Contents lists available at ScienceDirect

# European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech



# Synthesis, antimicrobial and cytotoxic activities of 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles

V. Padmavathi<sup>a,\*</sup>, G. Sudhakar Reddy<sup>a</sup>, A. Padmaja<sup>a</sup>, P. Kondaiah<sup>b</sup>, Ali-Shazia<sup>b</sup>

<sup>a</sup> Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh, India
<sup>b</sup> Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, Karnataka, India

#### ARTICLE INFO

Article history: Received 10 July 2008 Received in revised form 15 October 2008 Accepted 17 October 2008 Available online 1 November 2008

Keywords: 1,3,4-Oxadiazoles 1,3,4-Thiadiazoles 1,2,4-Triazoles Antimicrobial activity Cytotoxicity

#### ABSTRACT

A new class of 1,3,4-oxadiazoles were prepared from acid hydrazides on treatment with different carboxylic acids in the presence of phosphorus oxychloride. Interconversion of oxadiazoles to thiadiazoles and triazoles was carried out with appropriate reagents. The antimicrobial and cytotoxic activities of compounds **7a–d** to **12a–d** were tested. Compounds **10d** and **12d** showed pronounced antimicrobial activity. Further, compound **10d** exhibited maximum cytotoxicity.

© 2008 Elsevier Masson SAS. All rights reserved.

## 1. Introduction

In the past years considerable evidence has been accumulated to demonstrate the efficacy of substituted 1,3,4-oxadiazoles in antibacterial, antifungal and HIV activities [1,2]. The advent of sulfur drugs and the later discovery of mesoionic compounds in fact accelerated the rate of progress in the field of sulfur containing heterocycles. Substituted oxadiazole and thiadiazole derivatives are potent cyclooxygenase/5-lipooxygenase inhibitors [3–7]. This novel dual inhibitory activity of the enzyme pathways hold promise as antiinflammatory agents with an improved efficacy. Symmetrical oxadiazoles were found to be effective insecticides towards houseflies, faceflies and hornflies [8]. The therapeutic effects of 1,2,4-triazole derivatives have been studied for a number of pathological conditions including inflammation, cancer, pain, tuberculosis and hypertension [9-17]. In fact, remarkable progress has been made by our group in the development of biologically potent heterocycles [18-22]. Replacement of -O- by -S- or -NHin some heterocycles was reported viz., Bordners [23] preparation of pyrroles from furan and the transformation of epoxides to episulfides by the action of thiocyanates or thiourea [24-26]. However, reports about the conversion of 1,3,4-oxadiazoles to 1,3,4-thiadiazoles and 1,2,4-triazoles are relatively less [27,28]. The

present communication deals with the synthesis of 2,5-diaryloxadiazoles and their conversion to thiadiazoles and triazoles and also the biological evaluation for antimicrobial and cytotoxic activities.

# 2. Chemistry

The arylsulfonylacetic acid methyl esters **3a-d** and benzylsulfonylacetic acid methyl esters **4a-d** were prepared from arylsulfonylacetic acids **1a-d** and benzylsulfonylacetic acids **2a-d** by esterification. The corresponding acid hydrazides 5a-d and 6a**d** were obtained by the reaction of 3/4 with hydrazine hydrate in the presence of pyridine. The acid hydrazides on treatment with different carboxylic acids in the presence of phosphorus oxychloride afforded 2-(arylsulfonylmethyl)-5-aryl-1,3,4-oxadiazoles 7a-d and 2-(arylmethanesulfonylmethyl)-5-aryl-1,3,4-oxadiazoles 8a-d (Scheme 1). Compounds 7a-d and 8a-d were treated with two-fold excess thiourea in tetrahydrofuran. The reaction mixture indicated two spots on TLC which were separated and identified as 2-(arylsulfonylmethyl)-5-aryl-1,3,4-thiadiazoles **9a-d** and 2-(arylmethanesulfonylmethyl)-5-aryl-1,3,4-thiadiazoles 10a-d as major products apart from **7a-d** and **8a-d** as minor ones, respectively. On the other hand, the reaction of 7a-d and 8a-d with excess hydrazine produced 3-(arylsulfonylmethyl)-5-phenyl-4H-1,2,4-triazol-4-amines **11a-d** and 3-(arylmethanesulfonylmethyl)-5phenyl-4H-1,2,4-triazol-4-amines 12a-d (Scheme 1).





<sup>\*</sup> Corresponding author. Tel.: +91 877 2289303; fax: +91 877 2249532. *E-mail address:* vkpuram2001@yahoo.com (V. Padmavathi).

<sup>0223-5234/\$ –</sup> see front matter @ 2008 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.ejmech.2008.10.012



Scheme 1.

# 3. Biology

#### 3.1. Antimicrobial activity

Compounds **7a–d** to **12a–d** were tested for *in vitro* antimicrobial activity against the Gram-positive bacteria *Staphylococcus aureus* (NCIM No. 5021), *Bacillus subtilis* (NCIM No. 2063), the Gramnegative bacteria *Klebsiella pneumoniae* (NCIM No. 2957), *Proteus vulgaris* (NCIM No. 2027) and fungi *Fusarium solani* (NCIM No. 1330), *Curvularia lunata* (NCIM No. 716) and *Aspergillus niger* (NCIM No. 596). The primary screen was carried out by agar disc-diffusion method [29] using nutrient agar medium. The minimum inhibitory concentration for the most active compounds **10d** and **12d** against the same microorganisms used in the preliminary screening was carried out using microdilution susceptibility method [30]. Chloramphenicol and ketoconazole were used as control drugs. The observed data on the antimicrobial activity of compounds and control drugs are given in Tables 1–3.

v. H<sub>2</sub>NNH<sub>2</sub>·H<sub>2</sub>O / n-butanol

#### 3.2. MTT assay for cell viability

Toxicity of compounds **8d**, **10d** and **12d** in different cell lines in the presence of 10% and 0.2% FBS, respectively, was determined using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide reduction assay [31,32]. The compounds were dissolved in DMSO at 10 mM concentration and stored at -20 °C. The dilutions were made in culture medium before treatment.

Nearly 5000 cells/well were plated in 96 well plates. After 3-4 h, the compounds were added to the cells at different concentrations. After 48 h of incubation, 20  $\mu$ l of MTT solution was added and the cells

were incubated further for 4 h. Blue formazan crystals were seen in well when checked under microscope. Media was removed and 200  $\mu$ l of DMSO was added per well. The absorbance was measured using microtiter plate reader. Control treatments were performed with DMSO. The % viability was then calculated as [ $A_{590}$ (treated cells) – background]/[ $A_{590}$ (untreated cells) – background]  $\times$  100.

#### 4. Results and discussion

We have synthesized a series of heterocycles, 2-(arylsulfonylmethyl)-5-aryl-1,3,4-oxadiazoles **7a–d**, 2-(arylmethanesulfonylmethyl)-5-aryl-1,3,4-oxadiazoles **8a–d**, 2-(arylsulfonylmethyl)-5-aryl-1,3, 4-thiadiazoles **9a–d**, 2-(arylmethanesulfonylmethyl)-5-aryl-1,3,4thiadiazoles **10a–d**, 3-(arylsulfonylmethyl)-5-aryl-4*H*-1,2,4-triazol-4amines **11a–d** and 3-(arylmethanesulfonylmethyl)-5-aryl-4*H*-1,2, 4-triazol-4-amines **12a–d** as illustrated in Scheme 1. Structures of all the compounds were established on the basis of elemental analyses, IR, <sup>1</sup>H NMR and <sup>13</sup>C NMR spectral data.

