

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Rhodium-catalyzed Reaction of Silacyclobutanes with Unactivated Alkynes to Afford Silacyclohexenes

Authors: Zhen Lei Song, Hua Chen, Yi Chen, Xiaoxiao Tang, Shunfa Liu, Runping Wang, Tianbao Hu, and Lu Gao

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201814143 Angew. Chem. 10.1002/ange.201814143

Link to VoR: http://dx.doi.org/10.1002/anie.201814143 http://dx.doi.org/10.1002/ange.201814143

WILEY-VCH

Silacycles

DOI: 10.1002/anie.201((will be filled in by the editorial staff))

Rhodium-catalyzed Reaction of Silacyclobutanes with Unactivated Alkynes to Afford Silacyclohexenes**

Hua Chen, Yi Chen, Xiaoxiao Tang, Shunfa Liu, Runping Wang, Tianbao Hu, Lu Gao, and Zhenlei Song*

Abstract: A Rh-catalyzed reaction of silacyclobutanes (SCBs) with unactivated alkynes has been developed to form silacyclohexenes with high chemoselectivity. Good enantioselectivity at the stereogenic silicon center was achieved using a chiral phosphoramidite ligand. The resulting silacyclohexenes are useful scaffolds for synthesizing structurally attractive silacyclic compounds.

S ilacycles^[1] are attractive organosilanes because they are widely used in developing π -conjugated organic materials with unique optical and electronic properties.^[2] Lately they have become the focus of efforts to develop silicon-containing bioactive molecules of interest.^[3] Silacycles are typically synthesized by cyclization of chain-like substrates,^[4] but some desirable products cannot be produced in this way. Instead, they can be obtained using an alternative approach in which small, strained silacycles such as silacyclobutane (SCB) are expanded into larger rings. Ever since Kipping pioneered the synthesis of SCB,^[5] a series of SCB ring-expansion reactions have been developed that exploit its high ring strain and Lewis acidity.^[6]

In 1975, Sakurai and Imai reported the first Pd-catalyzed reaction of SCB **1** with alkynes substituted with electron-withdrawing groups, giving silacyclohexenes **3**.^[7] Revisiting this reaction in 1991, Oshima and Utimoto observed formation of a large amount of allylsilane **4** as a by-product.^[8] They proposed that **3** formed via reductive elimination of pallada-silacycloheptene **2**, while β -H elimination of **2** would generate **4**. Recently, Shintani and Hayashi made an important breakthrough at developing an asymmetric version of this approach based on a Pd-catalyzed desymmetrization of SCB.^[9] Using a sterically demanding chiral phosphoramidite

[*] H. Chen, Y. Chen, X. X. Tang, S. F. Liu, R. P. Wang, T. B. Hu, Dr. L. Gao, Prof. Dr. Z. L. Song Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry West China School of Pharmacy, Sichuan University Chengdu, 610041 (China) E-mail: <u>zhenleisong@scu.edu.cn</u>

Prof. Dr. Z. L. Song State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071 (China)

[**] We are grateful for financial support from the NSFC (21622202, 21502125). The authors thank Prof. Shuyu Zhang in Shanghai Jiao Tong University and Prof. Qingwei Zhang in University of Science and Technology of China for their invaluable discussion. The authors also thank Liying Huang for invaluable help with performing NMR experiments.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201xxxxxx.

WILEY CONLINE LIBRARY

C

Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Scheme 1. (a) Si-organic materials and Si-biological molecules containing silacycles. (b) Pd-catalyzed reaction of SCB with unactivated alkyne leading to non-cyclic allylsilane. (c) Rh-catalyzed reaction of SCB with unactivated alkyne leading to silacyclohexenes.

