^{25}$ – 78.0 (*c* 1.0, CHCl₃).

IR (neat): 2922, 2854, 1507, 1486, 1440, 1392, 1353, 820, 799, 773, 733 $\rm cm^{-1}$

 1H NMR (300 MHz, CDCl_3): δ = 7.99–7.83 (m, 4 H), 7.75–7.27 (m, 10 H), 7.17–7.07 (m, 2 H), 2.91–2.75 (m, 4 H), 2.69–2.23 (m, 4 H), 1.95–1.73 (m, 8 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 144.7, 143.7, 143.6, 143.4, 143.2, 141.5, 140.1, 139.8, 139.4, 139.2, 139.0, 138.0, 137.8, 137.7, 137.1, 137.0, 136.8, 136.7, 136.2, 136.1, 135.6, 135.5, 133.5, 133.4, 131.9, 131.8, 131.7, 130.7, 130.6, 128.3, 128.0, 127.9, 127.8, 127.4, 127.3, 126.8, 126.6, 126.5, 126.1, 126.0, 125.8, 125.7, 125.3, 125.1, 122.7, 60.4, 60.0, 59.8, 29.1, 28.9, 28.4, 28.2, 23.6, 23.5, 23.4, 23.3 (mixture of rotamers/atropoisomers).

HRMS (ES⁺): *m*/*z* [M]⁺ calcd for C₄₀H₃₂I₂: 766.0588; found: 766.0590.

(*R*)-2,2'-Diiodo-3,3'-di(phenanthren-9-yl)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (4c)

Following the typical procedure for **4a** using (R)-3,3'-di(phenanthren-9-yl)-H₈-BINAM **8c** (150 mg, 276 µmol) afforded the product as a yellowish solid; yield: 88 mg (37%).

IR (neat): 3469, 3374, 3055, 2927, 2854, 2834, 1606, 1495, 1458, 1414, 1264, 776, 738, 703 $\rm cm^{-1}$.

¹H NMR (300 MHz, $CDCl_3$): δ = 8.86–8.70 (m, 4 H), 8.00–7.81, 7.78–7.52, 7.49–7.35, and 7.24–7.10 (m, 16 H), 2.92–2.76 (m, 4 H), 2.73–2.26 (m, 4 H), 1.97–1.72 (m, 8 H).

 13 C NMR (75 MHz, CDCl₃): δ = 148.5, 145.6, 145.4, 144.7, 143.7, 143.6, 142.3, 141.9, 141.7, 141.5, 139.4, 139.2, 138.8, 138.4, 138.0, 138.0, 137.1, 136.9, 136.4, 136.3, 136.3, 135.7, 132.0, 131.8, 131.6, 131.4, 131.4, 131.2, 131.1, 130.9, 130.8, 130.8, 130.5, 130.4, 130.3, 130.1, 129.9, 128.9, 128.7, 128.5, 128.4, 128.2, 128.1, 127.9, 127.7, 127.6, 127.5, 127.4, 127.3, 127.1, 127.1, 127.0, 126.9, 126.8, 126.8, 126.5, 126.4, 122.9, 122.7, 122.6, 30.2, 29.7, 29.7, 29.2, 28.9, 28.4, 28.4, 28.2, 23.6, 23.5, 23.5, 23.4, 23.3, 23.3, 23.2, 22.7, 22.7 (mixture of rotamers/atropoisomers).

HRMS (ES⁺): m/z [M]⁺ calcd for C₄₈H₃₆I₂: 866.0901; found: 866.0901.

(*R*)-3,3'-Di(biphenyl-4-yl)-2,2'-diiodo-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (4d)

Following the typical procedure for **4a** using (R)-3,3'-di(biphenyl-4-yl)-H₈-BINAM **8d** (300 mg, 500 µmol) afforded the product as a brownish solid; yield: 172 mg (42%).

IR (neat): 2960, 2847, 2828, 1451, 1430, 765, 699 cm⁻¹.

 $^1H\,$ NMR (300 MHz, CDCl_3): δ = 7.77–7.30 (m, 18 H), 7.12 (s, 2 H), 2.91–2.73 (m, 4 H), 2.57–2.37 and 2.32–2.13 (m, 4 H), 1.92–1.67 (m, 8 H).

 $^{13}C \ \text{NMR} \ (75 \ \text{MHz}, \text{CDCl}_3): \delta = 149.0 \ (2 \ \text{C}_{\text{Ar}}), 144.8 \ (2 \ \text{C}_{\text{Ar}}), 144.3 \ (2 \ \text{C}_{\text{Ar}}), 140.9 \ (2 \ \text{C}_{\text{Ar}}), 140.0 \ (2 \ \text{C}_{\text{Ar}}), 137.9 \ (2 \ \text{C}_{\text{Ar}}), 135.4 \ (4 \ \text{C}_{\text{Ar}}), 130.0 \ (2 \ \text{C}_{\text{Ar}}), 129.9 \ (2 \ \text{C}_{\text{Ar}}), 128.8 \ (2 \ \text{C}_{\text{Ar}}), 127.4 \ (2 \ \text{C}_{\text{Ar}}), 127.3 \ (4 \ \text{C}_{\text{Ar}}), 127.1 \ (2 \ \text{C}_{\text{Ar}}), 126.6 \ (2 \ \text{C}_{\text{Ar}}), 126.5 \ (2 \ \text{C}_{\text{Ar}}), 102.1 \ (2 \ \text{C}_{\text{Ar}}), 29.7 \ (2 \ \text{CH}_2), 29.1 \ (2 \ \text{CH}_2), 23.5 \ (2 \ \text{CH}_2), 22.7 \ (2 \ \text{CH}_2).$

HRMS (ES⁺): *m*/*z* [M]⁺ calcd for C₄₄H₃₆I₂: 818.0901; found: 818.0906.