#### 4.1. Biological results

The results of preliminary antibacterial testing of compounds **7a–d** to **12a–d** are shown in Table 1. The results revealed that 2-(arylmethanesulfonylmethyl)-5-aryl-1,3,4-thiadiazoles **10a–d**, 3-(arylmethanesulfonylmethyl)-5-aryl-4*H*-1,2,4-triazol-4-amines **12 a–d** exhibited high activity (22–39 mm) on both Gram (+ve) and Gram (–ve) bacteria. In fact, compounds **10d** and **12d** showed pronounced activity (31–39 mm) towards Gram (+ve) bacteria. Compounds 2-(arylmethanesulfonylmethyl)-5-aryl-1,3,4-oxadiazoles **8a–d**, 2-(arylsulfonylmethyl)-5-aryl-1,3,4-thiadiazoles **9a–d**,

# Table 1Antibacterial activity of 7–12.

| Compound        | Concentration | Zone of inhibition (mm)  |                      |                          |                     |  |
|-----------------|---------------|--------------------------|----------------------|--------------------------|---------------------|--|
| ·               | (µg/disc)     | Gram-positive bacteria   |                      | Gram-negative bacteria   |                     |  |
|                 |               | Staphylococcus<br>aureus | Bacillus<br>subtilis | Klebsiella<br>pneumoniae | Proteus<br>vulgaris |  |
| 7a              | 100           | 12                       | 11                   | 16                       | 14                  |  |
| <i>, u</i>      | 200           | 15                       | 13                   | 18                       | 17                  |  |
| 7b              | 100           | 13                       | 16                   | 12                       | 14                  |  |
|                 | 200           | 16                       | 17                   | 15                       | 17                  |  |
| 7c              | 100           | 15                       | 15                   | 14                       | 12                  |  |
|                 | 200           | 18                       | 17                   | 16                       | 15                  |  |
| 7d              | 100           | 15                       | 16                   | 14                       | 16                  |  |
|                 | 200           | 18                       | 17                   | 17                       | 19                  |  |
| 8a              | 100           | 16                       | 14                   | 15                       | 12                  |  |
|                 | 200           | 18                       | 17                   | 18                       | 15                  |  |
| 8b              | 100           | 17                       | 15                   | 14                       | 15                  |  |
|                 | 200           | 20                       | 18                   | 16                       | 17                  |  |
| 8c              | 100           | 18                       | 18                   | 16                       | 15                  |  |
|                 | 200           | 20                       | 19                   | 18                       | 17                  |  |
| 8d              | 100           | 20                       | 19                   | 17                       | 15                  |  |
|                 | 200           | 23                       | 21                   | 20                       | 18                  |  |
| 9a              | 100           | 19                       | 15                   | 16                       | 18                  |  |
|                 | 200           | 21                       | 17                   | 18                       | 20                  |  |
| 9b              | 100           | 20                       | 15                   | 17                       | 16                  |  |
|                 | 200           | 23                       | 18                   | 21                       | 19                  |  |
| 9c              | 100           | 20                       | 18                   | 15                       | 16                  |  |
|                 | 200           | 23                       | 23                   | 17                       | 19                  |  |
| 9d              | 100           | 21                       | 19                   | 16                       | 19                  |  |
|                 | 200           | 23                       | 23                   | 19                       | 21                  |  |
| 10a             | 100           | 24                       | 22                   | 17                       | 16                  |  |
|                 | 200           | 29                       | 25                   | 22                       | 24                  |  |
| 10b             | 100           | 26                       | 25                   | 19                       | 18                  |  |
|                 | 200           | 29                       | 28                   | 23                       | 22                  |  |
| 10c             | 100           | 28                       | 24                   | 19                       | 17                  |  |
|                 | 200           | 30                       | 28                   | 23                       | 22                  |  |
| 10d             | 100           | 29                       | 27                   | 20                       | 20                  |  |
|                 | 200           | 33                       | 31                   | 24                       | 23                  |  |
| 11a             | 100           | 16                       | 14                   | 15                       | 16                  |  |
|                 | 200           | 18                       | 17                   | 18                       | 18                  |  |
| 11b             | 100           | 17                       | 19                   | 17                       | 16                  |  |
|                 | 200           | 20                       | 22                   | 20                       | 18                  |  |
| 11c             | 100           | 19                       | 17                   | 17                       | 18                  |  |
|                 | 200           | 23                       | 20                   | 19                       | 21                  |  |
| 11d             | 100           | 19                       | 16                   | 18                       | 19                  |  |
|                 | 200           | 23                       | 18                   | 20                       | 20                  |  |
| 12a             | 100           | 22                       | 23                   | 18                       | 17                  |  |
|                 | 200           | 24                       | 26                   | 22                       | 22                  |  |
| 12b             | 100           | 29                       | 30                   | 24                       | 26                  |  |
|                 | 200           | 32                       | 34                   | 28                       | 29                  |  |
| 12c             | 100           | 27                       | 28                   | 27                       | 26                  |  |
|                 | 200           | 31                       | 33                   | 29                       | 29                  |  |
| 12d             | 100           | 32                       | 37                   | 33                       | 31                  |  |
|                 | 200           | 37                       | 39                   | 36                       | 34                  |  |
| Chloramphenicol | 100           | 35                       | 38                   | 37                       | 42                  |  |
|                 | 200           | 41                       | 44                   | 42                       | 45                  |  |
|                 |               |                          |                      |                          |                     |  |

| Table 2    |                           |
|------------|---------------------------|
| Antifungal | activity of <b>7–12</b> . |