ligand facilitated the reductive elimination step, leading to 3 with high chemoselectivity and ultimately to high enantioselectivity at the stereogenic silicon center^[10]. Despite these progresses, this reaction requires electron-deficient alkynes to generate silacyclohexenes effectively. Using unactivated alkynes such as phenylacetylene leads in many intermolecular reactions to severe β-H elimination with SCBs, giving allylsilanes 4 as single or major products.^[7, 8] To the best of our knowledge, only Shintani and Hayashi have succeeded in forming silacyclohexenes, for which they used an intramolecular approach involving an aryl-substituted alkyne and SCB tethered by a phenyl ring.^[11] Therefore, it would be beneficial to develop general processes that generate silacyclohexenes intermolecularly from unactivated alkyne and SCBs. Such approaches would largely expand the structural diversity of the resulting silacyclohexenes. Here we report such a reaction in the presence of Rh catalyst that generates silacyclohexenes with high chemoselectivity. The good enantioselectivity at the stereogenic silicon center was also achieved using a newly synthesized chiral phosphoramidite ligand.

First we revisited the Pd-catalyzed reaction of SCB $1a^{[12]}$ with phenylacetylene.^[13] In most cases, we obtained a mixture of **3a** and **4a**, with **4a** as the major product, similar to Sakurai and Imai^[7] as well as Oshima and Utimoto.^[8] Shintani and Hayashi's conditions^[9] generated predominantly **3a** but in only 17% yield. These failures led us to focus on other transition metals such as monomeric and dimeric Rh catalysts possessing CO or alkene ligands (Table 1, entries 1-8), but all reactions provided complex mixtures without desired **3a**. We were delighted to find that Wilkinson's catalyst [Rh(PPh₃)₃Cl]^[14] significantly improved efficiency, affording **3a** in

83% yield without formation of the by-product **4a** (entry 9). This result implies that the phosphine ligand is crucial for catalysis, consistent with the different results obtained in entries 8 and 10. Premixing [Rh(CH₂=CH₂)₂Cl]₂ with PPh₃ for 1.0 h facilitated ligand transfer from alkene to PPh₃, giving **3a** in 91% yield (entry 10). Decreasing Rh(PPh₃)₃Cl loading from 0.1 to 0.02 equiv. improved the yield from 83% to 97% (entry 11). Further decreasing the loading of Rh(PPh₃)₃Cl to 0.01 equiv lowered the yield (entry 12). Increasing the temperature from 25 to 60 °C accelerated the reaction (entry 13). The reaction also proceeded well in non-anhydrous toluene under air, giving **3a** in 98% yield (entry 13).

Table 1. Screening of Reaction Conditions^[a]

<	Si ^{Ph} + Me Ph 7	toluene	Ph 3a	Ph Me Ph	Si Me 4a
Entry	[Rh] (mol %)	equiv.	T(°C)	<i>t</i> (h)	Yield (%) ^[c]
1	Rh(CO) ₂ (acac)	0.1	60	3 h	N.D.
2	[Rh(CO) ₂ Cl] ₂	0.1	25	3 h	N.D.
3	Rh(cod) ₂ BF ₄	0.1	60	3 h	N.D.
4	Rh(cod)₂OTf	0.1	25	3 h	N.D.
5	[Rh(cod)Cl] ₂	0.1	25	3 h	N.D.
6	Rh(nbd)₂BF₄	0.1	60	3 h	N.D.
7	[Rh(nbd)Cl] ₂	0.1	25	3 h	N.D.
8	[Rh(CH ₂ =CH ₂) ₂ Cl] ₂	0.1	60	3 h	N.D.
9	Rh(PPh ₃) ₃ Cl	0.1	25	4 h	83
10	[Rh(CH ₂ =CH ₂) ₂ Cl] ₂ /	0.1	60	4 h	91
	PPh ₃ (0.2)				
11	Rh(PPh ₃)₃Cl	0.02	25	4 h	97
12	Rh(PPh ₃) ₃ Cl	0.01	25	4 h	83
13	Rh(PPh ₃) ₃ Cl	0.02	60	2 h	98(98 ^[c])

[a] Reaction conditions: **1a** (0.20 mmol), phenylacetylene (0.24 mmol), 1.0 mL of toluene. [b] Isolated yields. [c] The yield was obtained using non-anhydrous toluene under air.

