Article

Subscriber access provided by CORNELL UNIVERSITY LIBRARY

Iridium (III)-Catalyzed Regioselective C7-Amination of N-Pivaloylindoles with Sulfonoazides

Lanting Xu, Lushi Tan, and Dawei Ma

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b01856 • Publication Date (Web): 29 Aug 2016 Downloaded from http://pubs.acs.org on August 31, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Iridium (III)-Catalyzed Regioselective C7-Amination of *N*-Pivaloylindoles with Sulfonoazides

Lanting Xu,^a Lushi Tan,^b* and Dawei Ma^a*[#]

^aState Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai

Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu,

Shanghai 200032, China

^bMerck Research Laboratories, P.O. Box 2000, RY800-D280, Rahway, NJ 07065-0900,

USA

lushi_tan@merck.com, madw@sioc.ac.cn

Abstract

Direct C7-amination of *N*-pivaloylindoles has been achieved using a combination of $[Cp*IrCl_2]_2$, AgNTf₂, and AgOAc as the catalyst and sulfonoazides as the nitrogen source. The reaction proceeded at room temperature to 80 °C to afford 7-sulfonamidoindoles in good to excellent yields. The reaction is broadly applicable to the C7-amination of a wide variety of 3-, 4-, 5- and 6-substituted *N*-pivaloyl indoles

ISHC Member

with either alkyl or aryl sulfonoazides.

Introduction

7-Sulfonamidoindole moiety is a key substructure found in numerous biologically important compounds such as the tubulin polymerization and cell proliferation inhibitors ER-68394 $(1)^1$, E-7070 $(2)^2$, and compound 3^3 , and the glucocorticoid receptor antagonist compound 4^4 . Indoles 1, 2, and 3 have potential for treatment of congestive heart diseases, and 4 lowers LDL while raises HDL in a hamster model of dyslipidemia (Figure 1). Traditionally, these molecules were synthesized from substituted 7-nitroindoles.^{3c,5} Since these special heterocycles are not conveniently available, development of straightforward and general methods for assembling 7-sulfonamidoindoles are highly desired.^{6,7} Recently, we discovered that regioselective C7-functionalization of indoles could be achieved by simply using *N*-pivaloyl as a directing group.^{8,9} As an extension of this work, we explored the possibility if our substrates are applicable for other C7-functionalization reactions, and discovered that Ir-catalyzed direct functionalization of N-pivaloyl indoles with sulfonazides could proceed smoothly to afford 7-sulfonamidoindoles.¹⁰⁻¹⁵ During the preparation of this manuscript, similar reactions with different conditions were disclosed by Chang^{10a} and Antonchick^{10b} groups. Chang and coworkers described that they could carry out the reaction at room temperature, but needed to use 5 mol % Cp*Ir(OAc)₂ as the catalyst and 10 mol% AgNTf₂ as the additive;^{10a} while Antonchick found that the reaction completed at 120 °C even using 4 mol %

[Cp*IrCl]₂ as the catalyst and 16 mol % AgNTf₂ and 40 mol % LiOAc as the additives.^{10b} In our hand, we discovered that only 1 mol % [Cp*IrCl]₂ was required to complete the reaction at rt to 80 °C if 4 mol % AgNTf₂ and 30 mol % AgOAc were employed as the additives. These relatively practical reaction conditions and expanded substrate scope, together with preliminary mechanism study, are disclosed here.

Figure 1. Biologically important compounds that contain the 7-sulfonamidoindole

moiety

Results and Discussion

We commenced our amination research by employing our standard olefination conditions of *N*-pivaloylindoles by treatment of **5a** with tosyl azide **6a** in the presence of $[Cp*RhCl_2]_2$, AgNTf₂ and Cu(OAc)₂ in DCE at 80 °C.⁸ However, no desired product was obtained and **5a** was recovered completely. We then turned our attention to Ir catalysts.^{13g} As indicated in Table 1, In the presence of $[Cp*IrCl_2]_2$, AgNTf₂, and NaOAc, the reaction of N-pivaloylindole **5a** with tosyl azide **6a** took place at room

temperature but with only trace amount of the desired product 7a owing to poor conversion (entry 1). Changing one of the additives from NaOAc to pivalic acid or CsOAc gave similar results (entries 2 and 3). However, when AgOAc was used, complete conversion was observed, and 7a was obtained in 95% yield (entry 4). If AgOAc was switched to $Cu(OAc)_2 \cdot H_2O$ or Ag_2CO_3 , the reaction yields were greatly decreased (entries 5 and 6). Further investigations revealed that the use of AgNTf₂ is critical to the reaction efficiency. No desired product was obtained without AgNTf₂ or replacing it with AgO_2CCF_3 and $AgOT_5$ even at 80 °C (entries 9-11). Interestingly, when $AgNTf_2$ was replaced with either $AgSbF_6$ or AgOTf, poor yields were obtained at room temperature but acceptable yields were realized at 80 °C (entries 7 and 8). Using the combination of $[Cp*IrCl_2]_2$, AgNTf₂ and AgOAc, we examined several polar solvents, and found that trifluoromethylbenzene and methylene chloride afforded 7a in 88-93% yields (entries 12 and 13), while t-AmylOH, MeCN, and dioxane gave poor yields or no conversion (entries 14-16). Additionally, we discovered that Ir catalyst was also essential for this reaction and little conversion was observed when [Cp*RhCl₂]₂,¹² [Ru(*p*-cymene)Cl₂]₂¹⁴ and Cp*Co(CO)I₂¹⁵ were used as the catalyst (entries 17-19). We were pleased that the catalyst loading could be reduced to 1 mol % without decreasing the reaction yield with the optimized reaction conditions (entry 4 vs. 20). Noteworthy is that the combination of two silver salts was essential to ensure complete conversion because using AgNTf₂ or AgOAc alone gave a poor yield or no conversion (entries 21 and 22).

1 2	
_ 3 ⊿	
4 5	
6 7	
8	
9 10	
11 12	
13 14	
15	
16 17	
18 19	
20	
22	
23 24	
25 26	
27	
28 29	
30 31	
32	
34	
35 36	
37 38	
39	
40 41	
42 43	
44 45	
46	
47 48	
49 50	
51	
52 53	
54 55	
56	
57 58	
59 60	

Table 1. Condition screening for reaction of N-pivaloylindole with tosyl azide^a

	H O Bu- <i>t</i> 5a	TsN ₃ catalyst, additive, solvent TsN ₃ rt, 24 h 6a	Ts ^{-NH} 7a	Bu-t
entry	catalyst (mol %)	additives (mol %)	solvent	yield
				(%) ^b
1	[Cp*IrCl ₂] ₂	AgNTf ₂ (16)/NaOAc (30)	1, 2-DC E	2
2	[Cp*IrCl ₂] ₂	AgNTf ₂ (16)/PivOH (30)	1,2-DCE	0
3	[Cp*IrCl ₂] ₂	AgNTf ₂ (16)/CsOAc (30)	1,2-DCE	0
4	[Cp*IrCl ₂] ₂	AgNTf ₂ (16)/AgOAc (30)	1,2-DCE	95
5	[Cp*IrCl ₂] ₂	AgNTf ₂	1, 2-D CE	55
		$(16)/Cu(OAc)_2 \cdot H_2O(30)$		
6	[Cp*IrCl ₂] ₂	AgNTf ₂ (16)/Ag ₂ CO ₃ (30)	1,2-DCE	25
7	[Cp*IrCl ₂] ₂	AgSbF ₆ (16)/AgOAc (30)	1, 2- DCE	30 (73) ^c
8	[Cp*IrCl ₂] ₂	AgOTf (16)/AgOAc (30)	1, 2- DCE	45 (81) ^c
9	[Cp*IrCl ₂] ₂	AgO ₂ CCF ₃ (16)/AgOAc	1, 2- DCE	0 (0) ^c
		(30)		
10	[Cp*IrCl ₂] ₂	AgOTs (16)/AgOAc (30)	1, 2- DCE	$0(0)^{c}$
11	[Cp*IrCl ₂] ₂	AgNTf ₂ (0)/AgOAc (30)	1, 2- DCE	$0(0)^{c}$
12	[Cp*IrCl ₂] ₂	AgNTf ₂ (16)/AgOAc (30)	C ₆ H ₅ CF ₃	88
13	[Cp*IrCl ₂] ₂	AgNTf ₂ (16)/AgOAc (30)	CH_2Cl_2	93

