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A B S T R A C T   

Hereditary hypophosphatemic disorders, TIO, and CKD conditions are believed to be influenced by an excess of 
Fibroblast Growth Factor-23 (FGF-23) which activates a binary renal FGFRs / α-Klotho complex to regulate 
homeostatic metabolism of phosphate and vitamin D. Adaptive FGF-23 responses from CKD patients with excess 
FGF-23 frequently lead to increased mortality from cardiovascular disease. A reversibly binding small molecule 
therapeutic has yet to emerge from research and development in this area. Current outcomes described in this 
work highlight efforts related to lead identification and modification using organic synthesis of strategic ana
logues to probe structure-activity relationships and preliminarily define the pharmacophore of a computationally 
derived hit obtained from virtual high-throughput screening. Synthetic strategies for the initial hit and analogue 
preparation, as well as preliminary cellular in vitro assay results highlighting sub micromolar inhibition of the 
FGF-23 signaling sequence at a concentration well below cytotoxicity are reported herein.   

1. Introduction 

FGF-23 is a bone-derived signaling biomolecule that activates a 
FGFR/α-Klotho binary complex in the kidney to regulate renal meta
bolism of phosphate and vitamin-D.1 Excess FGF-23 results in rare he
reditary hypophosphatemic disorders, such as X-linked 
hypophosphatemia2 (XLH), the autosomal recessive hypophoshatemic 
(ARH) bone-softening disorder ricketts,3 and acquired tumor-induced 
osteomalacia (TIO).4 Adaptive increases in FGF-23 also maintain phos
phate and vitamin D homeostasis in chronic kidney disease (CKD) and is 
associated with increased cardiovascular (CV) mortality.5 Recently, 
antagonizing FGF-23 with a blocking antibody has been successful in 
treating hypophosphatemic disorders caused by excess FGF-23. In this 
regard, a FGF-23 monoclonal antibody KRN23 (Crysvita®, burosumab) 
has been approved for treatment of XLH.6 There is an unmet clinical 
therapeutic need for an efficacious small molecule antagonist of FGF-23 
that is selective, reversible, and non-biologic in nature as over sup
pression of FGF-23 has potential toxicities, including hyper
phosphatemia and vascular calcifications. Because of the disadvantages 

associated with parenteral administration of biologics, developing an 
orally available small molecule drug to block the FGF-23 signaling 
sequence would have several potential advantages, including ease of 
administration, shorter half-life, effective dose-titration to more pre
cisely inhibit FGF-23, and possibly result in greater efficacy and safety. 

Virtual high-throughput screening (vHTs) via supercomputing uti
lizing structure-based molecular dynamics simulations7 employing 
ensemble docking strategies8 afforded ZINC13407541 (parent molecule, 
named as 1) as an in silico hit for selective FGF-23 antagonism (Fig. 1). 
Cellular assays validated 1 as a selective inhibitor of the FGF-23 
signaling sequence in an in vitro heterologous cell expression model, 
as well as isolated renal tubules ex vivo.9 Preliminary animal model 
studies with a murine species that overexpressed FGF-23 resulted in 
dose-dependent inhibition, as well as partial reversal of hypo
phoshatemic effects. With in vitro and preliminary animal model efficacy 
of 1 confirmed, medicinal chemistry efforts transitioned to synthetic 
route optimization and elaboration towards formulating a lead com
pound from the original hit while further refining the original scaffold 
for greater efficacy and ease of synthetic preparation. Dissemination of 
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the synthetic route to the prepared antagonist analogues, definition of 
the pharmacophore, probing of structure–activity relationships via 
synthetic analogues, and the optimization of in vitro potency of prepared 
molecules are reported. 