(*R*)-2,2'-Diiodo-1,1'-binaphthyl (4e)

This compound was prepared according to the procedure of Quideau et al.: 10b To a solution of concd $\rm H_2SO_4$ (65 mL) at –10 °C was added portionwise NaNO₂ (1.9 g, 275 mmol). The resulting suspension was allowed to warm up to r.t. until complete dissolution was observed and then it was cooled down again to -10 °C. A solution of commercial (R)-BINAM (5, 1.65 g, 5.81 mmol) in pyridine (10 mL) was slowly added and the resulting mixture was stirred at -10 °C for 2 h. The mixture was transferred to a large Erlenmeyer flask at 0 °C and ice was regularly added to the mixture over 1 h and, 30 min later, an icecooled aq urea solution (1.65 g, 41 mL, 0.0165 mol) was slowly added. This addition of urea caused abundant foam formation. To this mixture was added an aqueous solution of ZnI₂ (5.2 g, 0.0165 mol) and KI (8.75 g, 0.0495 mmol) (16 mL). After filtration of the resulting brownish suspension, the brown solid was triturated with Et₂O and the resulting red filtrate was discolored by washing with sat. aq NaHSO₃ solution and dried (Na₂SO₄). The inorganic salts were removed by filtration, and the organic layer was concentrated under reduced pressure with silica gel to afford a crude residue that was purified by column chromatography (silica gel, heptane-CH2Cl2, gradient from 100:0 to 85:15) to afford the product as a yellowish solid; yield: 1.47 g (50%); mp 206-208 °C.

IR (neat): 2970, 1459, 812 cm⁻¹.

 ^1H NMR (300 MHz, CDCl_3): δ = 8.07 (d, J = 8.0 Hz, 2 H), 7.94 (d, J = 8.0 Hz, 2 H), 7.72 (d, J = 8.0 Hz, 2 H), 7.54–7.48 (m, 2 H), 7.33–7.26 (m, 2 H), 7.10 (d, J = 8.0 Hz, 2 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 144.7 (2 Cq), 135.6 (2 CH), 133.0 (2 Cq), 129.6 (2 CH), 128.2 (2 CH), 127.9 (2 CH), 127.3 (2 CH), 126.6 (2 CH), 126.4 (2 CH), 99.7 (2 Cq).

HRMS (ES⁺): *m*/*z* [M]⁺ calcd for C₂₀H₁₂I₂: 505.9023; found: 505.9026.

(*R*)-2,2'-Diiodo-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (4f); Typical Procedure

This compound was prepared according to the procedure of Yamamoto et al.,¹⁶ with slight modifications: In an oven-dried flask equipped with a stir bar, were placed (R)-H₈-BINAM **6** (146 mg, 500 μ mol), NaNO₂ (276 mg, 4 mmol, 8 equiv), and KI (830 mg, 5 mmol, 10 equiv). Then, DMF (10 mL) was added, and the suspension was gently stirred at r.t. to allow complete dissolution of the solids. The solution was then cooled to approximately 0 °C with an NaCl/ice-water bath, and stirred vigorously to avoid solidification of the solvent. 33% HBr in AcOH (1 mL) was added dropwise quickly, but carefully, leading to visible gas evolution. The resulting black solution was stirred for several hours, monitoring the reaction by TLC. The solution was then poured in sat. aq NaHCO₃ solution and diluted with CH₂Cl₂. The resulting biphasic solution was transferred to a separatory funnel, the layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 ×). The combined organic extracts were washed with NaHSO₃ and brine, and dried (Na₂SO₄). The inorganic salts were removed by filtration, and the organic layer was concentrated under reduced pressure with silica gel to afford a crude residue that was purified by chromatography (silica gel, heptane-CH₂Cl₂, gradient from 100:0 to 85:15) to afford the product as a yellowish solid; yield: 123 mg (48%); slightly contaminated with an unknown compound.

IR (neat): 2980, 1450, 1236, 1070, 1030, 881 cm⁻¹.

 ^1H NMR (300 MHz, CDCl_3): δ = 7.69 (d, J = 8.0 Hz, 2 H), 6.85 (d, J = 8.0 Hz, 2 H), 2.89–2.69 (m, 4 H), 2.41–2.00 (m, 4 H), 1.80–1.60 (m, 8 H). Paper

¹³C NMR (75 MHz, CDCl₃): δ = 147.0 (2 Cq), 138.0 (2 Cq), 136.7 (2 CH), 135.8 (2 Cq, 130.4 (2 CH), 97.1 (2 Cq), 29.7 (2 CH₂), 28.9 (2 CH₂), 23.3 (2 CH₂), 22.5 (2 CH₂).

HRMS (ES⁺): *m*/*z* [M]⁺ calcd for C₂₀H₂₀I₂: 513.9649; found: 513.9649.

(*R*)-*N*-(2'-Amino-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthalen-2-yl)acetamide (9)

Following the typical procedure for **11** using (R)-H₈-BINAM **6** (292 mg, 1.0 mmol) afforded the product as a white foam; yield: 214 mg (60%).