14	$[Cp*IrCl_2]_2$	AgNTf ₂ (16)/AgOAc (30)	<i>t</i> -AmOH	15
15	[Cp*IrCl ₂] ₂	AgNTf ₂ (16)/AgOAc (30)	MeCN	0
16	[Cp*IrCl ₂] ₂	AgNTf ₂ (16)/AgOAc (30)	dioxane	5
17	[Cp*RhCl ₂] ₂	AgNTf ₂ (16)/AgOAc (30)	1,2-DCE	0
18	[Ru(p-cymene)Cl ₂	AgNTf ₂ (16)/AgOAc (30)	1,2-DCE	9
]2			
19	Cp*Co(CO)I ₂	AgNTf ₂ (16)/AgOAc (30)	1,2-DCE	0
20	[Cp*IrCl ₂] ₂	AgNTf ₂ (4)/AgOAc (30)	1,2-DCE	93 ^d
21	[Cp*IrCl ₂] ₂	AgNTf ₂ (4)/ AgOAc (0)	1,2-DCE	5 ^d
22	[Cp*IrCl ₂] ₂	AgNTf ₂ (0)/ AgOAc (30)	1,2-DCE	0^d

^a**5a** (0.2 mmol), **6a** (0.3 mmol), catalyst (4.0 mol%), and DCE (1.0 mL) at room temperature for 24 h. ^bYields based on ¹H NMR analysis of the crude mixture (1,3,5-trimethoxybenzene; internal standard). ^cReaction temperature was 80 ^oC. ^d[Cp*IrCl₂]₂ (1.0 mol%) and DCE (0.2 mL) was used.

With the optimized conditions in hand, we next explored the substrate scope using different substituted indoles. As summarized in Table 2, indoles bearing an electron-donating group at the 4-, or 5- position worked well at room temperature, leading to the formation of **7b-7d** and **7h-7j** in 87-95% yields. Halogen-substituted indoles were less reactive, and required increased reaction temperature (80 °C) to afford **7e**, **7f** and **7k-7m** in good yields. However, more electron-deficient substrates like 4-cyano-*N*-pivaloylindole and 5-nitro-*N*-pivaloylindole gave no conversion even

at 80 °C. The present reaction is very sensitive to the steric hindrance of the 6-position in *N*-pivaloylindoles. No product was obtained when 6-methyl-*N*-pivaloylindole or 6-chloro-*N*-pivaloylindole was utilized as the substrates. In contrast, 6-fluoro-*N*-pivaloylindole that possesses a small F at the 6-position delivered the amination product 7q in 85% yield.

 Table 2. Substrate Scope of Indoles^a

^a**5** (0.2 mmol), **6a** (0.3 mmol), DCE (0.2 mL) at room temperature for 24-36 h. ^bAt 80

°C. °At 50 °C.

 In addition, substrates with both simple and functionalized alkyl substituents at the 3-position of *N*-pivaloylindoles underwent the amination smoothly, producing **7r-7u** in 70-90% yields. The additional functional groups in the side chain of these products should be useful for further conversion to pharmaceutically important molecules. However, 2-methyl-*N*-pivaloylindole was inert under the present reaction conditions, presumably because the steric hindrance at this position could inhibit the formation of the active metal complex intermediates.

The reaction was successfully conducted on gram scale without any difficulty. Thus 1.6 g of the desired amination product 7w was obtained in 88% yield from the tryptophan derivative 5w (Scheme 1). Interestingly, the phthoyl protecting group in 5w was essential for this transformation, as Boc-protected tryptophan derivative 5xand dipeptide 5y were inert under the same reaction conditions. This phenomenon indicated that the free NH moiety in the substrates might bond to the metal in a way that blocked the catalytic reaction.

Scheme 1. Gram-scale reaction of a tryptophan derivative

ACS Paragon Plus Environment

We also evaluated the reaction scope using different sulfonyl azides and the results were summarized in Table 3. Aryl sulfonyl azides with electron-donating groups, in general, were more reactive, giving complete conversion and excellent yields at room temperature, while aryl sulfonyl azides with electron-withdrawing groups required elevated temperature to reach complete conversion. Alkyl sulfonyl azides also worked well, and **8k** and **8l** were obtained in 88% and 81% yields, respectively. Using methylsulfonyl azide as the reagent, we examined several substituted *N*-pivaloylindoles, and were pleased that all of them proceeded smoothly to afford the desired products **80-8s** in good to excellent yields.

 Table 3. Scope of Sulfonyl Azides^a

^a5 (0.2 mmol), 6 (0.3 mmol), DCE (0.2 mL) at 80 °C for 24-36 h in pressure tubes.
^bAt room temperature. ^cAt 50 °C. ^d[IrCp*Cl₂]₂ (4 mol %), AgNTf₂ (16 mol %), DCE (1.0 mL) were used at 80 °C.

The application of the current methodology is demonstrated by the successful preparation of a known tubulin polymerization and cell proliferation inhibitor **1** $(\text{ER-68394})^1$ and **9**, a compound with interesting activity against congestive heart diseases.³ Thus, treatment of **8m** and **8q**, prepared as discussed above, with our

standard mild deprotection condition (Et₃N in MeOH, room temperature)⁸ afforded **1** and **9** in 92% and 90% yield respectively (Scheme 2).

Scheme 2. Deprotection of the amidation products

To obtain mechanistic insights into the present Ir-catalyzed direct C-H amination, we conducted some deuteration experiments as depicted in Scheme 3. No significant H/D exchange was observed when **5a** was treated with CD₃OD in the presence of [IrCp*Cl₂]₂, AgNTf₂ and AgOAc, indicating that the C-H activation step might be irreversible. Additionally, kinetic isotope effect (KIE) experiments on parallel reactions of **6a** with **5a** and [D]₄-**5a** in separate vessels were carried out under the standard reaction conditions, giving the KIE value of $k_{\rm H}/k_{\rm D} = 6.5$. This result implied that the C-H bond cleavage might occur in the rate-limiting stage.

Scheme 3. Preliminary Mechanistic Studies.

On the basis of the above mechanistic studies and known reports on metal-catalyzed directing group assisted C-H amidation,¹¹⁻¹⁵ a plausible mechanism is proposed as shown in Scheme 4. First, treatment of the dimeric precursor [IrCp*Cl₂]₂ with AgNTf₂ and AgOAc generates the cationic Ir(III) catalyst **A**. The coordination of **A** to the *N*-pivaloyl group of **5a** forms **B**, which accordingly undergoes an irreversible C-H activation at the C7 position of indole substrate to result the six-membered iridacycle **C**. The latter step may be the rate-limiting step based on KIE studies. Next, coordination of sulfonoazide gives the complex **D**, which may undergo release of N₂ to provide a metal-nitrenoid intermediate **E**. The subsequent intramolecular insertion of nitrenoid moiety into iridacycle forms a new C-N bond to deliver complex **F**, upon coordination with acetic acid. Finally, protonolysis of **F** affords the desired product **7a** and regenerate the catalyst **A**. Further efforts to explore the detailed mechanistic insights of the present regioselective amination reaction are ongoing in our group.

Scheme 4. Proposed mechanistic pathway

In summary, we have developed a straightforward and general method for preparing 7-sulfonamidoindoles from conveniently available starting materials through Ir-catalyzed C-H activation. The key is an iridium(III)-catalyzed, C7-selective amidation of *N*-pivaloyindole derivatives. High efficiency and regioselectivity are achieved even at room temperature with considerably low catalyst loading. A number

of functional groups are tolerated under these reaction conditions, and thus allows synthesizing 7-sulfonamidoindoles in a diverse manner. The usage of this method has been illustrated by quick access to some pharmaceutically important molecules.

Experimental

General Information. All the reactions were carried out under inert atmosphere. All the solvents used for the reactions were dried according to standard procedures. All commercial materials were used as received unless otherwise noted. All the N-pivalyl indoles were synthesized according to the literature procedure.^[16,17] All the sulfonoazides were synthesized according to the literature procedure.^[18] All the reactions were monitored by thin layer chromatography (TLC, Silica gel Merck 60 F₂₅₄); The spots were visualized by UV light. Purification of products was conducted by flash chromatography on silica gel (particle size 40-63 µm, 230-400 mesh SiliaFlash[®] P60 (Silicycle Inc.)). Optical rotations were measured at room temperature with a digital polarimeter. CDCl₃ was used as NMR solvents. Chemical shifts were given relative to CDCl₃ (7.24 ppm for ¹H NMR, 77.23 ppm for ¹³C NMR); For the characterization of the observed signal multiplicities, the following abbreviations were applied: s (singlet), d (doublet), dd (double doublet), t (triplet), td (triple doublet), q (quartet), m (multiplet), as well as br (broad). High-resolution mass spectra were acquired using ESI-FTMS method. Melting point was measured with X-4 Melting-point apparatus with microscope.