Next the scope of alkynes was examined using SCB 1a as the model scaffold. The reaction worked well with aryl alkynes in which the 4-position of the phenyl ring was substituted with electron-donating or -withdrawing groups (Table 2), giving 3b-3u in high yields. Moderate yields were observed only for 3h containing a -CN group and 3j containing a -COMe group. Changing the position of the phenyl ring substitution did not reduce efficiency, providing 3m-3o in yields exceeding 80%. The reaction also afforded 3p-3r possessing naphthaline or the heterocycles. In contrast, 2ethynylpyridine did not react to give 3s, probably because the pyridine's strong Lewis basicity inactivated the catalyst. Reaction of 2.4-diacetylide benzene with 0.5 equiv. of 1a delivered monocyclized 3t in 68% yield, in which the alkyne left can be further functionalized. Repeating this reaction with 2.0 equiv. of 1a afforded 3u, in which two silacyclohexenes are linked symmetrically to a phenyl ring. The reaction proved unsuitable for preparing 3v from more sterically demanding internal alkynes. The reactivity difference between internal and terminal alkynes allowed us to synthesize envne-type silacyclohexene 3w from the corresponding diynes. The reaction was suitable for functionalized alkyl alkynes. The yield differences between 3y and 3z or between 3aa and 3ab indicate that the free hydroxyl and amide groups interfere with the reaction, probably by interacting with the catalyst or by partially opening the SCB ring. The cyclopropyl group did not interfere with the catalytic process, giving 3ad in 81% yield. The bulky t-Bu group inhibited the reaction to give 3af. Surprisingly, methyl propiolate, which functions well in Pd-catalyzed silacyclohexene formation, was ineffective in our Rh-catalyzed

Table 2. Scope of Alkynes^[a]

[a] Reaction conditions: **1a** (0.20 mmol), alkyne (0.24 mmol), Rh(PPh₃)₃Cl (2 mol %), 1.0 mL of toluene, 60 °C. [b] Isolated yields. [c] **1a** (1.0 mmol), cyclopropyl acetylene (2.4 mmol).

Table 3. Scope of Silacyclobutanes [a]

Me H, 62%)

WILEY ONLINE LIBRARY

approach. However, the vinylogous propargyl methyl ester was effective to form **3ah** in 60% yield. The process also provided **3ai** and **3aj** containing a similar diene moiety.

The scope of substitution on silicon was examined (Table 3). Suitable substituents included *n*-butyl, benzyl and C_3H_6OTBS groups, giving **3ak-3am** in good yields. The reaction proceeded well in the presence of allyl and homoallyl groups, affording **3an-3ao**. However, introducing a vinyl group onto the silicon inhibited the reaction to give **3ap**. The silicon can be mono- or diaryl substituted, leading to **3aq-3aw** in high yields. The electron-donating and - withdrawing groups on the phenyl ring were tolerated. A methyl group at the 2-position was sterically disfavored, such that **3au** was generated in only 37% yield.

Table 4. Scope of the Asymmetric Process^[a]

[a] Reaction conditions: **1** (0.20 mmol), alkyne (0.240 mmol), $[Rh(CH_2=CH_2)_2CI]_2$ (2 mol %), **L18** (4 mol %), 1.0 mL of toluene, 25 °C, 10 h. [b] The configuration at Si was determined by transformation of **3ax** into the known compound. [c] Isolated yields. [d] Determined by HPLC analysis using a chiral stationary phase. [e] The yield was obtained on 1.0 mmol scale.

Inspired by the success of using [Rh(CH₂=CH₂)₂Cl]₂ and PPh₃ to synthesize racemic 3a (Table 1, entry 10), we screened a range of chiral phosphine ligands to enantioselectively construct the silicon stereocenter in silacyclohexenes.^[15] The binaphthyl phosphoramidite L18, containing 3,3'-trifluoromethyl groups,^[16] most efficiently generated 3 with high er (Table 4). Increasing the bulkiness of the 3, 3'-groups binaphthyl in ligands typically improves enantioselectivity, but in our case, it severely reduced the er for 3. This unusual steric bias implies that the bulkier 3, 3'-substituents might simultaneously increase the steric interaction with both the aryl and methyl groups on silicon when interacting with two prochiral Si-CH₂ bonds in silacyclobutanes 1, therefore decreasing the efficiency of desymmetrization. In addition, the morpholine ring in L18 was better than traditional nitrogen moieties such as NMe₂, N(i-Pr)2 or NBn2.