| Compound     | Concentration | Zone of inhibition (mm) |                      |                      |  |
|--------------|---------------|-------------------------|----------------------|----------------------|--|
|              | (µg/ml)       | Fusarium<br>solani      | Curvularia<br>lunata | Aspergillus<br>niger |  |
| 7a           | 100           | 15                      | 15                   | 14                   |  |
|              | 200           | 18                      | 19                   | 17                   |  |
| 7b           | 100           | 16                      | 18                   | 15                   |  |
|              | 200           | 20                      | 22                   | 17                   |  |
| 7c           | 100           | 16                      | 15                   | 16                   |  |
|              | 200           | 20                      | 17                   | 19                   |  |
| 7d           | 100           | 16                      | 17                   | 15                   |  |
|              | 200           | 19                      | 19                   | 16                   |  |
| 8a           | 100           | 17                      | 18                   | 16                   |  |
|              | 200           | 20                      | 22                   | 17                   |  |
| 8b           | 100           | 17                      | 18                   | 18                   |  |
|              | 200           | 19                      | 23                   | 21                   |  |
| 8c           | 100           | 16                      | 19                   | 17                   |  |
| 0C           | 200           | 19                      | 22                   | 21                   |  |
| 8d           | 100           | 19                      | 16                   | 17                   |  |
| ou           | 200           | 22                      | 10                   | 21                   |  |
| 05           | 100           | 19                      | 15                   | 15                   |  |
| Jd           | 200           | 10                      | 10                   | 17                   |  |
| 01-          | 200           | 22                      | 19                   | 17                   |  |
| 9D           | 100           | 19                      | 18                   | 15                   |  |
| _            | 200           | 22                      | 21                   | 18                   |  |
| 9c           | 100           | 18                      | 19                   | 16                   |  |
|              | 200           | 21                      | 21                   | 19                   |  |
| 9d           | 100           | 20                      | 19                   | 17                   |  |
|              | 200           | 24                      | 22                   | 21                   |  |
| 10a          | 100           | 18                      | 21                   | 16                   |  |
|              | 200           | 20                      | 23                   | 19                   |  |
| 10b          | 100           | 20                      | 19                   | 16                   |  |
|              | 200           | 23                      | 21                   | 19                   |  |
| 10c          | 100           | 24                      | 23                   | 17                   |  |
|              | 200           | 27                      | 25                   | 20                   |  |
| 10d          | 100           | 28                      | 25                   | 20                   |  |
|              | 200           | 31                      | 27                   | 23                   |  |
| 11a          | 100           | 22                      | 20                   | 19                   |  |
|              | 200           | 25                      | 24                   | 22                   |  |
| 11b          | 100           | 23                      | 22                   | 18                   |  |
|              | 200           | 25                      | 25                   | 21                   |  |
| 11c          | 100           | 21                      | 22                   | 19                   |  |
|              | 200           | 24                      | 25                   | 22                   |  |
| 11d          | 100           | 24                      | 23                   | 20                   |  |
| 110          | 200           | 27                      | 25                   | 20                   |  |
| 12a          | 100           | 19                      | 23                   | 17                   |  |
| 12a          | 200           | 21                      | 22                   | 21                   |  |
| 126          | 200           | 21                      | 24<br>19             | 21                   |  |
| 120          | 100           | 21                      | 18                   | 1/                   |  |
| 12.          | 200           | 23                      | 20                   | 21                   |  |
| 120          | 100           | 24                      | 24                   | 18                   |  |
| 40.1         | 200           | 26                      | 27                   | 20                   |  |
| 12d          | 100           | 29                      | 27                   | 22                   |  |
|              | 200           | 32                      | 31                   | 24                   |  |
| Ketoconazole | 100           | 38                      | 41                   | 36                   |  |
|              | 200           | 42                      | 44                   | 39                   |  |

and 3-(arylsulfonylmethyl)-5-aryl-4*H*-1,2,4-triazol-4-amines **11a–d** displayed moderate to high activity towards Gram (+ve) bacteria (17–23 mm) and moderate activity (15–21 mm) towards Gram (–ve) bacteria. On the other hand, 2-(arylsulfonylmethyl)-5-aryl-1,3,4-oxadiazoles **7a–d** exhibited least activity against both bacteria.

All the test compounds inhibited the spore germination of tested fungi *A. niger, F. solani* and *C. lunata*. Results of the investigation presented in Table 2 revealed that all the compounds except **7a–d** possess relatively high inhibitory effect on *F. solani* and *C. lunata* than on *A. niger*. Further, compounds 2-(4-chlorobenzylsulfonylmethyl)-5-(2-chlorophenyl)-1,3,4-thiadiazole **10d** and 3-(4-chlorobenzylsulfonylmethyl)-5-(2-chlorophenyl)-4*H*-1,2,4-triazol-4-amine **12d** displayed greater activity.

The MIC values were determined as the lowest concentration that completely inhibited visible growth of the microorganisms (Table 3). The structure–antimicrobial activity relationship of the synthesized compounds revealed that the compounds having oxadiazole exhibited least activity when compared with compounds having triazole and thiadiazole moieties. Besides, the compounds with benzylsulfonyl group were the most active. The presence of chloro substituent enhances the activity of the compounds. The maximum activity was observed with compounds **10d** and **12d** (Table 3).

Compounds **8d**, **10d** and **12d**, were tested for their cytotoxic potential using A549 (lung adenocarcinoma) cells in the presence of fetal bovine serum. As shown in Fig. 1 **10d** showed maximum cytotoxicity at a concentration of 250  $\mu$ M, with an EC<sub>50</sub> of 150  $\mu$ M approximately. The other compounds **12d** and **8d** showed appreciable cytotoxicity of about 50% of the vehicle control at a concentration of 250  $\mu$ M. The effect of these compounds was similar in the presence of 0.2% serum (data not shown).

| Table 3                                               |
|-------------------------------------------------------|
| Minimum inhibitory concentration (MIC), µg/ml of 7-12 |

| Compound        | Minimum inhi | Minimum inhibitory concentration (MIC), µg/ml |               |             |           |           |          |  |
|-----------------|--------------|-----------------------------------------------|---------------|-------------|-----------|-----------|----------|--|
|                 | S. aureus    | B. subtilis                                   | K. pneumoniae | P. vulgaris | F. solani | C. lunata | A. niger |  |
| 7a              | _            | -                                             | _             | -           | _         | _         | -        |  |
| 7b              | -            | -                                             | -             | -           | -         | -         | -        |  |
| 7c              | -            | -                                             | -             | -           | 400       | -         | -        |  |
| 7d              | 400          | 400                                           | -             | -           | 400       | 400       | -        |  |
| 8a              | 400          | -                                             | -             | -           | 400       | -         | -        |  |
| 8b              | 400          | -                                             | -             | -           | 400       | 400       | -        |  |
| 8c              | 400          | -                                             | -             | -           | 400       | 400       | -        |  |
| 8d              | 200          | 400                                           | -             | -           | 200       | 200       | 200      |  |
| 9a              | 400          | 400                                           | -             | -           | 400       | 400       | -        |  |
| 9b              | 400          | 400                                           | -             | -           | 400       | 400       | 400      |  |
| 9c              | 400          | 400                                           | -             | -           | 400       | 400       | 400      |  |
| 9d              | 200          | 200                                           | 400           | 400         | 200       | 200       | 200      |  |
| 10a             | 200          | 200                                           | 200           | 400         | 200       | 200       | 200      |  |
| 10b             | 100          | 200                                           | 200           | 200         | 200       | 200       | 200      |  |
| 10c             | 100          | 200                                           | 200           | 200         | 200       | 200       | 200      |  |
| 10d             | 50           | 100                                           | 100           | 200         | 100       | 100       | 100      |  |
| 11a             | 400          | 400                                           | -             | -           | 400       | 400       | -        |  |
| 11b             | 400          | 200                                           | -             | -           | 400       | 200       | -        |  |
| 11c             | 400          | 400                                           | -             | 400         | 200       | 200       | 200      |  |
| 11d             | 400          | 400                                           | 400           | 400         | 200       | 200       | 400      |  |
| 12a             | 400          | 400                                           | 200           | 200         | 200       | 200       | 400      |  |
| 12b             | 100          | 200                                           | 200           | 200         | 100       | 100       | 100      |  |
| 12c             | 100          | 100                                           | 200           | 200         | 100       | 200       | 200      |  |
| 12d             | 25           | 25                                            | 50            | 100         | 100       | 50        | 50       |  |
| Chloramphenicol | 6.25         | 6.25                                          | 6.25          | 12.5        | -         | -         | -        |  |
| Ketoconazole    | -            | -                                             | -             | -           | 12.5      | 6.25      | 6.25     |  |

## 5. Conclusion

A new class of heterocycles, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles were developed adopting simple, elegant and well-versed methodologies. We have also evaluated preliminary antimicrobial activity and cytotoxic activity of the compounds. The maximum antimicrobial activity was observed with **10d** and **12d**. Compound **10d** showed maximum cytotoxic activity.