General procedure for the Ir-catalyzed amidation with sulfonoazides: A sealed

tube was charged with indole substrates (0.2 mmol), $[IrCp*Cl_2]_2$ (1.6 mg, 0.002 mmol), AgOAc (10.0 mg, 0.06 mmol), AgNTf₂ (2.0 mg, 0.008 mmol), sulfonoazides (0.3 mmol). The tube was evacuated and backfilled with argon before 0.2 mL 1,2-DCE was added. The reaction mixture was stirred for 24-36 h at indicated temperatures. After cooling to room temperature, the mixture was diluted with dichloromethane, filtered through a plug of diatomite, concentrated under vacuum and the residue was purified by chromatography on silica with a gradient eluent of petroleum ether and ethyl acetate to give the corresponding products.

Large scale preparation of 7w: A sealed tube was charged with indole 5e (1.3 g, 3.0 mmol), $[IrCp*Cl_2]_2$ (23.9 mg, 0.03 mmol), AgOAc (150 mg, 0.9 mmol), AgNTf₂ (30.7 mg, 0.12 mmol), *p*-toluenesulfonyl azide (887 mg, 4.5 mmol). The tube was evacuated and backfilled with argon before 3.0 mL 1,2-DCE was added. The reaction mixture was stirred at room temperature for 40 h. Then the mixture was diluted with dichloromethane, filtered through a plug of diatomite, concentrated under vacuum and the residue was purified by chromatography on silica with a gradient eluent of petroleum ether and ethyl acetate to give 1.6 g (88%) of 7w.

4-Methyl-*N***-(1-pivaloyl-1***H***-indol-7-yl)benzenesulfonamide (7a): White solid (67 mg, 90%); m.p. 119-121 °C; ¹H NMR (400 MHz, CDCl₃) \delta 9.21 (s, 1H), 7.52-7.48 (m, 2H), 7.39-7.35 (m, 3H), 7.30 (t,** *J* **= 7.7 Hz, 1H), 7.07 (d,** *J* **= 8.0 Hz, 2H), 6.56 (d,** *J* **= 3.9 Hz, 1H), 2.28 (s, 3H), 1.35 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) \delta 179.5, 143.3, 137.7, 132.4, 129.6, 129.5, 127.0, 126.7, 125.4, 125.4, 123.0, 119.0, 109.5, 41.8, 29.2, 21.6; HRMS (ESI)** *m/e* **calcd for C₂₀H₂₃N₂O₃S (M + H)⁺ 371.1424, found**

371.1426.

4-Methyl-*N***-(4-methyl-1-pivaloyl-1***H***-indol-7-yl)benzenesulfonamide (7b):** White solid (73 mg, 95%); m.p. 162-164 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 7.47 (d, *J* = 3.9 Hz, 1H), 7.40-7.35 (m, 3H), 7.10-7.04 (m, 3H), 6.58 (d, *J* = 3.9 Hz, 1H), 2.45 (s, 3H), 2.28 (s, 3H), 1.33 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.5, 143.2, 137.8, 131.6, 129.6, 129.5, 128.6, 127.0, 126.0, 125.8, 123.7, 122.9, 107.7, 41.8, 29.2, 21.6, 18.3; HRMS (ESI) *m/e* calcd for C₂₁H₂₅N₂O₃S (M + H)⁺ 385.1580, found 385.1586.

N-(4-Methoxy-1-pivaloyl-1*H*-indol-7-yl)-4-methylbenzenesulfonamide (7c): White solid (77 mg, 96%); m.p. 155-157 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.44 (d, *J* = 8.6 Hz, 1H), 7.35 (d, *J* = 3.9 Hz, 1H), 7.30 (d, *J* = 8.3 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 6.76 (d, *J* = 8.6 Hz, 1H), 6.68 (d, *J* = 3.9 Hz, 1H), 3.92 (s, 3H), 2.27 (s, 3H), 1.29 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.3, 151.7, 143.2, 137.7, 131.5, 129.5, 127.0, 125.8, 125.0, 122.0, 118.02, 106.2, 105.4, 55.9, 41.7, 29.1, 21.6. HRMS (ESI) *m/e* calcd for C₂₁H₂₅N₂O₄S (M + H)⁺ 401.1530, found 401.1532.

N-(4-(Benzyloxy)-1-pivaloyl-1*H*-indol-7-yl)-4-methylbenzenesulfonamide (7d): Br own solid (86 mg, 90%); m.p. 156-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.46-7.29 (m, 9H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 1H), 6.74 (d, *J* = 3.9 Hz, 1H), 5.18 (s, 2H), 2.27 (s, 3H), 1.30 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.3, 150.7, 143.2, 137.6, 136.9, 131.5, 129.5, 128.8, 128.3, 127.6, 127.0, 125.6, 125.1, 122.4, 118.2, 106.9, 106.3, 70.5, 41.7, 29.0, 21.5; HRMS (ESI) *m/e* calcd for C₂₇H₂₉N₂O₄S (M + H)⁺ 477.1843, found 477.1844.

N-(4-Chloro-1-pivaloyl-1*H*-indol-7-yl)-4-methylbenzenesulfonamide (7e): White solid (63 mg, 78%); m.p. 144-146 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 7.54 (d, *J* = 3.9 Hz, 1H), 7.44-7.39 (m, 3H), 7.29 (d, *J* = 8.4 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.70 (dd, *J* = 3.9, 0.9 Hz, 1H), 2.29 (s, 3H), 1.35 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.7, 143.6, 137.4, 130.7, 130.2, 129.6, 127.2, 126.9, 124.9, 124.1, 124.0, 123.8, 107.5, 41.9, 29.0, 21.6; HRMS (ESI) *m/e* calcd for C₂₀H₂₂N₂O₃SCl (M + H)⁺ 405.1034, found 405.1038.

N-(**4**-**Bromo-1**-**pivaloyl-1***H*-**indol-7**-**yl**)-**4**-**methylbenzenesulfonamide (7f):** Brown solid (74 mg, 82%); m.p. 141-143 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.99 (s, 1H), 7.55 (d, *J* = 3.9 Hz, 1H), 7.44-7.35 (m, 4H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.66 (d, *J* = 3.9 Hz, 1H), 2.29 (s, 3H), 1.35 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.8, 143.6, 137.5, 132.6, 130.0, 129.7, 128.2, 127.2, 127.0, 124.7, 123.9, 112.4, 109.4, 42.0, 29.1, 21.6; HRMS (ESI) *m/e* calcd for C₂₀H₂₂N₂O₃BrS (M + H)⁺ 449.0529, found 449.0525.

N-(5-Methoxy-1-pivaloyl-1*H*-indol-7-yl)-4-methylbenzenesulfonamide (7h): White solid (70 mg, 88%); m.p. 125-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 7.48-7.45 (m, 3H), 7.14 (d, *J* = 2.5 Hz, 1H), 7.09 (d, *J* = 8.1 Hz, 2H), 6.79 (d, *J* = 2.5 Hz, 1H), 6.47 (d, *J* = 3.9 Hz, 1H), 3.82 (s, 3H), 2.28 (s, 3H), 1.35 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.0, 157.6, 143.4, 137.5, 133.3, 129.5, 127.5, 127.0, 126.2, 123.8, 109.6, 109.5, 102.0, 55.9, 41.7, 29.2, 21.6; HRMS (ESI) *m/e* calcd for C₂₁H₂₅N₂O₄S (M + H)⁺ 401.1530, found 401.1534.

N-(5-(Benzyloxy)-1-pivaloyl-1*H*-indol-7-yl)-4-methylbenzenesulfonamide (7i):

White solid (83 mg, 87%); m.p. 157-159 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.64 (s, 1H), 7.47-7.41 (m, 5H), 7.38-7.29 (m, 3H), 7.26 (d, *J* = 2.4 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 2.5 Hz, 1H), 5.10 (s, 2H), 2.28 (s, 3H), 1.35 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.0, 156.7, 143.4, 137.5, 137.0, 133.2, 129.5, 128.8, 128.2, 127.7, 127.5, 127.1, 126.3, 124.0, 110.2, 109.6, 103.5, 70.7, 41.7, 29.2, 21.6; HRMS (ESI) *m/e* calcd for C₂₇H₂₉N₂O₄S (M + H)⁺ 477.1843, found 477.1849.