 $[\alpha]_{D}^{25}$ +27.0 (*c* 1.0, CHCl₃).

IR (neat): 3430, 3370, 1681, 1602, 1591, 1496, 1342, 1241, 1150, 1040, 966, 830, 747, 670 $\rm cm^{-1}.$

 ^1H NMR (300 MHz, CDCl₃): δ = 8.11 (d, J = 8.5 Hz, 1 H), 7.11 (d, J = 8.5 Hz, 1 H), 6.96 (d, J = 8.5 Hz, 1 H), 6.75 (br s, 1 H), 6.63 (d, J = 8.5 Hz, 1 H), 3.30 (br s, 2 H), 2.84–2.67 (m, 4 H), 2.36–2.01 (m, 4 H), 1.91 (s, 3 H), 1.81–1.43 (m, 8 H).

 $\label{eq:constraint} \begin{array}{l} ^{13}C \ \text{NMR} \ (75 \ \text{MHz}, \ \text{CDCl}_3): \ \delta = 169.3 \ (\text{Cq}), \ 141.4 \ (\text{C}_{\text{Ar}}), \ 134.9 \ (\text{C}_{\text{Ar}}), \\ 132.2 \ (\text{C}_{\text{Ar}}), \ 131.3 \ (\text{C}_{\text{Ar}}), \ 130.1 \ (\text{C}_{\text{Ar}}), \ 129.5 \ (\text{C}_{\text{Ar}}), \ 129.3 \ (\text{C}_{\text{Ar}}), \ 127.9 \ (\text{C}_{\text{Ar}}), \\ 127.2 \ (\text{C}_{\text{Ar}}), \ 124.3 \ (\text{C}_{\text{Ar}}), \ 118.3 \ (\text{C}_{\text{Ar}}), \ 113.2 \ (\text{C}_{\text{Ar}}), \ 29.6 \ (2 \ \text{CH}_2), \ 29.3 \ (2 \ \text{CH}_2), \ 27.2 \ (2 \ \text{CH}_2), \ 27.0 \ (2 \ \text{CH}_2), \ 23.2 \ \text{and} \ 22.9 \ (\text{CH}_3). \end{array}$

HRMS (ES⁺): m/z [M + Na]⁺ calcd for C₂₂H₂₆N₂ONa: 357.1937; found: 357.1934.

(*R*)-*N*-(2'-Amino-3'-bromo-5,5',6,6',7,7',8,8'-octahydro-1,1'binaphthalen-2-yl)acetamide (10); Typical Procedure

To a stirred suspension of (R)-N-(2'-amino-1,1'-binaphthalen-2-yl)acetamide 9 (150 mg, 449 umol) in glacial AcOH, maintained at r.t. with a water bath, was added Br₂ (460 µL, 8.98 mmol, 20 equiv) dropwise. The resulting black suspension was stirred vigorously for several minutes, monitoring the reaction by TLC. Once all the starting material had been consumed, the solution was cooled to approx. 0 °C with an NaCl/ice-water bath, carefully guenched by slow addition of ag NaHSO3 solution, and stirred vigorously until almost complete decoloration. AcOH was neutralized by slow addition of a non-sat. NaHCO₃ solution and diluted with CH₂Cl₂. The resulting biphasic solution was transferred to a separatory funnel, the layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 ×). The combined organic extracts were washed with H₂O and brine, and dried (Na₂SO₄). The inorganic salts were removed by filtration, and the organic layer was concentrated under reduced pressure with silica gel to afford a crude residue that was purified by chromatography (silica gel, heptane-EtOAc, gradient from 95:5 to 90:10) to afford the product as a white foam; yield: 150 mg (81%).

 $[\alpha]_{D}^{25}$ –10.0 (*c* 0.8, CHCl₃).

IR (neat): 3432, 3367, 1690, 1599, 1540, 1430, 1397, 1312, 1267, 1221, 1170, 1039, 1018, 961, 832, 801 $\rm cm^{-1}$.

¹H NMR (300 MHz, CDCl₃): δ = 8.09 (d, *J* = 8.5 Hz, 1 H), 7.24 (s, 1 H), 7.13 (d, *J* = 8.5 Hz, 1 H), 6.66 (br s, 1 H), 3.70 (br s, 2 H), 2.85–2.63 (m, 4 H), 2.34–1.97 (m, 4 H), 1.91 (s, 3 H), 1.81–1.54 (m, 8 H).

¹³C NMR (75 MHz, CDCl₃): δ = 168.3 (Cq), 142.2 (C_{Ar}), 139.3 (C_{Ar}), 135.7 (C_{Ar}), 134.2 (C_{Ar}), 133.2 (C_{Ar}), 132.8 (C_{Ar}), 129.7 (C_{Ar}), 129.0 (C_{Ar}), 125.8 (C_{Ar}), 119.9 (C_{Ar}), 118.8 (C_{Ar}), 107.0 (C_{Ar}), 31.9 (2 CH₂), 29.5 (2 CH₂), 29.0 (2 CH₂), 27.0 and 26.9 (2 CH₂), 23.0 and 22.8 (CH₃).

HRMS (ES⁺): m/z [M + H]⁺ calcd for C₂₂H₂₆BrN₂O: 413.1223; found: 413.1221.