Oshima and Utimoto^[8] proposed that oxidative addition of Pd to SCB initiates silacyclohexene formation from activated alkynes. Subsequent control experiments by Shintani and Hayashi^[9] led them to favor a mechanism starting with Pd coordination of alkynes. When we mixed SCB 1a with 1.0 equiv. of Rh(PPh₃)₃Cl in CDCl₃ for 1 h at 60 °C, most 1a remained unchanged. But the signal of the alkynyl proton in phenylacetylene shifted up-field from 3.0 to 2.0 ppm by mixing with 1.0 equiv. of Rh(PPh₃)₃Cl.^[17] These results suggest that our reaction may proceed via a mechanism similar to Shintani and Hayashi's model. We propose the pathway in Scheme 2: the coordination of Rh with alkyne (5) promotes transmetalation with SCB to give Rh-silacycloheptene 6. Reductive elimination of 6 proceeds preferentially to β -H elimination, giving silacyclohexene 3. Formation of the Rh-silacycloheptene 7, which cannot undergo β -H elimination, could be also possible because we did not observe the by-product 4.

Silacyclohexenes **3** could be further transformed into structurally attractive silacyclic compounds. For example, **3ay** participated in an *endo*-type Diels-Alder reaction to construct the silabicyclic **8** in the presence of EtAlCl₂ and silatricyclic **9** under heating. **3az** generated from selective *O*-desilylation of the corresponding silylether was subjected to Johnson-Claisen rearrangement to give cyclic allylsilane **10** in 84% yield, and to epoxidation to give 3-silyl-2,3-epoxy alcohol **11** in 86% yield. Allylic oxidation of **3av** with SeO₂ afforded silacyclohexenol **12**, which was further oxidized to silacyclohexenole **13** in 97% yield.

In summary, we have developed a Rh-catalyzed reaction of SCBs with unactivated alkynes. The reaction chemoselectively generates a wide range of silacyclohexenes. Using a chiral binaphthyl phosphoramidite bearing 3,3'-trifluoromethyl- and *N*-morpholino-substitutions provided good enantioselectivity at the stereogenic silicon center. The resulting silacyclohexenes serve as versatile synthons to generate diverse silacyclic compounds. More detailed studies and application of this approach for the synthesis of Si-biological molecules are underway.

Received: ((will be filled in by the editorial staff)) Published online on ((will be filled in by the editorial staff))

Keywords: Silacyclobutane • Transition Metal • Catalysis • Alkynes • Silacyclohexene

Scheme 2. Proposed catalytic cycle.