7-(4-Methylphenylsulfonamido)-1-pivaloyl-1*H***-indol-5-yl pivalate (7j): White solid (85 mg, 90%); m.p. 145-147 °C; ¹H NMR (400 MHz, CDCl₃) \delta 9.39 (s, 1H), 7.51 (d,** *J* **= 3.9 Hz, 1H), 7.43 (d,** *J* **= 8.2 Hz, 2H), 7.26 (d,** *J* **= 2.3 Hz, 1H), 7.08-7.06 (m, 3H), 6.50 (d,** *J* **= 3.9 Hz, 1H), 2.27 (s, 3H), 1.36 (s, 9H), 1.34 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) \delta 179.3, 177.2, 148.5, 143.5, 137.2, 132.7, 129.5, 127.7, 127.1, 127.0, 126.0, 116.3, 111.4, 109.5, 41.8, 39.3, 29.1, 27.3, 21.6; HRMS (ESI)** *m/e* **calcd for C₂₅H₃₁N₂O₅S (M + H)⁺ 471.1948, found 471.1951.**

N-(5-Fluoro-1-pivaloyl-1*H*-indol-7-yl)-4-methylbenzenesulfonamide (7k): White solid (62 mg, 80%); m.p. 128-130 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.56 (s, 1H), 7.57 (d, *J* = 3.9 Hz, 1H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.30 (dd, *J* = 10.6, 2.5 Hz, 1H), 7.12 (d, *J* = 8.2 Hz, 2H), 6.99 (dd, *J* = 7.5 Hz, 2.5 Hz, 1H), 6.52 (d, *J* = 3.9 Hz, 1H), 2.30 (s, 3H), 1.38 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.5, 161.5 (*J*_{C-F} = 240.8 Hz), 143.7, 137.4, 133.2 (*J*_{C-F} = 11.1 Hz), 129.7, 128.2, 127.1, 126.8 (*J*_{C-F} = 11.9 Hz), 125.5 (*J*_{C-F} = 1.8 Hz), 109.50 (*J*_{C-F} = 32.2 Hz), 109.46, 104.1 (*J*_{C-F} = 23.4 Hz), 42.0, 29.2, 21.6; HRMS (ESI) *m/e* calcd for C₂₀H₂₂N₂O₃FS (M + H)⁺ 389.1330, found 389.1334.

N-(5-Bromo-1-pivaloyl-1*H*-indol-7-yl)-4-methylbenzenesulfonamide (7l): Brown solid (74 mg, 82%); m.p. 165-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 7.63 (d, *J* = 1.9 Hz, 1H), 7.52 (d, *J* = 3.9 Hz, 1H), 7.47-7.45 (m, 3H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.50 (d, *J* = 3.9 Hz, 1H), 2.30 (s, 3H), 1.36 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 179.6, 143.7, 137.3, 133.7, 129.7, 128.3, 127.8, 127.0, 126.5, 124.7, 121.3, 118.2, 108.8, 42.0, 29.1, 21.6; HRMS (ESI) *m/e* calcd for C₂₀H₂₂N₂O₃BrS (M + H)⁺ 449.0529, found 449.0525.

N-(5-Chloro-1-pivaloyl-1*H*-indol-7-yl)-4-methylbenzenesulfonamide (7m): White solid (69 mg, 85%); m.p. 149-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 7.54 (d, *J* = 3.9 Hz, 1H), 7.50 (d, *J* = 2.0 Hz, 1H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 2.0 Hz, 1H), 7.11 (d, *J* = 8.1 Hz, 2H), 6.50 (d, *J* = 3.9 Hz, 1H), 2.30 (s, 3H), 1.36 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 179.6, 143.7, 137.4, 133.3, 130.8, 129.7, 127.9, 127.8, 127.1, 126.3, 121.9, 118.2, 108.9, 42.0, 29.2, 21.6; HRMS (ESI) *m/e* calcd for C₂₀H₂₂N₂O₃ClS (M + H)⁺ 405.1034, found 405.1032.

N-(6-Fluoro-1-pivaloyl-1*H*-indol-7-yl)-4-methylbenzenesulfonamide (7q): White solid (66 mg, 85%); m.p. 129-131 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (s, 1H), 7.56-7.53 (m, 3H), 7.40 (dd, *J* = 8.5, 4.9 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.13 (dd, *J* = 10.0, 8.6 Hz, 1H), 6.56 (d, *J* = 3.9 Hz, 1H), 2.35 (s, 3H), 1.40 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 179.5, 158.7 (*J*_{C-F} = 245.6 Hz), 143.7, 137.7, 132.9 (*J*_{C-F} = 3.7 Hz), 129.5, 128.2 (*J*_{C-F} = 1.9 Hz), 127.4, 127.1 (*J*_{C-F} = 3.8 Hz), 120.5 (*J*_{C-F} = 9.8 Hz), 113.8 (*J*_{C-F} = 24.1 Hz), 113.5 (*J*_{C-F} = 17.3 Hz), 108.5 (*J*_{C-F} = 1.4 Hz), 41.8, 29.0, 21.7; HRMS (ESI) *m/e* calcd for C₂₀H₂₂N₂O₃FS (M +H)⁺ 389.1330, found 389.1323. **4-Methyl-N-(3-methyl-1-pivaloyl-1***H***-indol-7-yl)benzenesulfonamide (7r):** Yellow solid (67 mg, 87%); m.p. 129-131 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.45 (s, 1H), 7.53 (dd, *J* = 7.0, 1.9 Hz, 1H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.30-7.24 (m, 3H), 7.06 (d, *J* = 8.0 Hz, 2H), 2.28 (s, 3H), 2.19 (d, *J* = 1.1 Hz, 3H), 1.33 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.0, 143.3, 137.7, 133.4, 129.8, 129.5, 127.0, 125.4, 125.1, 123.5, 122.8, 118.3, 116.7, 41.7, 29.1, 21.6, 9.9; HRMS (ESI) *m/e* calcd for C₂₁H₂₅N₂O₃S (M + H)⁺ 385.1580, found 385.1585.

Ethyl 2-(7-(4-methylphenylsulfonamido)-1-pivaloyl-1*H*-indol-3-yl)acetate (7s): Yellow semisolid (64 mg, 70%); ¹H NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 7.62 (s, 1H), 7.53-7.51 (m, 1H), 7.40 (d, *J* = 7.0 Hz, 2H), 7.30-7.28 (m, 2H), 7.07 (d, *J* = 8.1 Hz, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.64 (d, *J* = 1.0 Hz, 2H), 2.28 (s, 3H), 1.36 (s, 9H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) 179.3, 170.7, 143.4, 137.6, 132.2, 129.5 (2C), 126.9 (2C), 125.5, 125.3, 122.9, 116.6, 114.9, 61.3, 41.8, 30.7, 29.1, 21.6, 14.4; HRMS (ESI) *m/e* calcd for C₂₄H₂₉N₂O₅S (M + H)⁺ 457.1792, found 457.1794.

N-(3-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)-1-pivaloyl-1*H*-indol-7-yl)-4-methylbenzenesulfonamide (7t): Brown semisolid (82 mg, 78%); ¹H NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 7.52 (dd, *J* = 6.7, 2.0 Hz, 1H), 7.39-7.38 (m, 3H), 7.31-7.25 (m, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 3.87 (t, *J* = 6.1 Hz, 2H), 2.81 (t, *J* = 6.0 Hz, 2H), 2.27 (s, 3H), 1.33 (s, 9H), 0.83 (s, 9H), -0.06 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.1, 143.2, 137.7, 132.9, 129.6, 129.5, 127.0, 125.4, 125.0, 124.3, 122.8, 120.1, 116.7, 62.4, 41.7, 29.1, 28.5, 26.1, 21.6, 18.4, -5.2; HRMS (ESI) *m/e* calcd for $C_{28}H_{40}N_2O_4SSiNa (M + Na)^+ 551.2370$, found 551.2365.