2. Results 

2.1. Synthesis 

The synthetic construction of analogues as novel FGF-23 antagonists 
discovered from vHTS affording 1 was anchored from a common scaffold 
derived in several synthetic steps from readily available cycloalkanone 
starting materials (Scheme 1). Retrosynthetic analysis of 1 using stan
dard functional group interconversions of oxime formation10 and metal- 
mediated transformations through the Suzuki-Miyaura cross-coupling11 

via known chemistry was envisioned.12 The convergency of the route 
allowed maximum flexibility of functionality towards pharmacophore 
mapping and optimization towards lead identification. Analogues were 
proposed to initially focus on variation of functionality to maintain 
conjugation of the extended π-system through the carbonyl and cyclo
alkene. Evaluation of ring size through the 5- and 6-membered common 
rings, in addition to heteroarene constructs was also performed (Scheme 
2). 

arene and heteroarene constructs were evaluated. Extension of this 
strategy towards aryl and Conversion of cyclopentanone to 2-bromocy
clopentene carbaldehyde using a modified Vilsmeier13 protocol adapted 
from Lipton14 afforded the desired synthon for metal-mediated coupling 
(4) in 70% yield. This reaction was amenable towards the formation of 
the 5-membered bromo-cyclopentene carbaldehyde 4 or the 6- 
membered homologue 5.15 Moving forward, treatment of 4 or 5 with 
potassium styrenyltrifluoroborate16 using Pd-catalysis via Suzuki- 
Miyaura cross-coupling17 conditions optimized in our laboratory18 

resulted in the production of the necessary advanced aldehyde in
termediates 6 and 7 for subsequent functional group interconversion.19 

Conversion to the oxime 1 was successful under standard conditions 
resulting in a 46% yield over three steps from cyclopentanone (2) on 
micro scale. During route scouting and validation it was observed that 4 
could be directly converted into the oxime 10 in high purity.20 Inter
mediate 10 was evaluated in parallel Suzuki-Miyaura cross-coupling 
reactions towards the production of the functionalized oxime with po
tassium styrenyltrifluoroborate, but did not afford the desired product in 
comparable yield, or purity. The chemistry described in Scheme 1 was 
the basis for the production of all requisite functionalized aldehydes, 
including the pyridine, benzene, and thiophene oxime analogues of 1 
(Scheme 2) 21 

With an established protocol to install the requisite carbon func
tionality onto the desired scaffolds, focus turned towards the completion 
of the oxime derivatives described in Table 1 for the definition of the 
pharmacophore and evaluation of structure-activity relationships pro
bed by synthetic analogues. The original vHTS hit was divided into three 
zones for functional group manipulation towards understanding the 
impacts of various structural features of a given antagonist analogue on 
in vitro efficacy (Fig. 1). Zone 1 analogues evaluated the significance of 
the hydrogen bond donor oxime and related methyl oxime derivative. 
Zone 2 analogues studied the impact of saturated ring size through the 
common 5- and 6-membered cycloalkanes, in addition to substitution of 
phenyl, pyridinyl, and thiophene cores. Whereas, Zone 3 analogues of 1 
probed the necessity of extended π-conjugation through the styrenyl, or 
direct connect aryl derivatives. The initial optimization analogue scope 
of 1 encompassed diverse functionality including conjugated styrenyl 
derivatives with aldehydes 4, 5, 11, 12, and 15. Aliphatic analogues (8f, 
8g, and 8t) were critical for evaluating the importance of conjugation to 
maintenance of more potent biological activity. A vinyl derivative 
lacking any aryl ring (8u), as well as direct connect aryl moieties (8l-8s) 
were prepared. Aryl moieties with broad substitution patterns (o, m, p, 
or poly-) were explored while concomitantly ascertaining the signifi
cance of resonance- and electron-donating, in addition to electron- 
withdrawing functionality. Most oxime end products were afforded as 
one major stereoisomer in above 75% average isolated, purified yield. 
Structural confirmation of prepared analogues was facilitated via 1H- 
and 13C NMR in concert with high-resolution mass spectrometry. The 
unoptimized current synthetic route is reproducibly robust and can 
support future assay studies without extensive reoptimization.22 With 
the realization of a viable synthetic strategy to produce relevant ana
logues of 1 for structure–activity studies, the focus of the research 
shifted to evaluating the in vitro efficacy of the prepared analogues. 