# 6. Experimental

#### 6.1. Chemistry

Melting points were determined in open capillaries on a Mel-Temp apparatus and are uncorrected. The purity of the compounds was checked by TLC (silica gel H, BDH, ethyl acetate/ hexane, 1:3). The IR spectra were recorded on a Thermo Nicolet IR 200 FT-IR spectrometer as KBr pellets and the wave numbers were given in cm<sup>-1</sup>. The <sup>1</sup>H NMR spectra were recorded in CDCl<sub>3</sub>/ DMSO-*d*<sub>6</sub> on a Varian EM-360 spectrometer (300 MHz). The <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub>/DMSO-*d*<sub>6</sub> on a Varian VXR spectrometer operating at 75.5 MHz. All chemical shifts are reported in  $\delta$  (ppm) using TMS as an internal standard. The microanalyses were performed on a Perkin–Elmer 240C elemental analyzer. The starting compounds arylsulfonylacetic acid (1) and arylmethanesulfonylacetic acid (2) were prepared by the literature procedure [33–35].

# 6.1.1. General procedure for the synthesis of arylsulfonylacetic acid methyl esters **3a–d**/arylmethanesulfonylacetic acid methyl esters **4a–d**

A solution of 1/2 (10 mmol) in methanol (10 ml) and conc. H<sub>2</sub>SO<sub>4</sub> (1 ml) was refluxed on steam bath for 8–10 h. The contents of the flask were cooled and poured onto crushed ice. The solid separated was collected by filtration, washed with cold water and dried. The crude product was recrystallized from methanol.

6.1.2. General procedure for the synthesis of arylsulfonylacetic acid hydrazides **5a–d**/arylmethanesulfonylacetic acid hydrazides **6a–d** 

To a solution of 3/4 (10 mmol) in methanol (6 ml), hydrazine hydrate (11 mmol) and 3 drops of pyridine were added and refluxed for 6–7 h. The reaction mixture was cooled and the solid separated was collected by filtration, dried and recrystallized from methanol.

6.1.3. General procedure for the synthesis of 2-(arylsulfonylmethyl)-5-aryl-1,3,4-oxadiazoles **7a-d**/2-(arylmethanesulfonylmethyl)-5aryl-1,3,4-oxadiazoles **8a-d** 

A mixture of 5/6 (10 mmol), substituted aromatic carboxylic acid (10 mmol) and POCl<sub>3</sub> (7 ml) was heated under reflux for 5–6 h. The



**Fig. 1.** Cytotoxic activity of compounds **8d**, **10d** and **12d** tested in A549 cells by MTT assay. A549 cells are highly invasive lung carcinoma cells. Cells were cultured in a medium containing DMEM, 10% fetal bovine serum and penicillin–streptomycin. Cells were plated in a 96 well tissue culture plate at a density of  $3 \times 10^4$  per well. After cells attached (2–4 h), the compounds in indicated concentrations were added to the wells, in DMSO. The bars reflect the viable cells in each treatment. Cells, cells alone without any treatment, DMSO denotes the vehicle control. The experiment was done in duplicate with triplicate readings of each experiment.

excess POCl<sub>3</sub> was removed under reduced pressure and the residue was poured onto crushed ice. The resulting precipitate was filtered, washed with saturated sodium bicarbonate solution and then with water, dried and recrystallized from ethanol.

6.1.3.1. 2-(Phenylsulfonylmethyl)-5-phenyl-1,3,4-oxadiazole **7a**. White solid (3.00 g, 74%); m.p. 75–77 °C; IR (KBr): 1138, 1335 (SO<sub>2</sub>), 1632 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  4.29 (s, 2H, CH<sub>2</sub>), 7.18–7.49 (m, 10H, Ar-H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  55.1 (CH<sub>2</sub>SO<sub>2</sub>), 157.1 (C<sub>2</sub>), 164.3 (C<sub>5</sub>), 126.8, 127.6, 128.1, 128.7, 129.2, 129.6, 134.5, 136.8 ppm (aromatic carbons). Anal. Calcd. for C<sub>15</sub>H<sub>12</sub>N<sub>2</sub>O<sub>3</sub>S: C, 59.99; H, 4.03; N, 9.33; Found: C, 60.10; H, 4.07; N, 9.42%.

6.1.3.2. 2-(Phenylsulfonylmethyl)-5-(2-chlorophenyl)-1,3,4-oxadiazole **7b**. White solid (3.34 g, 77%); m.p. 68–70 °C; IR (KBr): 1125, 1332 (SO<sub>2</sub>), 1625 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  4.24 (s, 2H, CH<sub>2</sub>), 7.24–7.52 (m, 9H, Ar-H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  54.4 (CH<sub>2</sub>SO<sub>2</sub>), 157.8 (C<sub>2</sub>), 164.7 (C<sub>5</sub>), 124.5, 125.2, 126.7, 127.8, 128.6, 129.2, 130.5, 133.9 ppm (aromatic carbons). Anal. Calcd. for C<sub>15</sub>H<sub>11</sub>ClN<sub>2</sub>O<sub>3</sub>S: C, 53.82; H, 3.31; N, 8.37; Found: C, 53.89; H, 3.33; N, 8.41%.

6.1.3.3. 2-(4-Chlorophenylsulfonylmethyl)-5-phenyl-1,3,4-oxadiazole **7c.** White solid (3.34 g, 79%); m.p. 79–81 °C; IR (KBr): 1128, 1334 (SO<sub>2</sub>), 1627 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  4.32 (s, 2H, CH<sub>2</sub>), 7.16–7.57 (m, 9H, Ar-H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  55.0 (CH<sub>2</sub>SO<sub>2</sub>), 157.5 (C<sub>2</sub>), 165.8 (C<sub>5</sub>), 126.8, 127.2, 128.3, 128.6, 129.2, 130.4, 132.2, 136.6 ppm (aromatic carbons). Anal. Calcd. for C<sub>15</sub>H<sub>11</sub>ClN<sub>2</sub>O<sub>3</sub>S: C, 53.82; H, 3.31; N, 8.37; Found: C, 53.91; H, 3.35; N, 8.32%.

6.1.3.4. 2-(4-Chlorophenylsulfonylmethyl)-5-(2-chlorophenyl)-1,3,4oxadiazole **7d**. Colourless crystals (3.69 g, 82%); m.p. 88–90 °C; IR (KBr): 1126, 1330 (SO<sub>2</sub>), 1629 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  4.25 (s, 2H, CH<sub>2</sub>), 7.18–7.90 (m, 8H, Ar-H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  54.8 (CH<sub>2</sub>SO<sub>2</sub>), 157.7 (C<sub>2</sub>), 164.8 (C<sub>5</sub>), 126.3, 127.1, 127.6, 128.5, 129.2, 133.2, 135.4, 136.2, 137.4, 138.5 ppm (aromatic carbons). Anal. Calcd. for C<sub>15</sub>H<sub>10</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>3</sub>S: C, 48.79; H, 2.73; N, 7.59; Found: C, 48.73; H, 2.75; N, 7.65%.