N-(3-(2-(1,3-Dioxoisoindolin-2-yl)ethyl)-1-pivaloyl-1*H*-indol-7-yl)-4-methyl-

benzenesulfonamide (7u): White solid (98 mg, 90%); m.p. 167-169 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.26 (s, 1H), 7.81-7.79 (m, 2H), 7.70-7.68 (m, 2H), 7.50-7.48 (m, 1H), 7.44-7.42 (m, 1H), 7.38-7.36 (m, 3H), 7.31 (t, *J* = 7.8 Hz, 1H), 7.06 (d, *J* = 8.1 Hz, 1H), 3.98 (t, *J* = 7.2, 2H), 3.06 (t, *J* = 7.2 Hz, 2H), 2.26 (s, 3H), 1.29 (s, 9H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 179.2, 168.4, 143.3, 137.7, 134.4, 132.3, 132.1, 129.8, 129.5, 126.9, 125.4, 125.3, 123.7, 123.5, 123.1, 118.8, 116.7, 41.7, 37.2, 29.0, 24.1, 21.6; HRMS (ESI) *m/e* calcd for C₃₀H₃₀N₃O₅S (M + H)⁺ 544.1901, found 544.1902.

(*S*)-Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-(7-(4-methylphenylsulfonamido)-1pivaloyl-1*H*-indol-3-yl)propanoate (7w): White semisolid (1.6 g, 88%); [α]_D-101.9 (c 0.2, CH₃OH); ¹H NMR (500 MHz, CDCl₃) δ 9.23 (s, 1H), 7.77-7.75 (m, 2H), 7.70-7.68 (m, 2H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.34-7.23 (m, 5H), 7.01 (d, *J* = 8.0 Hz, 2H), 5.21-5.18 (m, 1H), 3.76 (s, 3H), 3.62-3.59 (m, 2H), 2.22 (s, 3H), 1.19 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 179.1, 169.2, 167.6, 143.2, 137.7, 134.6, 132.0, 131.7, 129.7, 129.5, 126.9, 125.5, 125.3, 124.5, 123.7, 123.1, 117.6, 116.3, 53.3, 51.3, 41.6, 28.9, 24.6, 21.5.; HRMS (ESI) *m/e* calcd for C₃₂H₃₂N₃O₇S (M + H)⁺ 602.1955, found 602.1945.

N-(1-Pivaloyl-1*H*-indol-7-yl)benzenesulfonamide (8a): White solid (63 mg, 89%); m.p. 125-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.26 (s, 1H), 7.54-7.48 (m, 4H), 7.42-7.36 (m, 2H), 7.31-7.25 (m, 3H), 6.55 (d, *J* = 3.9 Hz, 1H), 1.35 (s, 9H); ¹³C{¹H}

ACS Paragon Plus Environment

NMR (100 MHz, CDCl₃) δ 179.5, 140.5, 132.6, 132.4, 129.6, 128.9, 126.9, 126.7, 125.4, 125.2, 123.1, 119.1, 109.5, 41.8, 29.2; HRMS (ESI) *m/e* calcd for C₁₉H₂₁N₂O₃S (M + H)⁺ 357.1267, found 357.1269.

4-Fluoro-*N*-(1-pivaloyl-1*H*-indol-7-yl)benzenesulfonamide (8b): White solid (66 mg, 88%); m.p. 116-118 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 7.54-7.49 (m, 4H), 7.39 (dd, J = 7.7, 1.2 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 6.97-6.93 (m, 2H), 6.57 (d, J = 3.9 Hz, 1H), 1.38 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.5, 166.4 ($J_{C-F} = 253.2$ Hz), 136.6 ($J_{C-F} = 2.8$ Hz), 132.5, 129.7 ($J_{C-F} = 9.2$ Hz), 129.6, 126.9, 125.5, 125.0, 122.9, 119.2, 116.2 ($J_{C-F} = 22.3$ Hz), 109.7, 41.9, 29.3; HRMS (ESI) *m/e* calcd for C₁₉H₂₀FN₂O₃S (M + H)⁺ 375.1173, found 375.1181.

4-Chloro-*N***-(1-pivaloyl-1***H***-indol-7-yl)benzenesulfonamide (8c): White solid (70 mg, 90%); m.p. 112-114 °C; ¹H NMR (400 MHz, CDCl₃) \delta 9.37 (s, 1H), 7.53 (d,** *J* **= 3.9 Hz, 1H), 7.51 (dd,** *J* **= 7.8, 1.1 Hz, 1H), 7.45-7.41 (m, 2H), 7.39 (dd,** *J* **= 7.7, 1.2 Hz, 1H), 7.32 (t,** *J* **= 7.7 Hz, 1H), 7.25-7.23 (m, 2H), 6.58 (d,** *J* **= 3.9 Hz, 1H), 1.37 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) \delta 179.5, 139.1, 138.9, 132.5, 129.5, 129.1, 128.4, 126.8, 125.5, 124.9, 123.0, 119.3, 109.7, 41.9, 29.2; HRMS (ESI)** *m/e* **calcd for C₁₉H₂₀N₂O₃ClS (M + H)⁺ 391.0878, found 391.0884.**

4-Bromo-*N***-(1-pivaloyl-1***H***-indol-7-yl)benzenesulfonamide (8d):** White solid (68 mg, 78%); m.p. 118-120 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.38 (s, 1H), 7.53 (d, *J* = 3.9 Hz, 1H), 7.51 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.42-7.37 (m, 3H), 7.36-7.33 (m, 2H), 7.32 (t, *J* = 7.7 Hz, 1H), 6.58 (d, *J* = 3.9 Hz, 1H), 1.37 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.5, 139.5, 132.5, 132.1, 129.5, 128.5, 127.6, 126.8, 125.5, 124.8,

123.0, 119.4, 109.7, 41.9, 29.2; HRMS (ESI) *m/e* calcd for $C_{19}H_{20}BrN_2O_3S (M + H)^+$ 435.0372, found 435.0376.

4-Cyano-*N***-(1-pivaloyl-1***H***-indol-7-yl)benzenesulfonamide (8e): Brown semisolid (53 mg, 70%); ¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.64-7.62 (m, 2H), 7.59-7.56 (m, 2H), 7.54 (d,** *J* **= 3.9 Hz, 1H), 7.49-7.47 (m, 1H), 7.40-7.38 (m, 1H), 7.32 (t,** *J* **= 7.8 Hz, 1H), 6.59 (d,** *J* **= 3.9 Hz, 1H), 1.38 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.7, 144.7, 132.69, 132.65, 129.4, 127.7, 126.9, 125.7, 124.5, 122.5, 119.6, 117.4, 116.3, 109.9, 42.0, 29.3; HRMS (ESI)** *m/e* **calcd for C₂₀H₂₀N₃O₃S (M + H)⁺ 382.1220, found 382.1220.**

4-Acetyl-*N***-(1-pivaloyl-1***H***-indol-7-yl)benzenesulfonamide (8f): Brown semisolid (63 mg, 79%); ¹H NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 7.83 (d,** *J* **= 8.4 Hz, 2H), 7.60 (d,** *J* **= 8.4 Hz, 2H), 7.50-7.48 (m, 2H), 7.37 (d,** *J* **= 7.0 Hz, 1H), 7.30-7.26 (m, 1H), 6.55 (d,** *J* **= 3.9 Hz, 1H), 2.52 (s, 3H), 1.34 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.9, 179.6, 144.3, 139.9, 132.5, 129.4, 128.7, 127.3, 126.8, 125.5, 124.7, 122.5, 119.3, 109.7, 41.9, 29.2, 27.0; HRMS (ESI)** *m/e* **calcd for C₂₁H₂₃N₂O₄S (M + H)⁺ 399.1373, found 399.1378.**

3,5-Dichloro-*N***-(1-pivaloyl-1***H***-indol-7-yl)benzenesulfonamide (8g): Brown solid (67 mg, 79%); m.p. 108-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.59 (s, 1H), 7.56 (d,** *J* **= 3.9 Hz, 1H), 7.52 (dd,** *J* **= 7.8, 1.1 Hz, 1H), 7.43 (dd,** *J* **= 7.7, 1.2 Hz, 1H), 7.36-7.31 (m, 4H), 6.61 (d,** *J* **= 3.9 Hz, 1H), 1.41 (s, 9H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 179.7, 143.1, 135.8, 132.7, 132.5, 129.6, 126.9, 125.7, 125.4, 124.4, 123.0, 119.8, 109.9, 41.9, 29.2; HRMS (ESI)** *m/e* **calcd for C₁₉H₁₉N₂O₃Cl₂S (M + H)⁺** 425.0488, found 425.0487.