WILEY ONLINE LIBRARY

© Wi

Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

3

- For reviews, see: a) K. Hirano, H. Yorimitsu, K. Oshima, *Chem. Commun.* 2008, 3234-3241; b) W. H. Atwell, *Organometallics* 2009, 28, 3573-3586; c) Q. W. Zhang, K. An, W. He, *Synlett* 2015, 9, 1145-1152; d) B. A. Shainyan, *Tetrahedron* 2016, 72, 5027-5035; e) M. Ishikawa, A. Naka, H. Kobayashi, *Coordin. Chem. Rev.* 2017, 335, 58-75; f) W. T. Zhao, F. Gao, D. B. Zhao, *Synlett* 2018, 20, 2595-2600.
- [2] For reviews, see: a) T. Ikeno, T. Nagano, K. Hanaoka, *Chem-Asian J.* 2017, *12*, 1435-1446. For latest progresses, see: b) J. B. Grimm, T. A. Brown, A. N. Tkachuk, L. D. Lavis, *ACS Central Sci.* 2017, *3*, 975-985; c) K. Umezawa, M. Kamiya, Y. Urano, *Angew. Chem. Int. Ed.* 2018, *57*, 9346-9350; *Angew. Chem.* 2018, *130*, 9490-9497; d) X. H. Zheng, W. Du, L. Z. Gai, X. Q. Xiao, Z. F. Li, L. W. Xu, Y. P. Tian, M. Kira, H. Lu, *Chem. Commun.* 2018, *54*, 8834-8837; e) A. Choi, S. C. Miller, *Org. Lett.* 2018, *20*, 4482-4485; f) M. A. Miller, E. Kim, M. F. Cuccarese, A. L. Plotkin, M. Prytyskach, R. H. Kohler, M. J. Pittet, R. Weissleder, *Chem. Commun.* 2018, *54*, 42-45.
- [3] For reviews, see: a) R. Tacke, U. Wannagat, Top. Curr. Chem. 1979, 84, 1-75; b) R. Tacke, H. Zilch, Endeavour 1986, 10, 191-197; c) N. A. Meanwell, J. Med. Chem. 2011, 54, 2529-2591; d) G. K. Min, D. Hernández, T. Skrydstrup, Acc. Chem. Res. 2013, 46, 457-470; e) A. K. Franz, S. O. Wilson, J. Med. Chem. 2013, 56, 388-405; f) E. R émond, C. Martin, J. Martinez, F. Cavelier Chem. Rev., 2016, 116, 11654-11684; g) S. Fujii, Y. Hashimoto, Future Med. Chem. 2017, 9, 485-505; h) R. Ramesh, D. S. Reddy, J. Med. Chem. 2018, 61, 3779-3798; For latest progress, see: i) R. Fanelli, D. Berthomieu, C. Didierjean, A. Doudouh, A. Lebrun, J. Martinez, F. Cavelier, Org. Lett. 2017, 19, 2937-2940; j) S. J. Barraza, S. E. Denmark, J. Am. Chem. Soc. 2018, 140, 6668-6684; k) H. Toyama, H. Shirakawa, M. Komai, Y. Hashimoto, S. Fujii, Bioorgan. Med. Chem. 2018, 26, 4493-4501; 1) B. Minkovich, I. Ruderfer, A. Kaushansky, D. Bravo-Zhivotovskii, Y. Apeloig, Angew. Chem. Int. Ed. 2018, 57, 13261-13265; Angew. Chem. **2018**, 130, 13445-13449.
- For five-membered rings, see: a) H. O. House, J. A. Hrable, S. L. [4] Naraslmhan, J. Chem. Eng. Data 1986, 31, 124-127; b) J. Y. Corey, L. S. Chang, J. Organomet. Chem. 1986, 307, 7-14; c) W. A. Nugent, D. F. Taber, J. Am. Chem. Soc. 1989, 111, 6435-6437; d) M. G. Steinmetz, B. S. Udayakumar, J. Organomet. Chem. 1989, 378, 1-15; e) V. Jouikov, V. Krasnov, J. Organomet. Chem. 1995, 498, 213-219; f) J. Y. L. Chung, M. Shevlin, A. Klapars, M. Journet, Org. Lett. 2016, 18, 1812-1815. For six-membered rings, see: g) R. F. Cunico, F. Drone, J. Organomet. Chem. 1978, 150, 179-185; h) P. Boudjouk, R. Sooriyakumaran, J. S. Kiely, J. Organomet. Chem. 1981, 221, 33-45; i) P. Boudjouk, R. Sooriyakumaran, C. A. Kapfer, J. Organomet. Chem. 1985, 281, 21-23; j) B. T. Nguyen, F. K. Cartledge, J. Org. Chem. 1986, 51, 2206-2210; k) F. Monteil, I. Matsuda, H. Alper, J. Am. Chem. Soc. 1995, 117, 4419-4420; 1) R. A. Widenhoefer, B. Krzyzanowska, G. Webb-Wood, Organometallics 1998, 17, 5124-5127; m) T. Sudo, N. Asao, Y. Yamamoto, J. Org. Chem. 2000, 65, 8919-8923.
- [5] a) F. S. Kipping, J. E. Sands, J. Chem. Soc. 1921, 119, 848-850; b) F. S. Kipping, J. Chem. Soc. 1923, 123, 2598-2603; c) F. S. Kipping, J. Chem. Soc. 1924, 125, 2291-2297. For other progresses in the preparation of SCBs, see: d) H. Gilman, W. H. Atwell, J. Am. Chem. Soc. 1964, 86, 5589-5593; e) N. Auner, J. Grobe, J. Organomet. Chem. 1980, 188, 25-52; f) K. T. Kang, H. Y. Song, H. C. Seo, Chem. Lett. 1985, 617-620; g) H. J. R. de Boer, O. S. Akkerman, F. Bickelhaupt, J. Organomet. Chem. 1987, 321, 291-306; h) W. J. Leigh, T. R. Owens, Can. J. Chem. 2000, 78, 1459-1468; i) K. Matsumoto, H. Matsuoka, J. Polym. Sci. Pol. Chem. 2005, 43, 3778-3787.