(*R*)-*N*-(2'-lodo-3'-phenyl-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthalen-2-yl)acetamide (4g)

Following the typical procedures for **8a** and **4a** using (R)-N-(2'-amino-3'-phenyl-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthalen-2-yl)acetamide (**10**, 206 mg, 500 µmol) afforded the product as a white solid; yield: 93 mg (34%).

 $[\alpha]_{D}^{25}$ –20.0 (*c* 1.0, CHCl₃).

IR (neat): 3411, 3293, 2927, 2856, 2833, 1676, 1595, 1506, 1433, 1413, 1371, 1310, 1288, 1241, 1146, 1028, 911, 813, 766, 699 $\rm cm^{-1}.$

 ^1H NMR (300 MHz, CDCl₃): δ = 7.48–7.28 (m, 5 H), 7.21–7.05 (m, 3 H), 6.50 (br s, 1 H), 2.90–2.69 (m, 4 H), 2.44–1.87 (m, 4 H), 1.96 (s, 3 H), 1.86–1.59 (m, 8 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 168.1 (Cq), 145.6 (C_{Ar}), 145.0 (C_{Ar}), 141.7 (C_{Ar}), 138.6 (C_{Ar}), 136.6 (C_{Ar}), 134.4 (C_{Ar}), 134.1 (C_{Ar}), 131.9 (C_{Ar}), 130.7 (C_{Ar}), 129.4 (2 C_{Ar}), 129.3 (C_{Ar}), 128.8 (C_{Ar}), 127.9 (2 C_{Ar}), 127.5 (2 C_{Ar}), 119.2 (C_{Ar}), 29.6 and 28.6 (2 CH₂), 27.5 and 27.3 (2 CH₂), 24.6 (CH₃), 23.3 and 23.2 (2 CH₂), 22.8 and 22.6 (2 CH₂).

HRMS (ES⁺): m/z [M + Na]⁺ calcd for C₂₈H₂₈INONa: 544.1108; found: 544.1104.

(R)-N-(2'-Amino-1,1'-binaphthalen-2-yl)acetamide (11)

Commercial (R)-BINAM 5 was mono-acylated according to the procedure reported by Shi et al. with slight modifications:¹⁷ To a stirred suspension of (R)-BINAM (284 mg, 1.0 mmol) and glacial AcOH (600 µL, 10 equiv) in CH₂Cl₂ (10 mL), cooled to 5 °C with an ice/water bath, was added Ac₂O (104 µL, 1.1 mmol, 1.1 equiv) dropwise. The ice bath was removed and the solution was stirred overnight at r.t. The resulting mixture was then cooled with an ice/water bath and carefully quenched by slow addition of 2 M aq NaOH under vigorous stirring to reach pH 7. The resulting biphasic solution was transferred to a separatory funnel, and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 ×). Combined organic extracts were washed with H₂O and brine, and dried (Na₂SO₄). The inorganic salts were removed by filtration, and the organic layer was concentrated under reduced pressure with silica gel to afford a crude residue that was purified by chromatography (silica gel, heptane-EtOAc, gradient from 80:20 to 50:50) to afford the product as a white solid; yield: 220 mg (63%).

 $[\alpha]_D^{25}$ +27.0 (*c* 1.0, CHCl₃).

IR (neat): 3400, 1676, 1595, 1499, 1445, 1270, 1040, 965, 670 cm⁻¹.

¹H NMR(300 MHz, $CDCl_3$): $\delta = 8.58$ (d, J = 8.5 Hz, 1 H), 8.00 (d, J = 9.0 Hz, 1 H), 7.91 (d, J = 8.0 Hz, 1 H), 7.87 (d, J = 9.0 Hz, 1 H), 7.83 (d, J = 8.0 Hz, 1 H), 7.41 (t, J = 7.5 Hz, 1 H), 7.31–7.18 (m, 4 H), 7.15 (d, J = 8.5 Hz, 1 H), 7.05 (br s, 1 H), 6.93 (d, J = 8.5 Hz, 1 H), 4.17 (br s, 2 H), 1.85 (s, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 168.7 (Cq), 142.7 (Cq), 135.1 (Cq), 133.6 (Cq), 130.4 (4 C_{Ar}), 129.3 (2 C_{Ar}), 128.2 (2 C_{Ar}), 127.3 (2 C_{Ar}), 126.8 (C $_{\text{Ar}}$), 125.4 (C $_{\text{Ar}}$), 125.1 (C $_{\text{Ar}}$), 123.7 (C $_{\text{Ar}}$), 122.8 (C $_{\text{Ar}}$), 120.9 (C $_{\text{Ar}}$), 118.1 (C $_{\text{Ar}}$), 24.8 (CH $_3$).

HRMS(ES⁺): m/z [M + Na]⁺ calcd for C₂₂H₁₈N₂ONa: 349.1311; found: 349.1311.

(R)-N-(2'-Iodo-1,1'-binaphthalen-2-yl)acetamide (4h)

Following the typical procedure for **4a** using (*R*)-*N*-(2'-amino-1,1'-binaphthalen-2-yl)acetamide **11** (300 mg, 500 μ mol) afforded the product as a white solid; yield: 117 mg (51%).