2,4-Difluoro-*N***-(1-pivaloyl-1***H***-indol-7-yl)benzenesulfonamide (8h): White semisolid (65 mg, 83%); ¹H NMR (400 MHz, CDCl₃) \delta 9.62 (s, 1H), 7.77-7.72 (m, 1H), 7.64 (d,** *J* **= 3.9 Hz, 1H), 7.47-7.45 (m, 1H), 7.30-7.28 (m, 1H), 7.22 (t,** *J* **= 7.8 Hz, 1H), 6.82-6.77 (m, 1H), 6.74-6.69 (m, 1H), 6.57 (d,** *J* **= 3.9 Hz, 1H), 1.51 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) \delta 179.9, 167.2 (***J***_{C-F} = 256.0, 11.3 Hz), 161.0 (***J***_{C-F} = 256.7, 12.7 Hz), 133.0 (***J***_{C-F} = 10.4, 1.4 Hz), 132.6, 128.8, 127.0, 125.4, 124.8, 124.5 (***J***_{C-F} = 26.2, 14.0 Hz), 120.4, 118.7, 112.0 (***J***_{C-F} = 21.7, 3.8 Hz), 109.6, 105.6 (***J***_{C-F} = 25.7, 24.6 Hz), 42.1, 29.3; HRMS (ESI)** *m/e* **calcd for C₁₉H₁₉N₂O₃SF₂ (M + H)⁺ 393.1079, found 393.1082.**

4-Methoxy-*N***-(1-pivaloyl-1***H***-indol-7-yl)benzenesulfonamide (8i):** White solid (68 mg, 88%); m.p. 119-121 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.19 (s, 1H), 7.48-7.46 (m, 2H), 7.40 (d, *J* = 8.8 Hz, 2H),7.33 (d, *J* = 7.0 Hz, 1H), 7.26-7.21 (m, 1H), 6.70 (d, *J* = 8.9 Hz, 2H), 6.53 (d, *J* = 3.9 Hz, 1H), 3.70 (s, 3H), 1.34 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.5, 162.8, 132.4, 132.1, 129.5, 129.0, 126.7, 125.4, 125.3, 122.9, 118.9, 114.0, 109.5, 55.7, 41.8, 29.2; HRMS (ESI) *m/e* calcd for C₂₀H₂₃N₂O₄S (M + H)⁺ 387.1372, found 387.1376.

N-(1-Pivaloyl-1*H*-indol-7-yl)naphthalene-2-sulfonamide (8j): Brown semisolid (69 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 9.39 (s, 1H), 8.14 (s, 1H), 7.77-7.74 (m, 2H), 7.67 (d, *J* = 8.6 Hz, 1H), 7.58-7.48 (m, 3H), 7.37-7.28 (m, 4H), 6.50 (d, *J* = 3.9 Hz, 1H), 1.16 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.4, 137.4, 134.8, 132.4, 132.2, 129.6, 129.3, 129.0, 128.9, 128.1, 127.9, 127.6, 126.7, 125.4, 125.2, 123.2,

122.3, 119.2, 109.5, 41.6, 28.9; HRMS (ESI) *m/e* calcd for $C_{23}H_{22}N_2O_3SNa$ (M + Na)⁺ 429.1243, found 429.1250.

N-(1-Pivaloyl-1*H*-indol-7-yl)methanesulfonamide (8k): White solid (52 mg, 88%); m.p. 160-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.03 (s, 1H), 7.72 (d, *J* = 3.9 Hz, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.41-7.39 (m, 1H), 7.32 (t, *J* = 7.8 Hz, 1H), 6.67 (d, *J* = 3.9 Hz, 1H), 2.90 (s, 3H), 1.54 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 180.1, 132.9, 129.1, 127.0, 125.6, 125.5, 120.8, 118.8, 109.7, 42.2, 39.9, 29.4; HRMS (ESI) *m/e* calcd for C₁₄H₁₈N₂O₃SNa (M + Na)⁺ 317.0930, found 317.0928.

N-(1-Pivaloyl-1*H*-indol-7-yl)octane-1-sulfonamide (8I): Brown semisolid (64 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 7.71 (d, *J* = 3.9 Hz, 1H), 7.51 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.38 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.31 (t, *J* = 7.8 Hz, 1H), 6.66 (d, *J* = 3.9 Hz, 1H), 3.00-2.96 (m, 2H), 1.78-1.71 (m, 2H), 1.54 (s, 9H), 1.32-1.18 (m, 10H), 0.85 (t, *J* = 6.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 180.1, 132.9, 128.9, 127.0, 125.9, 125.5, 120.0, 118.4, 109.7, 52.2, 42.2, 31.8, 29.4, 29.1, 29.0, 28.3, 23.5, 22.7, 14.2; HRMS (ESI) *m/e* calcd for C₂₁H₃₃N₂O₃S (M + H)⁺ 393.2206, found 393.2209.

N-(5-Chloro-1-pivaloyl-1*H*-indol-7-yl)-4-methoxybenzenesulfonamide (8m): White solid (51 mg, 60%); m.p. 151-153 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.34 (s, 1H), 7.56 (d, *J* = 4.0 Hz, 1H), 7.53 (d, *J* = 9.0 Hz, 2H), 7.48 (d, *J* = 2.0 Hz, 1H), 7.29 (d, *J* = 2.0 Hz, 1H), 6.78 (d, *J* = 9.0 Hz, 2H), 6.5 (d, *J* = 4.0 Hz, 1H), 3.75 (s, 3H), 1.39 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 179.6, 163.1, 133.4, 131.9, 130.8, 129.2, 128.0, 127.8, 126.5, 121.7, 118.1, 114.2, 108.9, 55.8, 42.0, 29.3; HRMS (ESI)

m/e calcd for C₂₀H₂₂N₂O₄ClS (M + H)⁺ 421.0983, found 421.0981.

N-(4-Chloro-1-pivaloyl-1*H*-indol-7-yl)-4-methoxybenzenesulfonamide (8n): Brown semisolid (61 mg, 73%); ¹H NMR (500 MHz, CDCl₃) δ 8.95 (s, 1H), 7.56 (d, *J* = 4.0 Hz, 1H), 7.46 (d, *J* = 9.0 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 1H), 7.27 (d, *J* = 8.4 Hz, 1H), 6.76 (d, *J* = 9.0 Hz, 2H), 6.70 (d, *J* = 4.0 Hz, 1H), 3.75 (s, 3H), 1.38 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 179.7, 163.0, 132.0, 130.8, 130.3, 129.1, 127.2, 124.9, 124.1, 124.0, 123.7, 114.2, 107.5, 55.8, 42.0, 29.2; HRMS (ESI) *m/e* calcd for C₂₀H₂₂N₂O₄ClS (M + H)⁺ 421.0983, found 421.0985.

N-(5-Chloro-1-pivaloyl-1*H*-indol-7-yl)methanesulfonamide (80): White semisolid (41 mg, 63%); ¹H NMR (500 MHz, CDCl₃) δ 9.24 (s, 1H), 7.74 (d, *J* = 4.0 Hz, 1H), 7.48 (d, *J* = 2.0 Hz, 1H), 7.34 (d, *J* = 2.0 Hz, 1H), 6.60 (d, *J* = 4.0 Hz, 1H), 2.96 (s, 3H), 1.53 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 180.2, 133.8, 131.0, 128.3, 127.2, 126.7, 119.5, 117.9, 109.1, 42.3, 40.2, 29.4. HRMS (ESI) *m/e* calcd for C₁₄H₁₇ClN₂O₃SNa (M + Na)⁺ 351.0541, found 351.0543.