6.1.3.5. 2-(*Benzylsulfonylmethyl*)-5-*phenyl*-1,3,4-*oxadiazole* **8a**. White solid (3.14 g, 79%); m.p. 85–87 °C; IR (KBr): 1122, 1334 (SO<sub>2</sub>), 1620 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  4.45 (s, 2H, CH<sub>2</sub>), 4.48 (s, 2H, Ar-CH<sub>2</sub>), 7.28–7.62 (m, 10H, Ar-H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  46.5 (CH<sub>2</sub>SO<sub>2</sub>), 57.4 (ArCH<sub>2</sub>), 157.3 (C<sub>2</sub>), 164.1 (C<sub>5</sub>), 127.4, 128.1, 128.9, 129.5, 131.2, 131.3, 134.8, 135.7 ppm (aromatic carbons). Anal. Calcd. for C<sub>16</sub>H<sub>14</sub>N<sub>2</sub>O<sub>3</sub>S: C, 61.13; H, 4.49; N, 8.91; Found: C, 61.05; H, 4.43; N, 8.99%.

6.1.3.6. 2-(*Benzylsulfonylmethyl*)-5-(2-chlorophenyl)-1,3,4-oxadiazole **8b**. White solid (3.48 g, 74%); m.p. 99–101 °C; IR (KBr): 1134, 1328 (SO<sub>2</sub>), 1632 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  4.44 (s, 2H, CH<sub>2</sub>), 4.47 (s, 2H, Ar-CH<sub>2</sub>), 7.32–7.88 (m, 9H, Ar-H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  47.8 (CH<sub>2</sub>SO<sub>2</sub>), 57.6 (ArCH<sub>2</sub>), 157.9 (C<sub>2</sub>), 164.5 (C<sub>5</sub>), 125.4, 126.4, 128.1, 129.5, 130.7, 132.1, 133.7, 139.2 ppm (aromatic carbons). Anal. Calcd. for C<sub>16</sub>H<sub>13</sub>ClN<sub>2</sub>O<sub>3</sub>S: C, 55.09; H, 3.76; N, 8.03; Found: C, 55.15; H, 3.80; N, 8.11%.

6.1.3.7. 2-(4-Chlorobenzylsulfonylmethyl)-5-phenyl-1,3,4-oxadiazole **8c**. White solid (3.48 g, 72%); m.p. 112–114 °C; IR (KBr) 1130, 1336 (SO<sub>2</sub>), 1625 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  4.46 (s, 2H, CH<sub>2</sub>), 4.50 (s, 2H, Ar-CH<sub>2</sub>), 7.39–7.90 (m, 9H, Ar-H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  47.3 (CH<sub>2</sub>SO<sub>2</sub>), 56.5 (ArCH<sub>2</sub>), 158.1 (C<sub>2</sub>), 164.2 (C<sub>5</sub>), 125.3, 125.9, 126.7, 127.4, 129.1, 131.3, 137.8, 138.3 ppm (aromatic carbons). Anal. Calcd. for C<sub>16</sub>H<sub>13</sub>ClN<sub>2</sub>O<sub>3</sub>S: C, 55.09; H, 3.76; N, 8.03; Found: C, 55.03; H, 3.81; N, 8.09%.

6.1.3.8. 2-(4-Chlorobenzylsulfonylmethyl)-5-(2-chlorophenyl)-1,3,4oxadiazole **8d**. White crystals (3.83 g, 79%); m.p. 118–120 °C; IR (KBr): 1126, 1320 (SO<sub>2</sub>), 1630 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  4.47 (s, 2H, CH<sub>2</sub>), 4.49 (s, 2H, Ar-CH<sub>2</sub>), 7.41–8.13 (m, 8H, Ar-H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  46.8 (CH<sub>2</sub>SO<sub>2</sub>), 57.5 (ArCH<sub>2</sub>), 157.5 (C<sub>2</sub>), 164.7 (C<sub>5</sub>), 122.1, 125.5, 127.1, 127.2, 129.5, 131.3, 131.4, 132.4, 133.0, 133.3, 135.8 ppm (aromatic carbons). Anal. Calcd. for C<sub>16</sub>H<sub>12</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>3</sub>S: C, 50.14; H, 3.16; N, 7.31; Found: C, 50.21; H, 3.14; N, 7.35%.

# 6.1.4. General procedure for the synthesis of 2-(arylsulfonylmethyl)-5-aryl-1,3,4-thiadiazoles **9a-d**/2-(arylmethanesulfonylmethyl)-5aryl-1,3,4-thiadiazoles **10a-d**

In a sealed test tube, a mixture of 7/8 (5 mmol), thiourea (20 mmol) and tertahydrofuran (5 ml) was taken and heated at 120–150 °C in an oil bath for 24–30 h. After the reaction was completed, it was extracted with dichloromethane. The organic layer was washed with water, brine solution and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The resultant solid was recrystallized from methanol.

6.1.4.1. 2-(*Phenylsulfonylmethyl*)-5-*phenyl*-1,3,4-*thiadiazole* **9a**. White solid (1.58 g, 64%); m.p. 174–176 °C; IR (KBr): 1133, 1327 (SO<sub>2</sub>), 1632 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>)  $\delta$  4.45 (s, 2H, CH<sub>2</sub>), 7.14–7.42 (m, 10H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>)  $\delta$  54.1 (CH<sub>2</sub>SO<sub>2</sub>), 162.4 (C<sub>2</sub>), 167.5 (C<sub>5</sub>), 125.4, 126.1, 127.3, 128.7, 129.8, 131.7, 134.2, 138.1 ppm (aromatic carbons). Anal. Calcd. for C<sub>15</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub>: C, 56.94; H, 3.82; N, 8.85; Found: C, 56.84; H, 3.81; N, 8.93%.

6.1.4.2. 2-(Phenylsulfonylmethyl)-5-(2-chlorophenyl)-1,3,4-thiadiazole **9b**. White solid (1.75 g, 65%); m.p. 185–187 °C; IR (KBr): 1135, 1333 (SO<sub>2</sub>), 1635 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  4.50 (s, 2H, CH<sub>2</sub>), 7.26–7.83 (m, 9H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  54.5 (CH<sub>2</sub>SO<sub>2</sub>), 163.3 (C<sub>2</sub>), 169.4 (C<sub>5</sub>), 125.5, 126.4, 126.8, 127.8, 129.5, 131.3, 134.5, 136.2 ppm (aromatic carbons). Anal. Calcd. for C<sub>15</sub>H<sub>11</sub>ClN<sub>2</sub>O<sub>2</sub>S<sub>2</sub>: C, 51.35; H, 3.16; N, 7.98; Found: C, 51.43; H, 3.18; N, 8.04%.

6.1.4.3. 2-(4-Chlorophenylsulfonylmethyl)-5-phenyl-1,3,4-thiadiazole **9c**. White crystals (1.75 g, 68%); m.p. 169–171 °C; IR (KBr): 1130, 1328 (SO<sub>2</sub>), 1628 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  4.48 (s, 2H, CH<sub>2</sub>), 7.21–7.77 (m, 9H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  54.8 (CH<sub>2</sub>SO<sub>2</sub>), 163.5 (C<sub>2</sub>), 167.5 (C<sub>5</sub>), 126.5, 128.9, 129.2, 129.6, 130.5, 130.7, 131.3, 133.5 ppm (aromatic carbons). Anal. Calcd. for C<sub>15</sub>H<sub>11</sub>ClN<sub>2</sub>O<sub>2</sub>S<sub>2</sub>: C, 51.35; H, 3.16; N, 7.98; Found: C, 51.40; H, 3.19; N, 8.02%.