- [6] For reviews, see: a) L. J. Li, Y. B. Zhang, L. Gao, Z. L. Song, *Tetrahedron Lett.* 2015, 56, 1466-1473; b) Q. C. Mu, J. Chen, C. G. Xia, L. W. Xu, *Coordin. Chem. Rev.* 2018, 374, 93-113. For selected progress, see: c) N. Ishida, W. Ikemoto, M. Murakami, J. Am. Chem. Soc. 2014, 136, 5912-5915; d) Q. W. Zhang, K. An, L. C. Liu, S. X. Guo, C. R. Jiang, H. F. Guo, W. He, Angew. Chem. Int. Ed. 2016, 55, 6319-6323; Angew. Chem. 2016, 128, 6427-6431; e) S. Okumura, F. Sun, N. Ishida, M. Murakami, J. Am. Chem. Soc. 2017, 139, 12414-12417; f) N. Ishida, S. Okumura, T. Kawasaki, M. Murakami, Angew. Chem. Int. Ed. 2018, 57, 11399-11403; Angew. Chem. 2018, 130, 11569-11573; g) W. T. Zhao, F. Gao, D. B. Zhao, Angew. Chem. Int. Ed. 2018, 57, 6329-6332; Angew. Chem. 2018, 130, 6437-6440.
- [7] H. Sakurai, T. Imai, Chem. Lett. 1975, 4, 891-982.
- [8] Y. Takeyama, K. Nozaki, K. Matsumoto, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1991, 64, 1461-1466.
- [9] R. Shintani, K. Moriya, T. Hayashi, Org. Lett. 2012, 14, 2902-2905.
- [10] For reviews, see: a) M. Oestreich, S. Rendler, Angew, Chem. Int. Ed. 2005, 44, 1661-1664; Angew. Chem. 2005, 117, 1688-1691; b) M. Oestreich, Chem. Eur. J. 2006, 12, 30-37; c) M. Oestreich, Synlett 2007, 2007, 1629-1643; d) L. W. Xu, L. Li, G. Q. Lai, J. X. Jiang, Chem. Soc. Rev. 2011, 40, 1777-1790; e) L. W. Xu, Angew. Chem. Int. Ed. 2012, 51, 12932-12934; Angew. Chem. 2012, 124, 13106-13108; f) Y. Wu, L. Gao, Z. L. Song, Chem. Bull. 2015, 78, 676-680; g) R. Shintani, Asian J. Org. Chem. 2015, 4, 510-514; h) J. O. Bauer, C. Strohmann, Eur. J. Inorg. Chem. 2016, 2868-2881; i) Y. M. Cui, Y. Lin, L. W. Xu, Coordin. Chem. Rev. 2017, 330, 37-52. For selected progress, see: j) A. Nakazaki, T. Nakai, K. Tomooka, Angew. Chem. Int. Ed. 2006, 45, 2235-2238; Angew. Chem. 2006, 118, 2293-2296; k) K. Igawa, J. Takada, T. Shimono, K. Tomooka, J. Am. Chem. Soc. 2008, 130, 16132-16133; 1) Y. Yasutomi, H. Suematsu, T. Katsuki, J. Am. Chem. Soc. 2010, 132, 4510-4511; m) K. Igawa, D. Yoshihiro, N. Ichikawa, N. Kokan, K. Tomooka, Angew. Chem. Int. Ed. 2012, 51, 12745-12748; Angew. Chem. 2012, 124, 12917-12920; n) R. Shintani, H. Otomo, K. Ota, T. Hayashi, J. Am. Chem. Soc. 2012, 134, 7305-7308; o) J. O. Bauer, C. Strohmann, Angew. Chem. Int. Ed. 2014, 53, 720-724; Angew. Chem. 2014, 126, 738-742; p) T. T. Metsänen, P