N-(3-(1-Cyclopropyl-1-(4-fluorophenyl)ethyl)-1-pivaloyl-1*H*-indol-7-yl)methanesulfonamide (8p): Brown semisolid (83 mg, 91%); ¹H NMR (400 MHz, CDCl₃) δ 9.16 (s, 1H), 7.86 (s, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.20-7.17 (m, 2H), 7.05 (t, *J* = 7.9 Hz, 1H), 6.94 (t, *J* = 8.7 Hz, 2H), 6.63 (d, *J* = 7.8 Hz, 1H), 2.93 (s, 3H), 1.58 (s, 12H), 1.49-1.45 (m, 1H), 0.57-048 (m, 2H), 0.31-0.27 (m, 1H), 0.14-0.11 (m, 1H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 179.9, 162.6 (*J*_{C-F} = 243.8 Hz), 140.7 (*J*_{C-F} = 3.2 Hz), 131.5 (*J*_{C-F} = 89.3 Hz), 130.3, 129.3, 129.2, 125.8, 124.8, 124.3, 120.1, 119.2, 115.1 (*J*_{C-F} = 20.9 Hz), 42.3, 41.8, 40.2, 29.5, 25.1, 22.1, 1.8, 1.5; HRMS (ESI) *m/e* calcd for $C_{25}H_{29}FN_2O_3SNa (M + Na)^+ 479.1775$, found 479.1774.

N-(3-(2-Phenylpropan-2-yl)-1-pivaloyl-1*H*-indol-7-yl)methanesulfonamide (8q): Brown semisolid (64 mg, 77%); ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 7.59 (s, 1H), 7.38 (dd, *J* = 0.9, 7.8 Hz, 1H), 7.28-7.27 (m, 4H), 7.20-7.18 (m, 1H), 7.07 (t, *J* = 7.9 Hz, 1H), 6.78 (dd, *J* = 1.1, 7.9 Hz, 1H), 2.92 (s, 3H), 1.74 (s, 6H), 1.57 (s, 9H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 179.9, 147.7, 131.7, 131.6, 130.5, 128.6, 126.5, 126.3, 125.7, 124.9, 123.1, 120.3, 119.3, 42.2, 40.2, 39.1, 30.1, 29.5. HRMS (ESI) *m/e* calcd for C₂₃H₂₉N₂O₃S (M + H)⁺ 413.1893, found 413.1894.

N-(3-(2-Phenylpentan-2-yl)-1-pivaloyl-1*H*-indol-7-yl)methanesulfonamide (8r): Brown semisolid (73 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 7.59 (s, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 7.29-7.26 (m, 4H), 7.21-7.18 (m, 1H), 7.06 (t, *J* = 7.9 Hz, 1H), 6.75 (d, *J* = 7.9 Hz, 1H), 2.94 (s, 3H), 2.14-2.02 (m, 2H), 1.70 (s, 3H), 1.59 (s, 9H), 1.13-1.10 (m, 2H), 0.90 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.9, 146.9, 131.7, 130.7, 130.2, 128.5, 126.9, 126.4, 125.6, 124.9, 123.8, 120.1, 119.3, 43.4, 42.5, 42.2, 40.2, 29.5, 27.0, 17.9, 14.9. HRMS (ESI) *m/e* calcd for C₂₅H₃₂N₂O₃SNa (M + Na)⁺ 463.2026, found 463.2018.

(*S*)-Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-(7-(methylsulfonamido)-1-pivaloyl-1*H*indol-3-yl) propanoate (8s): White semisolid (81 mg, 77%); $[\alpha]_D$ -140.3 (c 0.2, CH₃OH); ¹H NMR (500 MHz, CDCl₃) δ 9.09 (s, 1H), 7.78-7.75 (m, 2H), 7.70-7.68 (m, 2H), 7.54 (s, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.38 (dd, *J* = 1.0, 7.8 Hz. 1H), 7.31 (t, *J* = 7.8 Hz, 1H), 5.27-5.23 (m, 1H), 3.79 (s, 3H), 3.67-3.65 (m, 2H), 2.83 (s, 3H), 1.38 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 179.7, 169.2, 167.7, 134.7, 132.5, 131.7,

129.2, 125.9, 125.6, 124.8, 123.8, 120.9, 117.9, 116.2, 53.4, 51.1, 42.0, 39.9, 29.1, 24.8. HRMS (ESI) *m/e* calcd for $C_{26}H_{27}N_3O_7SNa$ (M + Na)⁺ 548.1462, found 548.1452.

N-(5-Chloro-1*H*-indol-7-yl)-4-methoxybenzenesulfonamide (1): To a solution of **8m** (84 mg, 0.2 mmol) in 1.0 mL of methanol was added Et₃N (1.0 mL) dropwise at room temperature. The reaction mixture was stirred for 24 h before it was concentrated under vacuum. The residue was purified by chromatography on silica with a gradient eluent of petroleum ether and ethyl acetate to give 62 mg (92%) of **1** as white solid. m.p. 142-144 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.35 (s, 1H), 7.63 (d, J = 9.0 Hz, 2H), 7.42 (d, J = 1.3 Hz, 1H), 7.26-7.25 (m, 1H), 7.15 (s, 1H), 6.85 (d, J = 9.0 Hz, 2H), 6.54 (d, J = 1.6 Hz, 1H), 6.46-6.44 (m, 1H), 3.79 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.7, 130.8, 130.0, 129.7, 129.0, 126.8, 124.8, 121.0, 119.1, 117.5, 114.6, 102.7, 55.8. HRMS (ESI) *m/e* calcd for C₁₅H₁₄ClN₂O₃S (M + H)⁺ 337.0408, found 337.0402.

N-(3-(2-Phenylpropan-2-yl)-1*H*-indol-7-yl)methanesulfonamide (9): Following the same procedure for preparing 1 from 8m, 9 was obtained in 90% yield (yellow solid, 59 mg) from 8q. m.p. 161-163 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.02 (s, 1H), 7.33-7.31 (m, 2H), 7.25-7.21 (m, 2H), 7.18-7.13 (m, 2H), 6.98 (s, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.90 (d, *J* = 7.3 Hz, 1H), 6.82 (t, *J* = 7.8 Hz, 1H), 3.00 (s, 3H), 1.75 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.8, 133.1, 128.6, 128.2, 126.54, 126.53, 125.8, 122.1, 120.9, 119.9, 119.2, 117.5, 39.0, 38.8, 30.8. HRMS (ESI) *m/e* calcd for C₁₈H₂₁N₂O₂S (M + H)⁺ 329.1318, found 329.1314.

Acknowledgements: The authors are grateful to the National Natural Science Foundation of China (grant 21132008) and Merck for their financial support.

Supporting Information: The copies of ¹H and ¹³C NMR spectrum of products, X-ray diffraction parameters and data of **7a**, and detailed deuteration experiments. This material is available free of charge via the Internet at http://pubs.acs.org

References:

- (a) Owa, T.; Okauchi, T.; Yoshimatsu, K.; Sugi, N. H.; Ozawa, Y.; Nagasu, T.; Koyanagi, N.; Okabe, T.; Kitoh, K.; Yoshino, H. *Bioorg. Med. Chem. Lett.* 2000, *10*, 1223. (b) Banerjee, M.; Poddar, A.; Mitra, G; Surolia, A.; Owa, T.; Bhattacharyya, B. *J. Med. Chem.* 2005, *48*, 547. (c) Mohan, R.; Banerjee, M.; Ray, A.; Manna, T.; Wilson, L.; Owa, T.; Bhattacharyya, B.; Panda, D. *Biochemistry* 2006, *45*, 5440. (d) Mohan, R.; Banerjee, M.; Ray, A.; Manna, T.; Wilson, L.; Owa, T.; Bhattacharyya, B.; Panda, D. *Biochemistry* 2006, *45*, 9362. (e) Owa, T. *J. Syn. Org. Chem. Jpn.* 2006, *64*, 1171.
- (a) Van, K. C.; Beijnen, J. H.; Schellens, J. H. *Anti-cancer drugs* 2002, *13*, 989. (b) Dittrich, C.; Dumez, H.; Calvert, H.; Hanauske, A.; Faber, M.; Wanders, J.; Yule, M.; Ravic, M.; Fumoleau, P. *Clinical Cancer Res.* 2003, *9*, 5195. (c) Syrjänen, L.; Vermelho, A. B.; de Almeida Rodrigues, I.; Corte-Real, S.; Salonen, T.; Pan, P.; Vullo, D.; Parkkila, S.; Capasso, C.; Supuran, C. T. *J. Med. Chem.* 2013, *56*, 7372.