2.2. In vitro efficacy 

To evaluate the potency of the newly synthesized compounds, in vitro 
efficacy of the prepared antagonists, as measured by percent inhibition 
using HEK-293 T cells expressing FGFRs/α-Klotho and FGF-23-induced 
ERK reporter activation as the read out, were performed (Fig. 2). Five 
distinct groups at 10 μM concentration were identified: Group I = 100% 
inhibition, Group II = 70–90% inhibition, Group III = 50–70% inhibi
tion, Group IV = 20–50% inhibition, and Group V < 20% inhibition. 
Further structure / activity analysis revealed that the aldehyde precur
sor to 123 (6a) demonstrated 6-fold lower biological activity (%Max 
inhibition 46%) than 1 which underscores the significance of the oxime 
moiety to the pharmacophore of 1 in Group IV. The potential for 
hydrogen bonding of the oxime versus the methyl oxime 8e which, 
displayed <20% inhibition, signifies the importance of this functional 
group to the antagonist pharmacophore. Removal of aromatic func
tionality (8h, 8i, or 8t), or manipulation of the conjugation in 1 with 
analogues 8f and 8g proved deleterious to biological activity. 

Assessment of substitution of weakly donating alkyl substitutents on 
the aryl ring of 8a of core 4, as well as the resonance-donating methoxy- 
substituent of 8b highlighted the significance of these structural 
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Fig. 1. Original vHTS hit ZINC13407541 (1) and focus areas for analogue 
development. 
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Scheme 1. Synthesis of compounds 2-10. Reagents and conditions: (i) PBr3, 
DMF, rt; (ii) Pd(OAc)2 (5 mol%), RuPhos (10 mol%), RBRn (1.2 equiv), Cs2CO3 
(3 equiv), Tol:H2O (4:1), 110 ◦C, 16 h; (iii) NH2OH∙HCl, NaOAc, EtOH / 
H2O, rt. 
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amendments to overall potency. Interestingly, manipulation of the cores 
from 4 to 5, 11, or 12, while retaining the 4-methylstyrenyl substituent 
(9b, 13a, or 14b) as part of the Zone 2 analogues, afforded the most 
potent analogues to 1, while demonstrating the relevance of this sub
stitutent to biological activity. Electrocyclization analogue 8v, afforded 
during chromatography of 1, and postulated to potentially be an in vivo 
metabolite of 1, produced poor activity results as a constituent of Group 
V did not validate the aforementioned hypothesis.24 Subsequent effort 

targeted the preparation of analogues which were devoid of the trans- 
alkenyl double bond which bridged the core to the aryl substituents. 
Excision of the interstitial trans-double bond alleviates two rotatable 
bonds,25 modulates lipophilicity slightly, and affords more rapid access 
to future functionally group diverse examples vide infra. Compounds 8m 
and 8o, direct-connect, aromatic derivatives of 8a and 8b, which 
negated the vinyl group, demonstrated lower than half biological ac
tivity compared to 1 and further validated the relevance of extension of 
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Scheme 2. Synthesis of compounds 11–14. Reagents and conditions: (i) Pd(OAc)2 (5 mol%), RuPhos (10 mol%), RBRn (1.2 equiv), Cs2CO3 (3 equiv), Tol:H2O (4:1), 
110 ◦C, 16 h; (ii) NH2OH∙HCl, NaOAc, EtOH / H2O, rt, 16 h. 

Table 1 
FGF-23 antagonists prepared based on the structure of the original hit.  
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conjugation, or electron density, as potential influences on increased 
activity. Thiophene analogues of 1 were extremely challenging to syn
thesize and purify. Substantive efforts afforded 16a and 16b which 
performed inferiorly to 1. Probing the structural nature of the oxime 
with respect to biological activity as part of the Zone 3 analogues, 
including the methyl oxime 8a, aldoxime 1 afforded slightly higher 
potency. Based on the initial in vitro results presented, eight analogues 
were selected from Groups I to IV for IC50 determinations (Table 2). 