6.1.4.4. 2-(4-Chlorophenylsulfonylmethyl)-5-(2-chlorophenyl)-1,3,4thiadiazole **9d**. White solid (1.92 g, 66%); m.p. 194–196 °C; IR (KBr): 1146, 1328 (SO<sub>2</sub>), 1639 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  4.46 (s, 2H, CH<sub>2</sub>), 7.37–8.21 (m, 8H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  55.1 (CH<sub>2</sub>SO<sub>2</sub>), 162.8 (C<sub>2</sub>), 168.0 (C<sub>5</sub>), 124.9, 128.8, 129.3, 130.8, 131.1, 132.3, 133.4, 134.6, 135.2 ppm (aromatic carbons). Anal. Calcd. for C<sub>15</sub>H<sub>10</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub>: C, 46.76; H, 2.62; N, 7.27; Found: C, 46.83; H, 2.58; N, 7.32%.

6.1.4.5. 2-(*Benzylsulfonylmethyl*)-5-phenyl-1,3,4-thiadiazole **10a**. White solid (1.65 g, 65%); m.p. 188–190 °C; IR (KBr): 1137, 1326 (SO<sub>2</sub>), 1625 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  4.57 (s, 2H, CH<sub>2</sub>), 4.65 (s, 2H, Ar-CH<sub>2</sub>), 7.25–7.62 (m, 10H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  52.8 (CH<sub>2</sub>SO<sub>2</sub>), 58.5 (ArCH<sub>2</sub>), 164.5 (C<sub>2</sub>), 167.9 (C<sub>5</sub>), 127.2, 128.5, 129.3, 129.9, 130.6, 131.5, 131.8, 134.3 ppm (aromatic carbons). Anal. Calcd. for C<sub>16</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub>: C, 58.16; H, 4.27; N, 8.48; Found: C, 58.13; H, 4.31; N, 8.40%.

6.1.4.6. 2-(Benzylsulfonylmethyl)-5-(2-chlorophenyl)-1,3,4-thiadiazole **10b.** White solid (1.82 g, 68%); m.p. 181–183 °C; IR (KBr): 1128, 1313 (SO<sub>2</sub>), 1634 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  4.52 (s, 2H, CH<sub>2</sub>), 4.60 (s, 2H, Ar-CH<sub>2</sub>), 7.29–7.68 (m, 9H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  51.0 (CH<sub>2</sub>SO<sub>2</sub>), 57.8 (ArCH<sub>2</sub>), 163.7 (C<sub>2</sub>), 167.5 (C<sub>5</sub>), 128.6, 129.2, 129.8, 130.2, 132.4, 133.1, 134.6, 134.9 ppm (aromatic carbons). Anal. Calcd. for  $C_{16}H_{13}ClN_2O_2S_2$ : C, 52.67; H, 3.59; N, 7.68; Found: C, 52.60; H, 3.55; N, 7.73%.

6.1.4.7. 2-(4-Chlorobenzylsulfonylmethyl)-5-phenyl-1,3,4-thiadiazole **10c**. White solid (1.82 g, 67%); m.p. 195–197 °C; IR (KBr): 1131, 1321 (SO<sub>2</sub>), 1630 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  4.48 (s, 2H, CH<sub>2</sub>), 4.57 (s, 2H, Ar-CH<sub>2</sub>), 7.30–7.75 (m, 9H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  51.5 (CH<sub>2</sub>SO<sub>2</sub>), 58.8 (ArCH<sub>2</sub>), 164.1 (C<sub>2</sub>), 168.8 (C<sub>5</sub>), 127.2, 128.8, 129.2, 130.4, 130.8, 131.3, 132.2, 134.8 ppm (aromatic carbons). Anal. Calcd. for C<sub>16</sub>H<sub>13</sub>ClN<sub>2</sub>O<sub>2</sub>S<sub>2</sub>: C, 52.67; H, 3.59; N, 7.68; Found: C, 52.60; H, 3.55; N, 7.64%.

6.1.4.8. 2-(4-Chlorobenzylsulfonylmethyl)-5-(2-chlorophenyl)-1,3,4thiadiazole **10d**. White crystals (1.99 g, 68%); m.p. 206–208 °C; IR (KBr): 1138, 1330 (SO<sub>2</sub>), 1629 (C=N) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-d<sub>6</sub>)  $\delta$  4.50 (s, 2H, CH<sub>2</sub>), 4.59 (s, 2H, Ar-CH<sub>2</sub>), 7.41–8.17 (m, 8H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO-d<sub>6</sub>)  $\delta$  51.7 (CH<sub>2</sub>SO<sub>2</sub>), 57.7 (ArCH<sub>2</sub>), 164.6 (C<sub>2</sub>), 167.6 (C<sub>5</sub>), 127.9, 128.7, 129.7, 130.4, 131.2, 131.8, 132.6, 133.1, 134.3, 135.6 ppm (aromatic carbons). Anal. Calcd. for C<sub>16</sub>H<sub>12</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub>: C, 48.13; H, 3.03; N, 7.02; Found: C, 48.19; H, 3.00; N, 6.93%.

## 6.1.5. General procedure for the synthesis of 3-(arylsulfonylmethyl)-5-aryl-4H-1,2,4-triazol-4-amines **11a**–**d**/3-(arylmethanesulfonylmethyl)-5-aryl-4H-1,2,4-triazol-4-amines **12a**–**d**

To a solution of **7/8** (5 mmol) in *n*-butanol (25 ml), hydrazine hydrate (15 mmol) was added and refluxed for 4 h. Then, KOH (10 mmol) was added to the reaction media and the precipitate formed was filtered. The solid obtained was acidified with conc. HCl to pH  $\approx$  3 and washed with water. The resultant solid was recrystallized from ethanol.

6.1.5.1. 3-(Phenylsulfonylmethyl)-5-phenyl-4H-1,2,4-triazol-4-amine **11a**. White solid (1.57 g, 65%); m.p. 147–149 °C; IR (KBr): 1141, 1337 (SO<sub>2</sub>), 1630 (C=N), 3243, 3269 (NH<sub>2</sub>) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-d<sub>6</sub>)  $\delta$  4.52 (s, 2H, CH<sub>2</sub>), 5.61 (bs, 2H, NH<sub>2</sub>), 7.17–7.48 (m, 10H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO-d<sub>6</sub>)  $\delta$  55.2 (CH<sub>2</sub>SO<sub>2</sub>), 162.9 (C<sub>2</sub>), 168.3 (C<sub>5</sub>), 126.5, 127.1, 127.9, 129.2, 130.5, 132.5, 135.8, 136.3 ppm (aromatic carbons). Anal. Calcd. for C<sub>15</sub>H<sub>14</sub>N<sub>4</sub>O<sub>2</sub>S: C, 57.31; H, 4.49; N, 17.82; Found: C, 57.37; H, 4.54; N, 17.94%.

6.1.5.2. 3-(Phenylsulfonylmethyl)-5-(2-chlorophenyl)-4H-1,2,4-triazol-4-amine **11b**. White solid (1.74 g, 68%); m.p. 133–135 °C; IR (KBr): 1128, 1331 (SO<sub>2</sub>), 1626 (C=N), 3247, 3259 (NH<sub>2</sub>) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  4.56 (s, 2H, CH<sub>2</sub>), 5.57 (bs, 2H, NH<sub>2</sub>), 7.19–7.85 (m, 9H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  54.9 (CH<sub>2</sub>SO<sub>2</sub>), 163.4 (C<sub>2</sub>), 167.9 (C<sub>5</sub>), 125.1, 125.7, 126.6, 127.4, 128.3, 131.7, 133.8, 139.9 ppm (aromatic carbons). Anal. Calcd. for C<sub>15</sub>H<sub>13</sub>ClN<sub>4</sub>O<sub>2</sub>S: C, 51.65; H, 3.76; N, 16.06; Found: C, 51.73; H, 3.74; N, 16.17%.