	(d) Lee, HY.; Pan, SL.; Su, MC.; Liu, YM.; Kuo, CC.; Chang, YT.; Wu,
	JS.; Nien, CY.; Mehndiratta, S.; Chang, CY.; Wu, SY.; Lai, MJ.; Chang,
	JY.; Liou, JP. J. Med. Chem. 2013, 56, 8008.
3.	(a) Bell, M. G; Gernert, D. L.; Grese, T. A.; Belvo, M. D.; Borromeo, P. S.;
	Kelley, S. A.; Kennedy, J. H.; Kolis, S. P.; Lander, P. A.; Richey, R.; Sharp, V. S.;
	Stephenson, G. A.; Williams, J. D.; Yu, H.; Zimmerman, K. M.; Steinberg, M. I.;
	Jadhav, P. K. J. Med. Chem. 2007, 50, 6443. (b) Konstantinos, G.; Jadhav, P. K.;
	Wang, M. WO 2005092854 A1, 2010. (c) Bell, M. G.; Gavardinas, K.; Gernert, D.
	L.; Grese, T. A.; Jadhav, P. K.; Lander, P. A.; Steinberg, M. I. WO2004067529 A1,
	2004.
4.	Luz, J. G.; Carson, M. W.; Condon, B.; Clawson, D.; Pustilnik, A.; Kohlman, D.

- T.; Barr, R. J.; Bean, J. S.; Dill, M. J.; Sindelar, D. K.; Maletic, M.; Coghlan, M. J. *Med. Chem.* **2015**, *58*, 6607.
- (a) Yasuma, T.; Ujikawa, O.; Itoh, M.; Aoki, K. US20080096877 A1, 2008. b)
 Dydio, P.; Zielinski, T.; Jurczak, J. *Chem. Commun.* 2009, 4560. (c) Taber, D. F.;
 Tirunahari, P. K. *Tetrahedron* 2011, 67, 7195; d) Vicente, R. *Org. Biomol. Chem.* 2011, 9, 6469.
- For selected examples of biologically important compounds that contain the 7-substituted indole moiety: (a) Sundberg, R. J. *The Chemistry of Indoles*; Academic Press: New York, 1970. (b) Humber, L. G.; Ferdinandi, E.; Demerson, C. A.; Ahmed, S.; Shah, U.; Mobilio, D.; Sabatucci, J.; De Lange, B.; Labbadia, F. *J. Med. Chem.* 1988, *31*, 1712. (c) Zhang, B.; Salituro, G.; Szalkowski, D.; Li, Z.;

Zhang, Y.; Royo, I.; Vilella, D.; Díez, M. T.; Pelaez, F.; Ruby, C.; Kendall, R. L.;
Mao, X.; Griffin, P.; Calaycay, J.; Zierath, J. R.; Heck, J. V.; Smith, R. G.; Moller,
D. E. *Science* 1999, 284, 974. (d) Pirrung, M. C.; Liu, Y.; Deng, L.; Halstead, D.
K.; Li, Z.; May, J. F.; Wedel, M.; Austin, D. A.; Webster, N. J. G. J. Am. Chem.
Soc. 2005, 127, 4609. (e) Fr, D. S. A.; Barreiro, E. J.; Fraga, C. A. Mini-Rev. Med.
Chem. 2009, 9, 782. (f) Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem.
Rev. 2010, 110, 4489.

- For studies on direct C-7 functionalization of indoles from other groups, see: (a) Robbins, D. W.; Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 4068.
 (b) Yang, Y.; Qiu, X.; Zhao, Y.; Mu, Y.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 495.
- 8. Xu, L.; Zhang, C.; He, Y.; Tan L.; Ma, D. Angew. Chem., Int. Ed. 2016, 138, 495.
- For related studies from our group, see: (a) Fan, M.; Ma, D. Angew. Chem., Int. Ed. 2013, 52, 12152. (b) He, Y.-P.; Zhang, C.; Fan, M.; Wu, Z.; Ma, D. Org. Lett. 2015, 17, 496.
- 10. (a) Kim, Y.; Park, J.; Chang, S. Org. Lett. 2016, 18, 1892. (b) Song, Z.;
 Antonchick, A. P. Org. Biomol. Chem. 2016, 14, 4804.
- For reviews on C-H aminations, see: (a) Collet, F.; Dodd, R. H.; Dauban, P. Chem. Commun. 2009, 5061. (b) Collet, F.; Lescot, C.; Dauban, P. Chem. Soc. Rev. 2011, 40, 1926. (c) Ramirez, T. A.; Zhao, B.; Shi, Y. Chem. Soc. Rev. 2012, 41, 931. (d) Jeffrey, J. L.; Sarpong, R. Chem. Sci. 2013, 4, 4092. (e) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040. (f) Kim, H.; Chang, S. ACS Catal. 2016, 6, 2341.

The Journal of Organic Chemistry

For selected examples of the rhodium-catalyzed direct C-H amination reactions, see: (a) Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904. (b) Ng, K.-H.; Zhou, Z.; Yu, W.-Y. Org. Lett. 2012, 14, 272. (c) Grohmann, C.; Wang, H.; Glorius, F. Org. Lett. 2012, 14, 656. (d) Lian, Y.; Hummel, J. R.; Bergman, R. G; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 12548. (e) Ng, F.-N.; Zhou, Z.; Yu, W.-Y. Chem. Eur. J. 2014, 20, 4474. (f) Park, S. H.; Kwak, J.; Shin, K.; Ryu, J.; Park, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 2492. (g) Park, Y.; Park, K. T.; Kim, J. G; Chang, S. J. Am. Chem. Soc. 2015, 137, 4534.

- For selected examples of the Iridium-catalyzed direct C-H amination reactions, see: (a) Ryu, J.; Kwak, J.; Shin, K.; Lee, D.; Chang, S. J. Am. Chem. Soc. 2013, 135, 12861. (b) Kang, T.; Kim, Y.; Lee, D.; Wang, Z.; Chang, S. J. Am. Chem. Soc. 2014, 136, 4141. Hwang, H.; Kim, J.; Jeong, J.; Chang, S. J. Am. Chem. Soc. 2014, 136, 10770. (c) Kim, H.; Shin, K.; Chang, S. J. Am. Chem. Soc. 2014, 136, 10770. (c) Kim, H.; Shin, K.; Chang, S. J. Am. Chem. Soc. 2014, 136, 10770. (c) Kim, H.; Shin, K.; Chang, S. J. Am. Chem. Soc. 2014, 136, 5904. (d) Shin, K.; Park, S.-W.; Chang, S. J. Am. Chem. Soc. 2015, 137, 8584. (e) Kim, H.; Chang, S. ACS Catal. 2015, 5, 6665. (f) Pi, C.; Cui, X.; Wu, Y. J. Org. Chem. 2015, 80, 7333.
- 14. For selected examples of the ruthenium-catalyzed direct C-H amination reactions:
 (a) Harvey, M. E.; Musaev, D. G.; Du Bois, J. J. Am. Chem. Soc. 2011, 133, 17207. (b) Thiruanvukkarasu, V. S.; Raghuvanshi, K.; Ackermann, L. Org. Lett. 2013, 15, 3286. (c) Shang, M.; Zeng, S.-H.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. Org. Lett. 2013, 15, 5286. (d) Pan, C.; Abdukader, A.; Han, J.; Cheng, Y.; Zhu, C.

Chem. Eur. J. **2014**, *20*, 3606. (e) Shin, Y.; Han, S.; De, U.; Park, J.; Sharma, S.; Mishra, N. K.; Lee, E.-K.; Lee, Y.; Kim, H. S.; Kim, I. S. *J. Org. Chem.* **2014**, *79*, 9262.

- 15. For selected examples of the cobalt-catalyzed direct C-H amination reactions: (a) Patel, P.; Chang, S. *ACS Catal.* 2015, *5*, 853. (b) Liang, Y.; Liang, Y.-F.; Tang, C.; Yuan, Y.; Jiao, N. *Chem. Eur. J.* 2015, *21*, 16395. (c) Zhang, L.-B.; Zhang, S.-K.; Wei, D.; Zhu, X.; Hao, X.-Q.; Su, J.-H.; Niu, J.-L.; Song, M.-P. *Org. Lett.* 2016, *18*, 1318. (d) Mei, R.; Loup, J.; Ackermann, L. *ACS Catal.* 2016, *6*, 793.
- 16. D. R. Stuart, E. Villemure, K. Fagnou, J. Am. Chem. Soc. 2007, 129, 12072-12073.
- 17. J. Cornella, P. Lu, L. Larrosa, Org. Lett. 2009, 11, 5506-5509.
- M. Ruiz, J. D. Sanchez, P. L. Alvarado, J. C. Menendez, *Tetrahedron*, 2012, 68, 705-710.