The IC50 values of prepared FGF-23 antagonist analogues evaluated 
ranged from 0.14 μM (13a) to 31 μM (6a) with a ranked order of 13a 
(0.14 μM), 8a (0.20 μM), 8c (0.37 μM), 14b (0.39 μM), 9b (0.52 μM), 8n 
(2.79 μM), 8 l (10 μM), 8o (12.3 μM) and 6a (31 μM), respectively. 8n, 8 
l, and 8o decreased maximum inhibition activity (%Max inhibition 60 
~ 70%) in Group II, III, and IV. On the aryl ring of 8a and 8c, a 4-po
sition electron-donating substituent CH3 for 8a and the resonance- 
donating substituent OCH3 for 8c largely increases the efficacy, lead
ing to 10 ~ 25-fold higher potency for inhibiting FGF-23 activity when 
compared to 1 (IC50 5.0 μM) in Group I. The presence of the double bond 
in 8c compared to 8o resulted in an order of magnitude increase in 
activity for the former, as compared to the latter. In addition, incorpo
ration of a 6-membered cyclohexenyl ring (9b), aromatic ring (13a) or 
heteroaromatic core (14b) on these analogues resulted in 10 ~ 36-fold 
higher potency for inhibiting FGF-23 activity as opposed to 1 (IC50 5.0 

μM) in Group I. Cytotoxicity assays revealed that all the test compounds 
have no obvious cytotoxicity from 10− 9 M to 10− 5 M, which is further 
underscored by the fact that IC50 values were dramatically lower than 
EC50 values. Only 8n showed markedly stimulated cellular LDH release 
at a concentration of 10− 4 M with 2.30 × 102 μM EC50. The EC50 values 
of other compounds with a ranked order are 8a (5.70 × 102 μM), 13a 
(6.90 × 102 μM), 1 (1.41 × 103 μM), 8o (1.91 × 103 μM), and 14b (2.41 
× 103 μM), respectively. Future studies will examine the adsorption, 
distribution, metabolism, excretion, selectivity and toxicity of these lead 
compounds. 

3. Conclusion 

In conclusion, we have described an efficiently convergent and 
diversified approach to small-molecule antagonists of the bone-derived 
signaling biomolecule FGF-23 from an initial vHTS hit. Structure- 
activity relationships were probed from the preparation of expansive 
synthetic analogues which have preliminary defined the requisite 
pharmacophore of this antagonist class requiring a polar oxime with a 
conjugated aryl group with electron-donating substituents being able to 
achieve sub 1 µM inhibition in the FGF-23 signaling sequence from in 
vitro, cellular IC50 assays. Subsequent lead optimization efforts with 
respect to first pass metabolic stability, oral availability, toxicity, and 
animal model studies are ongoing in these laboratories and will be re
ported in due course. 

4. Experimental section 

General Considerations: All reagents were purchased from U.S. 
chemical suppliers, stored according to published protocols, and used as 
received unless indicated otherwise. All experiments were performed in 
oven- or flame-dried glassware. Reaction progress was monitored using 
thin-layer chromatography on glass-backed silica gel plates and/or 1H 
NMR analysis of crude reaction mixtures. RF values for compounds that 
resulted in a concentrically observed spot on normal phase silica gel are 
reported using the conditions listed. All melting points are reported as 
observed and uncorrected. All reported yields listed are for pure 

Fig. 2. Comparison of analogues of 1 based on ERK reporter activities at the concentration of 10 µM. Values (mean ± SEM, n = 3–5) with different superscripts (a-e) 
are significantly different at P < 0.05. 

Table 2 
Determination of efficacy (IC50) and cytotoxicity (EC50) for select potent 
analogues.  