6.1.5.3. 3-(4-*Chlorophenylsulfonylmethyl*)-5-*phenyl*-4H-1,2,4-*triazol*-4-*amine* **11c**. White solid (1.74 g, 69%); m.p. 142–144 °C; IR (KBr): 1145, 1338 (SO<sub>2</sub>), 1625 (C=N), 3240, 3252 (NH<sub>2</sub>) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>)  $\delta$  4.53 (s, 2H, CH<sub>2</sub>), 5.63 (bs, 2H, NH<sub>2</sub>), 7.22–7.79 (m, 9H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>)  $\delta$  54.7 (CH<sub>2</sub>SO<sub>2</sub>), 162.7 (C<sub>2</sub>), 168.8 (C<sub>5</sub>), 126.4, 126.9, 127.2, 129.3, 130.4, 131.3, 133.6, 138.7 ppm (aromatic carbons). Anal. Calcd. for C<sub>15</sub>H<sub>13</sub>ClN<sub>4</sub>O<sub>2</sub>S: C, 51.65; H, 3.76; N, 16.06; Found: C, 51.60; H, 3.73; N, 16.00%.

6.1.5.4. 3-(4-Chlorophenylsulfonylmethyl)-5-(2-chlorophenyl)-4H-1, 2,4-triazol-4-amine **11d**. White crystals (1.91 g, 66%); m.p. 179–181 °C; IR (KBr): 1142, 1334 (SO<sub>2</sub>), 1637 (C=N), 3244, 3253 (NH<sub>2</sub>) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  4.49 (s, 2H, CH<sub>2</sub>), 5.58 (bs, 2H, NH<sub>2</sub>), 7.38–8.14 (m, 8H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  54.5 (CH<sub>2</sub>SO<sub>2</sub>), 163.2 (C<sub>2</sub>), 168.2 (C<sub>5</sub>), 125.3, 126.6, 127.1, 128.6, 129.5, 131.7, 133.9, 134.6, 135.2, 137.5 ppm (aromatic carbons). Anal. Calcd. for

C<sub>15</sub>H<sub>12</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>2</sub>S: C, 47.01; H, 3.16; N, 14.62; Found: C, 47.04; H, 3.14; N, 14.71%.

6.1.5.5. 3-(*Benzylsulfonylmethyl*)-5-phenyl-4H-1,2,4-triazol-4-amine **12a**. White solid (1.64 g, 63%); m.p. 189–191 °C; IR (KBr): 1125, 1324 (SO<sub>2</sub>), 1639 (C=N), 3242, 3256 (NH<sub>2</sub>) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  4.57 (s, 2H, CH<sub>2</sub>), 4.63 (s, 2H, Ar-CH<sub>2</sub>), 5.62 (bs, 2H, NH<sub>2</sub>), 7.14–7.65 (m, 10H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  53.0 (CH<sub>2</sub>SO<sub>2</sub>), 58.4 (ArCH<sub>2</sub>), 163.0 (C<sub>2</sub>), 168.5 (C<sub>5</sub>), 124.4, 128.3, 129.0, 130.5, 131.3, 132.2, 133.4, 135.8 ppm (aromatic carbons). Anal. Calcd. for C<sub>16</sub>H<sub>16</sub>N<sub>4</sub>O<sub>2</sub>S: C, 58.52; H, 4.91; N, 17.06; Found: C, 58.63; H, 4.96; N, 17.16%.

6.1.5.6. 3-(Benzylsulfonylmethyl)-5-(2-chlorophenyl)-4H-1,2,4-triazol-4-amine **12b**. White solid (1.81 g, 68%); m.p. 185–187 °C; IR (KBr): 1132, 1318 (SO<sub>2</sub>), 1633 (C=N), 3239, 3246 (NH<sub>2</sub>) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-d<sub>6</sub>)  $\delta$  4.54 (s, 2H, CH<sub>2</sub>), 4.66 (s, 2H, Ar-CH<sub>2</sub>), 5.65 (bs, 2H, NH<sub>2</sub>), 7.23–7.71 (m, 9H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO-d<sub>6</sub>)  $\delta$  53.4 (CH<sub>2</sub>SO<sub>2</sub>), 58.9 (ArCH<sub>2</sub>), 164.4 (C<sub>2</sub>), 168.2 (C<sub>5</sub>), 127.6, 128.3, 128.9, 129.6, 131.5, 132.6, 133.4, 134.8 ppm (aromatic carbons). Anal. Calcd. for C<sub>16</sub>H<sub>15</sub>ClN<sub>4</sub>O<sub>2</sub>S: C, 52.96; H, 4.17; N, 15.44; Found: C, 53.04; H, 4.14; N, 15.53%.

6.1.5.7. 3-(4-*Chlorobenzylsulfonylmethyl*)-5-*phenyl*-4H-1,2,4-*triazol*-4-*amine* **12c**. White solid (1.81 g, 67%); m.p. 198–200 °C; IR (KBr): 1137, 1325 (SO<sub>2</sub>), 1636 (C=N), 3245, 3251 (NH<sub>2</sub>) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>)  $\delta$  4.58 (s, 2H, CH<sub>2</sub>), 4.64 (s, 2H, Ar-CH<sub>2</sub>), 5.60 (bs, 2H, NH<sub>2</sub>), 7.16–7.74 (m, 9H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>)  $\delta$  52.6 (CH<sub>2</sub>SO<sub>2</sub>), 59.1 (ArCH<sub>2</sub>), 164.7 (C<sub>2</sub>), 167.6 (C<sub>5</sub>), 126.7, 127.1, 128.1, 128.6, 129.0, 129.4, 131.7, 134.4 ppm (aromatic carbons). Anal. Calcd. for C<sub>16</sub>H<sub>15</sub>ClN<sub>4</sub>O<sub>2</sub>S: C, 52.96; H, 4.17; N, 15.44; Found: C, 52.93; H, 4.13; N, 15.50%.

6.1.5.8. 3-(4-*Chlorobenzylsulfonylmethyl*)-5-(2-*chlorophenyl*)-4H-1, 2,4-*triazol*-4-*amine* **12d**. White solid (1.98 g, 65%); m.p. 202–204 °C; IR (KBr): 1134, 1337 (SO<sub>2</sub>), 1638 (C=N), 3248, 3257 (NH<sub>2</sub>) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  4.61 (s, 2H, CH<sub>2</sub>), 4.69 (s, 2H, Ar-CH<sub>2</sub>), 5.58 (bs, 2H, NH<sub>2</sub>), 7.43–8.22 (m, 8H, Ar-H) ppm; <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  52.8 (CH<sub>2</sub>SO<sub>2</sub>), 58.2 (ArCH<sub>2</sub>), 163.5 (C<sub>2</sub>), 167.3 (C<sub>5</sub>), 127.0, 127.4, 129.7, 130.4, 130.0, 132.7, 133.8, 134.2, 135.6, 137.1 ppm (aromatic carbons). Anal. Calcd. for C<sub>16</sub>H<sub>14</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>2</sub>S: C, 48.37; H, 3.55; N, 14.10; Found: C, 48.30; H, 3.53; N, 14.16%.

#### 6.2. Biological assays

#### 6.2.1. Compounds

Compounds **7a–d** to **12a–d** were dissolved in DMSO at different concentrations of 100, 200 and 800  $\mu$ g/ml.