IR (neat): 3412, 3310, 3055, 2956, 2924, 1671, 1621, 1596, 1518, 1497, 1457, 1423, 1366, 1335, 1274, 1304, 1274, 1147, 1105, 1061, 827, 811, 773, 745, 691 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 8.56 (d, *J* = 8.5 Hz, 1 H), 8.11 (d, *J* = 8.5 Hz, 1 H), 8.04 (d, *J* = 8.5 Hz, 1 H), 7.97–7.88 (m, 2 H), 7.75 (d, *J* = 8.5 Hz, 1 H), 7.53 (t, *J* = 8.5 Hz, 1 H), 7.42 (t, *J* = 8.5 Hz, 1 H), 7.33–7.21 (m, 2 H), 7.14 (d, *J* = 8.5 Hz, 1 H), 6.91 (d, *J* = 8.5 Hz, 1 H), 6.62 (br s, 1 H), 1.85 (s, 3 H).

 ^{13}C NMR (75 MHz, DMSO- d_6): δ = 171.1 (Cq), 145.0 (C_{Ar}), 135.9 (2 C_{Ar}), 133.1 (C_{Ar}), 130.4 (2 C_{Ar}), 129.4 (2 C_{Ar}), 128.3 (2 C_{Ar}), 128.2 (2 C_{Ar}), 127.9 (2 C_{Ar}), 127.1 (C_{Ar}), 126.8 (C_{Ar}), 126.4 (C_{Ar}), 125.1 (2 C_{Ar}), 121.0 (C_{Ar}), 24.0 (CH_3).

HRMS (ES⁺): m/z [M + Na]⁺ calcd for C₂₂H₁₆INONa: 460.0169; found: 460.0170.

3-(1-Hydroxynaphthalen-2-yl)propanoic Acid (1)

This compound was prepared according to the procedure reported by Kita et al. with slight modifications:^{4a} To a stirred suspension of 3,4dihydro-2H-benzo[h]chromen-2-one (1 g, 5 mmol) in anhyd THF (36 mL) was added dropwise 1 M aq LiOH solution (17.9 mL), during which the solution progressively turned green. After complete addition, the resulting brown solution was stirred vigorously at r.t. overnight. The pH was then adjusted to 3 with 2 M aq HCl. The mixture was diluted with EtOAc, the biphasic solution was transferred to a separatory funnel, the layers were separated, and the aqueous layer was extracted with EtOAc (3 ×). The combined organic extracts were washed with brine, and dried (Na₂SO₄). The inorganic salts were removed by filtration, and the organic layer was concentrated under reduced pressure with silica gel to afford a crude residue that was purified by chromatography (silica gel, heptane-EtOAc, gradient from 80:20 to 30:70) to afford the product as a white solid; yield: 992 mg (83%); mp 105-107 °C.

IR (neat): 3100, 1681, 1082, 808 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 8.25–8.22 (m, 1 H), 7.76–7.71 (m, 1 H), 7.47–7.42 (m, 2 H), 7.39 (d, *J* = 8.5 Hz, 1 H), 7.17 (d, *J* = 8.5 Hz, 1 H), 3.04 (t, *J* = 7.0 Hz, 2 H), 2.87 (t, *J* = 7.0 Hz, 2 H).

¹³C NMR (75 MHz, acetone- d_6): δ = 176.6 (Cq), 150.5 (Cq), 134.6 (C_Ar), 126.4 (C_Ar), 128.2 (C_Ar), 126.7 (C_Ar), 126.3 (C_Ar), 125.7 (C_Ar), 122.7 (C_Ar), 122.1 (C_Ar), 120.7 (C_Ar), 35.1 (CH₂), 25.7 (CH₂).

HRMS (ES⁺): m/z [M + Na]⁺ calcd for C₁₃H₁₂O₃Na: 239.0679; found: 239.0684.

1'H,3H-Spiro[furan-2,2'-naphthalene]-1',5(4H)-dione (2); General Procedure

To a stirred suspension of the iodoarene **4** (0.1 equiv, 5 µmol) in anhyd CHCl₃ (1 mL) was added wet *m*CPBA (77%, 14.5 mg, 65 µmol, 1.3 equiv). The solution was cooled to 0 °C with a cooler, and stirred for 10 min. Then, 3-(1-hydroxynaphthalen-2-yl)propanoic acid (**1**, 10.8 mg, 50 µmol, 1 equiv,) was added, and glassware was rinsed with CHCl₃ (1 mL); the solution was stirred at 0 °C for several hours, monitoring the reaction by TLC. When the reaction was complete, the mixture was carefully poured into sat. NaHCO₃ solution and diluted with CH₂Cl₂. The resulting biphasic solution was transferred into a separatory funnel and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 ×). The combined organic extracts were washed with NaHCO₃ and brine, and dried (Na₂SO₄). The inorganic salts were removed by filtration, and the organic layer was concentrated under reduced pressure to afford a crude residue that was puri311

M. Bekkaye, G. Masson

fied by chromatography (silica gel, heptane–EtOAc, gradient from 95:5 to 80:20) to afford the product as a white solid, see Table 2; mp 103–105 °C.

HPLC (Daicel Chiralpak OD-H, hexane–*i*-PrOH, 85:15, flow rate 1.0 mL/min, 230 nm): $t_{\rm R}$ = 16.30, 21.51 min.

IR (neat): 1788, 1693, 1597, 1481, 1454, 1323, 1296, 1178, 1123, 1032, 930, 787 $\rm cm^{-1}.$

¹H NMR (300 MHz, $CDCl_3$): δ = 8.02 (d, *J* = 8.0 Hz, 1 H), 7.63 (t, *J* = 7.5 Hz, 1 H), 7.41 (t, *J* = 7.5 Hz, 1 H), 7.26 (d, *J* = 7.5 Hz, 1 H), 6.66 (d, *J* = 10.0 Hz, 1 H), 6.20 (d, *J* = 10.0 Hz, 1 H), 2.98–2.85 and 2.65–2.55 and 2.47–2.39 and 2.25–2.13 (m, 4 H).