Compound IC50 (µM) EC50 (µM) 

1  5.0 1.41 × 103 

13a  0.14 6.90 × 102 

8a  0.20 5.70 × 102 

8c  0.37 – 
14b  0.39 2.41 × 103 

9b  0.52 – 
8n  2.79 2.30 × 102 

8l  10.0 – 
8o  12.3 1.91 × 103  
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compounds and corrected for residual solvent or stereoisomeric impu
rities, if applicable, from 1H NMR spectroscopy unless otherwise indi
cated. All 1H and 13C NMR data was acquired from a 500 MHz 
multinuclear spectrometer with broad-band N2 cryoprobe. Chemical 
shifts are reported using the δ scale and are referenced to the residual 
solvent signal: CDCl3 (δ 7.26) and CD3OD (3.31) for 1H NMR and 
chloroform (δ 77.16), CD3OD (39.00), and (CD3)2CO (29.84) for 13C 
NMR. Splittings are reported as follows: (s) = singlet, (d) = doublet, (t) 
= triplet, (dd) = doublet of doublets, (ddd) = doublet of doublet of 
doublets, (dt) = doublet of triplets, (br) = broad, (m) = multiplet, and 
pent = pentet. Infrared spectral data was acquired from the (form) lis
ted. High resolution mass spectrometry (HRMS) data was obtained uti
lizing electron impact ionization (EI) with a magnetic sector (EBE 
trisector), double focusing-geometry mass analyzer. The compounds 
were stored in the − 20 ◦C freezer and were tested via in vitro assay. 
Recombinant human FGF-23 was purchased from R&D Systems (Min
neapolis, MN, USA). 

General Procedure for Oxime Formation: To an 8 mL reaction vial 
equipped with a magnetic stir bar at ambient temperature was charged 
the required aldehyde, sodium acetate (1.50 equiv), and hydroxylamine 
hydrochloride (1.50 equiv) in ethanol:H2O (3:1) (10 vol) at ambient 
temperature. The reaction was continued for 16 h upon which time an 
aliquot was removed and analyzed by 1H NMR. Concentration of the 
crude reaction mixtures under reduced pressure at ambient temperature 
followed by purification on normal phase silica gel using automated 
flash-column chromatography with MTBE:hexanes, EtOAc:hexanes, or 
MeOH:DCM gradient mobile phases afforded the compounds described 
in the listed yields. 

2-Styryl-cyclopent-1-enecarbaldehyde oxime (1): Prepared ac
cording to the general procedure discussed above with 6a26 (0.54 mmol, 
1.00 equiv) and hydroxylamine hydrochloride, RF = 0.58, 20% MTBE: 
hexanes; purified using automated flash column chromatography using 
an MTBE:hexanes gradient mobile phase employing a 5% isocratic hold; 
isolated yield 0.195 g, 93%; orange solid; mp = 149.7–152.9 ◦C; 1H 
NMR (500 MHz, CDCl3): δ 8.41 (s, 1H), 7.45 (d, J = 7.5 Hz, 2H), 
7.36–7.32 (m, 2H), 7.28–7.24 (m, 1H), 7.23 (d, J = 16.0 Hz, 1H), 6.62 
(d, J = 16.0 Hz, 1H), 2.78–2.69 (m, 4H), 1.98 (pent, J = 7.5 Hz, 2H); 13C 
NMR (125 MHz, CDCl3): δ 146.4, 145.8, 137.2, 133.5, 132.2, 128.9, 
128.2, 126.8, 121.2, 33.8, 32.9, 21.9; IR (ATR-CDCl3): υmax = 3247, 
3032, 2953, 2850, 1649, 1599, 1510, 1006, 948, 939, 753, 693 cm− 1; 
HRMS (EI): m/z calculated for C14H15NO: 213.1154; found: 213.1155. 