#### 6.2.2. Cells

Bacterial strains *S. aureus*, *B. subtilis*, *E. coli*, *K. pneumonie* and fungi *F. solani*, *C. lunata* and *A. niger* were obtained from National Collection of Industrial Microorganisms (NCIM), National Chemical Laboratory, Pune, India.

#### 6.2.3. Antibacterial and antifungal assays

Preliminary antimicrobial activities of compounds **7a–d** to **12a–d** were tested by Agar disc-diffusion method. Sterile filter paper discs (6 mm diameter) moistened with the test compound solution in DMSO of specific concentration 100  $\mu$ g and 200  $\mu$ g/disc were carefully placed on the agar culture plates that had been previously inoculated separately with the microorganisms. The plates were incubated at 37 °C and the diameter of the growth inhibition zones were measured after 24 h in case of bacteria and after 48 h in case of fungi.

The MICs of the compound assays were carried out using microdilution susceptibility method. Chloramphenicol was used as reference antibacterial agent. Ketoconazole was used as reference antifungal agent. The test compounds, chloramphenicol and ketoconazole were dissolved in DMSO at concentration of 800  $\mu$ g/ml and two-fold serial dilution of the solution was prepared (400, 200, 100, ., 6.25 mg/ml). The microorganism suspensions were inoculated to the corresponding wells. The plates were incubated at 36 °C for 24 h and 48 h for bacteria and fungi, respectively. The minimum inhibitory concentrations of the compounds were recorded as the lowest concentration of each chemical compounds in the tubes with no turbidity (i.e. no growth) of inoculated bacteria/fungi.

### Acknowledgements

This study was supported by financial grant under Department of Science and Technology (DST) project (SR/S1/OC-12/2004 dated 15-09-2004) India.

#### References

- [1] B.S. Holla, R. Gonsalves, S. Shenoy, Eur. J. Med. Chem. 35 (2000) 267-271.
- [2] B. Tinperciuc, A. Parvu, M. Palage, O. Oniga, D. Ghiran, Farmacia (Bucharest) 47 (1999) 77–84.
- [3] D.H. Boschelli, D.T. Connor, D.A. Bornemeier, R.D. Dyer, J.A. Kennedy, P.J. Kuipers, G.C. Okonkwo, D.J. Schrier, C.D. Wright, J. Med. Chem. 36 (1993) 1802–1810.
- [4] P.C. Unangst, G.P. Shrum, D.T. Conner, R.D. Dyer, D.J. Schrier, J. Med. Chem. 35 (1992) 3691–3698.
- [5] M.D. Mullican, M.W. Wilson, D.T. Conner, C.R. Kostlan, D.J. Shrier, R.D. Dyer, J. Med. Chem. 36 (1993) 1090–1099.
- [6] I.P. Singh, A.K. Saxena, K. Shankar, Eur. J. Med. Chem. Chim. Ther. 21 (1986) 267-269.
- [7] L.V.G. Nargund, G.R.N. Reddy, V.J. Hariprasad, Pharm. Sci. 83 (1994) 246-248.
- [8] J.P. Arrington, L.L. Wade, Method for the control of manure-breeding insects, U.S. Patent 4215129, 1980.
- [9] S.G. Kucukguzel, S. Rollas, H. Erdeniz, M. Kiraz, Eur. J. Med. Chem. 34 (1999) 153-160.
- [10] H. Yuksek, A. Demirbas, A. Ikizler, C.B. Johansson, C. Celik, A.A. Ikizler, Arzn.-Forsh Drug Res. 47 (1997) 405–409.

- [11] B. Tozkoparan, N. Gokhan, G. Aktay, E. Yesilada, M. Ertan, Eur. J. Med. Chem. 35 (2000) 743–750.
- [12] A.A. Ikizler, E. Uzunali, A. Demirbas, Indian J. Pharm. Sci. 5 (2000) 289.
- [13] N. Demirbas, R. Ugurluoglu, A. Demirbas, Bioorg. Med. Chem. 10 (2002) 3717–3723.
- [14] G. Turan-Zitouni, M. Sivaci, F.S. Kilic, K. Erol, Eur. J. Med. Chem. 36 (2001) 685–689.
- [15] A. Demirbas, C.B. Johansson, N. Duman, A.A. Ikizler, Acta Pol. Pharm.-Drug Res. 53 (1996) 117–121.
- [16] A. Ikizler, N. Demirbas, A.A. Ikizler, J. Heterocycl. Chem. 33 (1996) 1765–1769.
   [17] F. Malbec, R. Milcent, P. Vicart, A.M. Bure, J. Heterocycl. Chem. 21 (1984) 1769–
- 1774.[18] V. Padmavathi, A.V. Nagendra Mohan, K. Mahesh, A. Padmaja, Chem. Pharm. Bull 56 (2008) 815–820
- [19] V. Padmavathi, P. Thriveni, G. Sudhakar Reddy, D. Deepti, Eur. J. Med. Chem. 43 (2008) 917–924.
- [20] V. Padmavathi, D.R.C. Venkata Subbaiah, K. Mahesh, T.R. Lakshmi, Chem. Pharm. Bull. 55 (2007) 1704-1709.
- [21] F. Shih-Hua, V. Padmavathi, Y.K. Rao, D.R.C. Venkata Subbaiah, P. Thriveni, M. Geethangili, A. Padmaja, T. Yew-Min, Int. Immunopharmacol. 6 (2006) 1699–1705.
- [22] V. Padmavathi, B.J.M. Reddy, B.C. Obula Reddy, A. Padmaja, Tetrahedron 61 (2005) 2407–2411.
- [23] C.A. Bordner, U.S. Patent 2,600,689, June 10, 1952. Chem. Abstr. 47 (1953) 4373.
- [24] E.E. Van Tamelen, J. Am. Chem. Soc. 73 (1951) 3444-3448.
- [25] C.C. Price, P.F. Kirk, J. Am. Chem. Soc. 75 (1953) 2396–2400.
- [26] C.C. Culvenor, W. Davies, W.E. Savige, J. Chem. Soc. (1952) 4480-4486.
- [27] N. Linganna, K.M. Lokanatha Rai, Synth. Commun. 28 (1998) 4611-4617.
- [28] F. Kiyoshi, T. Senji, Chem. Pharm. Bull. 8 (1960) 908-912.
- [29] National Committee for Clinical Laboratory Standards (NCCLS), Approved Standard Document M-7A, Villanova, PA, 1985.
- [30] P.R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover, R.H. Yolken, in: G.L. Wood, J.A. Washington (Eds.), Manual of Clinical Microbiology, Am. Soc. Microbiol., Washington DC, 1995.
- [31] T. Mosmann, J. Immunol. Methods 65 (1983) 55-63.
- [32] M.B. Hansen, S.E. Nielsen, K. Berg, J. Immunol. Methods 119 (1989) 203-210.
- [33] W.J. Kenney, J.A. Walsh, A. Davenport, J. Am. Chem. Soc. 83 (1961) 4019-4022.
- [34] D. Bhaskar Reddy, N.S. Reddy, S. Reddy, M.V.R. Reddy, S. Balasubramanyam, Org. Prep. Proced. Int. 20 (1988) 83.
- [35] V. Padmavathi, P. Thriveni, B. Jagan Mohan Reddy, A. Padmaja, J. Heterocycl. Chem. 42 (2005) 113–116.