¹³C NMR (75 MHz, CDCl₃): δ = 196.5 (Cq), 176.5 (Cq), 136.7 (C_{Ar}), 135.6 (C_{Ar}), 132.1 (C_{Ar}), 128.8 (C_{Ar}), 127.9 (C_{Ar}), 127.8 (C_{Ar}), 127.5 (C_{Ar}), 127.1 (C_{Ar}), 83.4 (Cq), 31.0 (CH₂), 26.4 (CH₂).

HRMS (ES⁺): m/z [M + H]⁺ calcd for C₁₃H₁₁O₃: 215.0703; found: 215.0699.

Acknowledgment

We thank ICSN for financial support. M.B. thanks MESR for a doctoral fellowship, University of Paris Sud. Ethan Wappes is gratefully acknowledged for reading the manuscript and for constructive comments. Audrey Dumoulin is gratefully acknowledged for measuring optical rotations.

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560512.

References

- For reviews, see: (a) Ortiz, F. L.; Iglesias, M. J.; Fernández, I.; Sánchez, C. M. A.; Ruiz Gómez, G. Chem. Rev. 2007, 107, 1580.
 (b) Quideau, S.; Pouységu, L.; Deffieux, D. Synlett 2008, 467.
 (c) Hudlicky, T.; Reed, J. W. Synlett 2009, 685. (d) Roche, S. P.; Porco, J. A. Angew. Chem. Int. Ed. 2011, 50, 4068. (e) Zhuo, C.-X.; Zhang, W.; You, S.-L. Angew. Chem. Int. Ed. 2012, 51, 12662.
 (f) Ciufolini, M. A. Can. J. Chem. 2014, 92, 186. (g) Harned, A. M. Tetrahedron Lett. 2014, 55, 4681. (h) Maertens, G.; L'Homme, C.; Canesi, S. Front. Chem. 2015, 2, 115.
- (2) For reviews on hypervalent iodine chemistry, see: (a) Ciufolini, M. A.; Braun, N. A.; Canesi, S.; Ousmer, M.; Chang, J.; Chai, D. Synthesis 2007, 3759. (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299. (c) Ochiai, M.; Miyamoto, K. Eur. J. Org. Chem. 2008, 4229. (d) Dohi, T.; Kita, Y. Chem. Commun. 2009, 2073. (e) Uyanik, M.; Ishihara, K. Chem. Commun. 2009, 2086. (f) Ngatimin, M.; Lupton, D. W. Aust. J. Chem. 2010, 63, 653. (g) Liang, H.; Ciufolini, M. A. Angew. Chem. Int. Ed. 2011, 50, 11849. (h) Kita, Y.; Dohi, T.; Morimoto, K. J. Synth. Org. Chem., Jpn. 2011, 69, 1241. (i) Fernández González, D.; Benfatti, F.; Waser, J. ChemCatChem 2012, 4, 955. (j) Yusubov, M. S.; Zhdankin, V. V. Curr. Org. Synth. 2012, 9, 247. (k) Farid, U.; Wirth, T. In Asymmetric Synthesis II; Christmann, M.; Bräse, S., Eds.; Wiley-VCH: Weinheim, 2012, 197. (1) Brown, M.; Farid, U.; Wirth, T. Synlett 2013, 24, 424. (m) Parra, A.; Reboredo, S. Chem. Eur. J. 2013, 19, 17244. (n) Singh, F. V.; Wirth, T. Chem. Asian J. 2014, 9, 950. (o) Kumar, R.; Wirth, T. Top. Curr. Chem. 2015, doi: 10.1007/128_2015_639.