2-(2-p-Tolyl-vinyl)-cyclopent-1-enecarbaldehyde oxime (8a): 
Prepared according to the general procedure discussed above with 6b 
(0.30 mmol, 1.00 equiv) and hydroxylamine hydrochloride, RF = 0.51, 
20% MTBE:hexanes; purified using automated flash column chroma
tography using an MTBE:hexanes gradient mobile phase employing a 
5% isocratic hold; isolated yield 0.051 g, 75%; off-white solid; mp =
172.9–177.4 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.40 (s, 1H), 7.35 (d, J =
7.5 Hz, 2H), 7.19 (d, J = 16.0 Hz, 1H), 7.15 (d, J = 7.5 Hz, 2H), 6.60 (d, 
J = 16.0 Hz, 1H), 2.78–2.68 (m, 4H), 2.35 (s, 3H), 1.97 (pent, J = 7.5 Hz, 
2H); 13C NMR (125 MHz, CDCl3): δ 146.4, 145.6, 138.0, 134.4, 132.9, 
132.0, 129.5, 126.6, 120.2, 33.7, 32.7, 21.7, 21.2; IR (ATR-CDCl3): υmax 
= 3200, 2955, 2847, 1615, 1583, 1511, 1465, 1006, 940, 801 cm− 1; 
HRMS (EI): m/z calculated for C15H17NO: 227.1310; found: 227.1302. 

2-[2-(4-Methoxy-phenyl)-vinyl]-cyclopent-1-enecarbaldehyde 
oxime (8b): Prepared according to the general procedure discussed 
above with 6c (0.44 mmol, 1.00 equiv) and hydroxylamine hydrochlo
ride, RF = 0.30, 20% EtOAc:hexanes; purified using automated flash 
column chromatography using an MTBE:hexanes gradient mobile phase; 
isolated yield 0.074 g, 99%; off-white solid; mp = 151.2–153.0 ◦C; 1H 
NMR (500 MHz, CDCl3): δ 8.40 (s, 1H), 7.42–7.38 (m, 2H), 7.11 (d, J =
16.0 Hz, 1H), 6.91–6.86 (m, 2H), 6.58 (d, J = 16.0 Hz, 1H), 3.83 (s, 3H), 
2.77–2.68 (m, 4H), 1.97 (pent, J = 7.5 Hz, 2H); 13C NMR (125 MHz, 
CDCl3): δ 159.7, 146.5, 14538, 132.4, 131.7, 130.1, 128.1, 119.3, 114.4, 
55.5, 33.8, 32.8, 21.8; IR (ATR-CDCl3): υmax = 3260, 3032, 3002, 2841, 
1602, 1510, 1248, 1174, 904, 819, 726 cm− 1; HRMS (EI): m/z 

calculated for C15H17NO2: 243.1259; found: 243.1265. 
2-[2-(4-Fluoro-phenyl)-vinyl]-cyclopent-1-enecarbaldehyde 

oxime (8c): Prepared according to the general procedure discussed 
above with 6d (0.30 mmol, 1.00 equiv) and hydroxylamine hydro
chloride. The crude mixture was concentrated under reduced pressure 
and the resulting residue was partitioned between EtOAc:H2O in a 
separatory funnel where the organic layer was separated. The aqueous 
layer was back extracted with 2 × 10 mL portions of ethyl acetate. The 
combined organic layers were washed with 10 mL of a saturated 
aqueous NaCl solution, dried over anhydrous sodium sulfate, filtered, 
and then concentrated under reduced pressure to afford the title com
pound: RF = 0.49, 20% MTBE:hexanes; isolated yield 0.067 g, 99%; tan 
solid; decomposed upon heating for mp analysis; 1H NMR (500 MHz, 
CDCl3): δ 8.40 (s, 1), 7.45–7.40 (m, 2H), 7.14 (d, J = 15.7 Hz, 1H), 
7.06–7.01 (m, 2H), 6.58 (d, J = 15.7 Hz, 1H), 2.77 (m, 4H), 1.98 (pent, J 
= 7.5 Hz, 2H); 13C NMR (125 MHz, CDCl3): δ 163.9, 161.7, 146.1, 145.6, 
133.5, 133.4 (J = 3.0 Hz), 128.3 (J = 8.5 Hz), 121.0 (J = 2.0 Hz), 115.9 
(J = 21.8 Hz), 33.8, 32.9, 21.8; IR (ATR-CDCl3): υmax = 3255, 2964, 600, 
1507, 1224, 855, 819 cm− 1; HRMS (EI): m/z calculated for C14H14FNO: 
231.1059; found: 231.1062. 

