FROM ESTERS OF ALKYLTHIOBORIC ACIDS

B. M. Mikhailov and T. K. Kozminskaya

N. D. Zelinskii Inst. of Organic Chemistry Academy of Sciences, USSR Translated from Izvestiya Akademii Nauk SSSR, Otdelenie Khimicheskikh Nauk, No. 12, pp. 2247-2248, December, 1960 Original article submitted May 16, 1960

We established recently that the action of ammonia on the di-n-butyl ester of isoamylthioboric acid results in the formation of B-triisoamylborazole with a high yield [1]. Further investigation showed that n-butyl esters of other alkylthioboric acids also enter into reaction with ammonia. The reaction takes place at room temperature and leads to the formation of B-trialkylborazoles (I) with yields of 80-86%.

$$3RB (SC_4H_9-n)_2 + 3NH_3 \rightarrow RB NH + 6 n-C_4H_9SH$$

$$RB NH (I)$$

$$R = i-C_2H_7, n-C_2H_7, n-C_4H_9.$$

The mechanism of the reaction comprises formation in the first stage of an aminothioester (II)

$$RB (SC_4H_6-n)_2 + NH_3 \rightarrow RB \left\langle \begin{array}{c} SC_4H_6-n \\ NH_2 \end{array} \right. + n \cdot C_4H_9SH,$$
(II)

which then apparently condenses into a borazole according to the following scheme:

$$2RB \xrightarrow{SC_4H_9 - n} \xrightarrow{R} R \xrightarrow{R} B - NH - B \xrightarrow{R} R \xrightarrow{RBSC_4H_4(NH_2)} - C_4H_9SH} NH_2 \xrightarrow{RBSC_4H_4(NH_2)} R \xrightarrow{RBSC_4H_9SH} R \xrightarrow{RBSC_5H_9SH} R \xrightarrow{RBSC_5H_9SH} R$$

The initial di-n-butyl esters of n-propyl and n-butylthioboric acids were synthesized by reacting n-butyl thiol with the corresponding alkylboron dibromides [1]. The di-n-butyl ester of isopropylthioboric acid was also prepared by us for the first time by reacting n-butyl thiol with isopropylboron dibromide, which had been synthesized from isopropylboric acid anhydride and boron tribromide by a method described earlier [2]. The B-trialkyl borazole derivatives B-trimethylborazole [3] and B-triethylborazole [1] had been prepared earlier by heating the corresponding boron trialkyls with ammonia in an autoclave at 330-450°.

EXPERIMENTAL

All operations with organoboron compounds were carried out in an atmospheric of dry nitrogen.

Isopropylboron dibromide. By applying the method described earlier [2], 16 g of isopropylboric acid anhydride were reacted with 38.2 g of boron tribromide to prepare 28.5 g (58.3%) of isopropylboron dibromide with a b.p. of 109-113°. After repeated distillation the substance had b.p. 112-113°, d²⁰₄, 624; n²⁰D 1.4676. Found: B 5.05; 4.99; Br 73.71; 73.63%. C₃H₇BBr₂. Calculated: B 5.07; Br 74.78%.

Di-n-butyl ester of isopropylthioboric acid. After 21.8 g of isopropylboron dibromide had been boiled under reflux with 23.4 g of n-butyl thiol for 12 hr, 18.42 g (78%) of the di-n-butyl ester of isopropylthioboric acid were obtained. B.p. 128.5-129° (7 mm); d²⁰₄ 9079; n²⁰D 1.4940.

Found: C 56.99; 57.03; H 10.58; 10.73%. C₁₁H₂₅BS₂. Calculated: C 56.83; H 10.85%.

B-Triisopropylborazole. A stream of dry ammonia was passed at room temperature for 40 min, through 17 g of the di-n-butyl ester of isopropylthioboric acid. Slight heating of the reaction mixture took place. After the n-butyl thiol (11.65 g) had been distilled off in vacuum, distillation of the residue in vacuum yielded 4.12 g (82.4%) of B-triisopropylborazole with b.p. 87.5-88° (7 mm); d²⁰₄ 0.8453; n²⁰D 1.4478. Found; C 52.42; 52.49; H 11.55; 11.75; B 15.61; 15.54. C₉H₂₄B₃N₃. Calculated; C 52.27; H 11.70; B 15.70%.

B-Tri-n-propylborazole. By reacting similarly 14.5 g of the di-n-butyl ester of n-propylthioboric acid, 3.7 g (86%) of tri-n-propylborazole with b.p. 106.5° (6 mm) were prepared: d^{20}_4 0.8493; n^{20} D 1.4500. Found: C 52.41; 52.34; H 11.74; 11.84; B 15.59; 15.20%. $C_9H_{24}B_3N_3$. Calculated: C 52.27; H 11.70; B 15.70%. 9.5 g of n-butyl thiol were separated from the reaction mixture.

B-Tri-n-butylborazole. Passing of dry ammonia for 40 min through 14.8 g of the di-n-butyl ester of n-butyl-thioboric acid resulted in a yield of 8.3 g of n-butyl thiol and of 4.0 g (80.3%) of B-tri-n-butylborazole with b.p. 135.5° (4 mm); d^{20}_4 0.8506; n^{20} D 1.4540. Found: C 57.89; 57.80; H 11.91; 11.93; B 13.35; 13.14%. $C_{12}H_{30}B_3N_3$. Calculated: C 57.91; H 12.14; B 13.05%.

SUMMARY

It has been found that B-trialkylborazoles are formed smoothly by the reaction of ammonia with alkylthioboric acid esters.

LITERATURE CITED

- B. M. Mikhailov, T. K. Kozminskaya, V. A. Dorokhov, and N. S. Fedotov, Doklady Akad. Nauk SSSR 127, 1023 (1959).
- 2. B. M. Mikhailov and T. K. Kozminskaya, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1959, 1866.
- 3. E. Wiberg, K. Hertwig, and A. Bolz, Z. anorgan. chem. 256, 177 (1948).
- 4. A. F. Zhigach, E. B. Kazakova, E. S. Krongauz, Doklady Akad. Nauk SSSR, 111, 1029 (1956).

All abbreviations of periodicals in the above bibliography are letter-by-letter transliterations of the abbreviations as given in the original Russian journal. Some or all of this periodical literature may well be available in English translation. A complete list of the cover-to-cover English translations appears at the back of this issue.