- (3) For seminal electrochemical oxidations of iodoarenes, see:
 (a) Fuchigami, T.; Fujita, T. J. Org. Chem. 1994, 59, 7190.
 (b) Fujita, T.; Fuchigami, T. Tetrahedron Lett. 1996, 37, 4725.
 Seminal oxidations of iodoarenes using chemical oxidants, see:
 (c) McKillop, A.; Kemp, D. Tetrahedron 1989, 45, 3299.
 (d) Kazmierczak, P.; Skulski, L.; Kraszkiewicz, L. Molecules 2001, 6, 881. (e) Zielinska, A.; Skulski, L. Molecules 2002, 7, 806.
 (f) Sharefkin, J. G.; Saltzman, H. Org. Synth. 1963, 43, 62.
 (g) Zielinska, A.; Skulski, L. Molecules 2005, 10, 190. (h) Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem. Soc. 2005, 127, 12244. (i) Hossain, M. D.; Kitamura, T. J. Org. Chem. 2005, 70, 6984. (j) Hossain, M. D.; Kitamura, T. Bull. Chem. Soc. Jpn. 2006, 79, 142.
- (4) (a) Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S. B.; Kita, Y. Angew. Chem. Int. Ed. 2008, 47, 3787. (b) Dohi, T.; Takenaga, N.; Nakae, T.; Toyoda, Y.; Yamasaki, M.; Shiro, M.; Fujioka, H.; Maruyama, A.; Kita, Y. J. Am. Chem. Soc. 2013, 135, 4558. (c) Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem. Int. Ed. 2010, 49, 2175. (d) Uyanik, M.; Yasui, T.; Ishihara, K. Tetrahedron 2010, 66, 5841. (e) Murray, S. J.; Ibrahim, H. Chem. Commun. 2015, 51, 2376. (f) Uyanik, M.; Sasakura, N.; Kaneko, E.; Ohori, K.; Ishihara, K. Chem. Lett. 2015, 44, 179.
- (5) (a) Guilbault, A.-A.; Basdevant, B.; Wanie, V.; Legault, C. Y. J. Org. Chem. 2012, 77, 11283. (b) Volp, K. A.; Harned, A. M. Chem. Commun. 2013, 49, 3001. (c) Brenet, S.; Berthiol, F.; Einhorn, J. Eur. J. Org. Chem. 2013, 8094.
- (6) Examples of chiral hypervalent iodide(III) compounds, see: (a) Imamoto, T.; Koto, H. Chem. Lett. 1986, 15, 967. (b) Hatzigrigoriou, E.; Varvoglis, A.; Bakola-Christianopoulou, M. J. Org. Chem 1990, 55, 315. (c) Ray, D. G.; Koser, G. F. J. Am. Chem. Soc. 1990, 112, 5672. (d) Ochiai, M.; Takaoka, Y.; Masaki, Y.; Nagao, Y.; Shiro, M. J. Am. Chem. Soc. 1990, 112, 5677. (e) Ray, D. G.; Koser, G. F. J. Org. Chem. 1992, 57, 1607. (f) Rabah, G. A.; Koser, G. F. Tetrahedron Lett. 1996, 37, 6453. (g) Wirth, T.; Hirt, U. H. Tetrahedron: Asymmetry 1997, 8, 23. (h) Hirt, U. H.; Spingler, B.; Wirth, T. J. Org. Chem. 1998, 63, 7674. (i) Tohma, H.; Takizawa, S.; Watanabe, H.; Kita, Y. Tetrahedron Lett. 1998, 39, 4547. (j) Ochiai, M.; Kitagawa, Y.; Takayama, N.; Takaoka, Y.; Shiro, M. J. Am. Chem. Soc. 1999, 121, 9233. (k) Tohma, H.; Takizawa, S.; Watanabe, H.; Fukuoka, Y.; Maegawa, T.; Kita, Y. J. Org. Chem. 1999, 64, 3519. (1) Tohma, H.; Takizawa, S.; Morioka, H.; Maegawa, T.; Kita, Y. Chem. Pharm. Bull. 2000, 48, 445. (m) Hirt, U. H.; Schuster, M. F. H.; French, A. N.; Wiest, O. G.; Wirth, T. Eur. J. Org. Chem. 2001, 1569. (n) Altermann, S. M.; Richardson, R. D.; Page, T. K.; Schmidt, R. K.; Holland, E.; Mohammed, U.; Paradine, S. M.; French, A. N.; Richter, C.; Bahar, A. M.; Witulski, B.; Wirth, T. Eur. J. Org. Chem. 2008, 5315. (o) Fujita, M.; Wakita, M.; Sugimura, T. Chem. Commun. 2011, 47, 3983. (p) Fujita, M.; Mori, K.; Shimogaki, M.; Sugimura, T. Org. Lett. 2012, 14, 1294. (q) Farid, U.; Wirth, T. Angew. Chem. Int. Ed. 2012, 51, 3462. (r) Farid, U.; Malmedy, F.; Claveau, R.; Albers, L.; Wirth, T. Angew. Chem. Int. Ed. 2013, 52, 7018. (s) Takesue, T.; Fujita, M.; Sugimura, T.; Akutsu, H. Org. Lett. 2014, 16, 4634.
- (7) (a) Lebée, C.; Kataja, A. O.; Blanchard, F.; Masson, G. *Chem. Eur. J.* **2015**, *21*, 8399. (b) Dumoulin, A.; Lalli, C.; Retailleau, P.; Masson, G. *Chem. Commun.* **2015**, *51*, 5383. (c) Lalli, C.; Dumoulin, A.; Lebée, C.; Drouet, F.; Guérineau, V.; Touboul, D.; Gandon, V.; Zhu, J.; Masson, G. *Chem. Eur. J.* **2015**, *21*, 1704. (d) Dagousset, G.; Erb, W.; Zhu, J.; Masson, G. *Org. Lett.* **2014**, *16*, 2554. (e) He, L.; Laurent, G.; Retailleau, P.; Folléas, B.; Brayer, J.-L.; Masson, G. *Angew. Chem. Int. Ed.* **2013**, *52*, 11088. (f) Courant,

312

T.; Kumarn, S.; He, L.; Retailleau, P.; Masson, G. Adv. Synth. Catal. **2013**, 355, 836. (g) He, L.; Bekkaye, M.; Retailleau, P.; Masson, G. Org. Lett. **2012**, 14, 3158. (h) Dagousset, G.; Zhu, J.; Masson, G. J. Am. Chem. Soc. **2011**, 133, 14804. (i) Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. J. Am. Chem. Soc. **2009**, 131, 4598.