Hrob árik, M. Oestreich, J. Am. Chem. Soc. 2014, 136, 6912-6915; q) R. Shintani, C. Takagi, T. Ito, M. Naito, K. Nozaki, Angew. Chem. Int. Ed. 2015, 54, 1616-1620; Angew. Chem. 2015, 127, 1636-1640; r) R. Shintani, R. Takano, K. Nozaki, Chem. Sci. 2016, 7, 1205-1211; s) X. F. Bai, J. F. Zou, M. Y. Chen, Z. Xu, L. Li, Y. M. Cui, Z. J. Zheng, L. W. Xu, Chem-Asian J. 2017, 12, 1730-1735; t) Q. W. Zhang, K. An, L. C. Liu, Q. Zhang, H. F. Guo, W. He, Angew. Chem. Int. Ed. 2017, 56, 1125-1129; Angew. Chem. 2017, 129, 1145-1149; u) G. Zhan, H. L. Teng, Y. Luo, S. J. Lou, M. Nishiura, Z. M. Hou, Angew. Chem. Int. Ed. 2018, 57, 12342-12346; Angew. Chem. 2018, 130, 12522-12526; v) H. A. Wen, X. L. Wan, Z. Huang, Angew. Chem. Int. Ed. 2018 57, 6319-6323 Angew. Chem. 2018 130, 6427-6431.
- [11] R. Shintani, K. Moriya, T. Hayashi, J. Am. Chem. Soc. 2011, 133, 16440-16443.
- [12] K. Matsumoto, H. Hasegawa, H. Matsuoka, *Tetrahedron* 2004, 60, 7197-7204. The SCBs used in this work were prepared by modifying the procedure reported in this reference.
- [13] See Supporting Information (Table S1) for details.
- [14] J. F. Young, J. A. Osborn, F. H. Jardine and G. Wilkinson, Chem. Commun. 1965, 131–132.
- [15] See Supporting Information (Table S2) for details.
- [16] a) T. R. Wu, L. X. Shen, J. M. Chong, Org. Lett. 2004, 6, 2701-2704; b)
 H. Morimoto, T. Tsubogo, N. D. Litvinas, J. F. Hartwig, Angew. Chem. Int. Ed. 2011, 50, 3793-3798; Angew. Chem. 2011, 123, 3877-3882.
- [17] Reaction of 1a with phenylacetylene in CDCl₃ under otherwise identical conditions provided 3a in 70% yield.

Entry for the Table of Contents (Please choose one layout)

Organosilanes

Hua Chen, Yi Chen, Xiaoxiao Tang, Shunfa Liu, Runping Wang, Tianbao Hu, Lu Gao, and Zhenlei Song* Page – Page

Rhodium-catalyzed Reaction of Silacyclobutanes with Unactivated Alkynes to Afford Silacyclohexenes**

A Rh-catalyzed reaction of silacyclobutanes (SCBs) with unactivated alkynes has been developed to form silacyclohexenes with high chemoselectivity. The approach tolerates a range of functionalities on the alkynes and silicon of SCBs. Good enantioselectivity at the stereogenic silicon center was achieved using a newly synthesized chiral phosphoramidite ligand. The resulting silacyclohexenes are useful scaffolds for synthesizing structurally attractive silacyclic compounds.