- (8) (a) Carboni, A.; Dagousset, G.; Magnier, E.; Masson, G. Org. Lett.
 2014, 16, 1240. (b) Bekkaye, M.; Su, Y.; Masson, G. Eur. J. Org. Chem. 2013, 3978. (c) Drouet, F.; Masson, G.; Zhu, J. Org. Lett.
 2013, 15, 2854. (d) Drouet, F.; Fontaine, P.; Masson, G.; Zhu, J. Synthesis 2009, 1370. (e) Fontaine, P.; Chiaroni, A.; Masson, G.; Zhu, J. Org. Lett. 2008, 10, 1509.
- (9) Richardson, R. D.; Page, T. K.; Altermann, S.; Paradine, S. M.; French, A. N.; Wirth, T. *Synlett* **2007**, 538.
- (10) (a) Quideau, S.; Lyvinec, G.; Marguerit, M.; Bathany, K.; Ozanne-Beaudenon, A.; Buffeteau, T.; Cavagnat, D.; Chénedé, A. Angew. Chem. Int. Ed. 2009, 48, 4605. (b) Bosset, C.; Coffinier, R.; Peixoto, P. A.; El Assal, M.; Miqueu, K.; Sotiropoulos, J.-M.; Pouységu, L.; Quideau, S. Angew. Chem. Int. Ed. 2014, 53, 9860.
- (11) Recently Wirth and co-workers reported the synthesis of chiral diaryliodonium salts derived from BINI, see: Brown, M.; Delorme, M.; Malmedy, F.; Malmgren, J.; Olofsson, B.; Wirth, T. Synlett **2015**, *26*, 1573.
- (12) (a) Li, T.; Tsuda, Y.; Minoura, K.; In, Y.; Ishida, T.; Lazarus, L. H.; Okada, Y. *Chem. Pharm. Bull.* **2006**, *54*, 873. (b) Miles, K. C.; Le, C.; Stambuli, J. P. *Chem. Eur. J.* **2014**, *20*, 11336. (c) Liu, T.-F.; Zou, L.; Feng, D.; Chen, Y.-P.; Fordham, S.; Wang, X.; Liu, Y.; Zhou, H.-C. *J. Am. Chem. Soc.* **2014**, *136*, 7813.
- (13) (a) Guo, H.; Ding, K. *Tetrahedron Lett.* **2000**, *41*, 10061. (b) Kano,
 T.; Tanaka, Y.; Osawa, K.; Yurino, T.; Maruoka, K. J. Org. Chem.
 2008, *73*, 7387.
- (14) Also, see: Wang, Y.-M.; Kuzniewski, C. N.; Rauniyar, V.; Hoong, C.; Toste, F. D. J. Am. Chem. Soc. **2011**, *133*, 12972.

- (15) (a) Kranz, M.; Clark, T.; v. R. Schleyer, P. J. Org. Chem. 1993, 58, 3317. (b) Brath, H.; Dubovská, M.; Juríček, M.; Kasák, P.; Putala, M. Collect. Czech. Chem. Commun. 2004, 69, 1517. (c) Brown, K. J.; Berry, M. S.; Waterman, K. C.; Lingenfelter, D.; Murdoch, J. R. J. Am. Chem. Soc. 1984, 106, 4717. (d) Mešková, M.; Putala, M. Tetrahedron Lett. 2011, 52, 5379. (e) Kasak, P.; Brath, H.; Krascsenicsová-Polaková, K.; Kicková, A.; Moldovan, N.; Putala, M. Collect. Czech. Chem. Commun. 2007, 72, 1139.
- (16) Usanov, D. L.; Yamamoto, H. Angew. Chem. Int. Ed. 2010, 49, 8169.
- (17) We obtained a mixture of non-reacted and over-acylated materials as major products. See also: Wang, C.-J.; Shi, M. *Eur. J. Org. Chem.* **2003**, 2823.
- (18) (a) Tohma, H.; Maruyama, A.; Maeda, A.; Maegawa, T.; Dohi, T.; Shiro, M.; Morita, T.; Kita, Y. *Angew. Chem. Int. Ed.* **2004**, *43*, 3595. (b) Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Shiro, M.; Kita, Y. *Chem. Commun.* **2005**, 2205.
- (19) (a) Lewis, N.; Wallbank, P. Synthesis 1987, 1103. (b) Barret, R.; Daudon, M. Tetrahedron Lett. 1990, 31, 4871. (c) Mal, D.; Roy, H. N.; Hazra, N. K.; Adhikari, S. Tetrahedron 1997, 53, 2177. (d) Quideau, S.; Looney, M. A.; Pouységu, L. Org. Lett. 1999, 1, 1651. (e) Quideau, S.; Pouységu, L.; Oxoby, M.; Looney, M. A. Tetrahedron 2001, 57, 319. (f) Wood, J. L.; Graeber, J. K.; Njardarson, J. T. Tetrahedron 2003, 59, 8855.
- (20) Koser, G. F. Hypervalent Halogen Compounds, In The Chemistry of Functional Groups, Supplement D; Patai, S.; Rappoport, Z., Eds.; Wiley: Chichester, **1983**, Chap. 18, 729.
- (21) (a) Lee, C.-K.; Mak, T. C. W.; Li, W.-K.; Kirner, J. F. Acta Crystallogr., Sect. B 1977, 33, 1620. (b) Alcock, N. W.; Countryman, R. M.; Esperás, S.; Sawyer, J. F. J. Chem. Soc., Dalton. Trans. 1979, 854.
- (22) (a) Siebert, H.; Handrich, M. Z. Anorg. Allg. Chem. 1976, 426, 173.
 (b) Gallos, J.; Varvoglis, A.; Alcock, N. W. J. Chem. Soc., Perkin Trans. 1 1985, 757.