2-[2-(4-Trifluoromethyl-phenyl)-vinyl]-cyclopent-1-ene
carbaldehyde oxime (8d): Prepared according to the general proced
ure discussed above with 6e (0.86 mmol, 1.00 equiv) and 
hydroxylamine hydrochloride. The crude mixture was concentrated 
under reduced pressure and the resulting residue was partitioned be
tween EtOAc:H2O in a separatory funnel where the organic layer was 
separated. The aqueous layer was back extracted with 2 × 10 mL por
tions of ethyl acetate. The combined organic layers were washed with 
10 mL of a saturated aqueous NaCl solution, dried over anhydrous so
dium sulfate, filtered, and then concentrated under reduced pressure to 
afford the title compound, RF = 0.47, 20% MTBE:hexanes; isolated yield 
0.132 g, 52%; gold solid; mp = 179.5–181.2 ◦C; 1H NMR (500 MHz, 
CDCl3): δ 8.41 (s, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 
7.31 (d, J = 16.0 Hz, 1H), 6.63 (d, J = 16.0 Hz, 1H), 2.80–2.72 (m, 4H), 
2.00 (pent, J = 7.5 Hz, 2H); 13C NMR (125 MHz, CDCl3): δ 145.9, 144.9, 
140.7, 135.3, 130.4, 129.8 (d, J = 31.8 Hz), 126.83, 126.8X (overlaps 
with 126.83), 125.8 (d, J = 3.6 Hz), 123.5, 33.7, 30.0, 21.8; IR (ATR- 
CDCl3): υmax = 3240, 2965, 2838, 1611, 1457, 1320, 1165, 1119, 1108, 
1066, 867, 819 cm− 1; HRMS (EI): m/z calculated for C15H14F3NO: 
281.1027; found: 281.1037. 

2-Styryl-cyclopent-1-enecarbaldehyde O-methyl-oxime (8e): 
Prepared according to the general procedure discussed above with 6a 
(0.16 mmol, 1.00 equiv) and methoxyamine hydrochloride, RF = 0.39, 
20% MTBE:hexanes; purified using automated flash column chroma
tography using an MTBE:hexanes gradient mobile phase employing a 
5% isocratic hold; isolated yield 0.030 g, 89%; orange solid; mp =
139.0–141.5 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.37 (s, 1H), 7.46–7.42 
(m, 2H), 7.36–7.31 (m, 2H), 7.27–7.23 (m, 1H), 7.21 (d, J = 16.0 Hz, 
1H), 6.60 (d, J = 16.0 Hz, 1H), 3.94 (s, 3H), 2.74 (t, J = 7.5 Hz, 4H), 1.97 
(pent, J = 7.5 Hz, 2H); 13C NMR (125 MHz, CDCl3): δ 145.1, 144.8, 
137.4, 133.9, 131.8, 128.9, 128.1, 126.7, 121.4, 62.0, 33.8, 33.0, 21.9; 
IR (ATR-CDCl3): υmax = 3031, 2935, 2846, 2816, 1601, 1588, 1495, 
1448, 1055, 750, 691 cm− 1; HRMS (EI): m/z calculated for C15H17NO: 
227.1310; found: 227.1315. 

2-Phenethyl-cyclopent-1-enecarbaldehyde oxime (8f): Prepared 
according to the general procedure discussed above with 6f (0.25 mmol, 
1.00 equiv) and hydroxylamine hydrochloride, RF = 0.49, 20% MTBE: 
hexanes; purified using automated flash column chromatography using 
an MTBE:hexanes gradient mobile phase employing a 5% isocratic hold; 
isolated yield 0.020 g, 37%; pale-brown oil; 1H NMR (500 MHz, CDCl3): 
δ 7.99 (s, 1), 6.60–6.53 (m, 2H), 6.51–6.43 (m, 3H), 2.02 (t, J = 7.5 Hz, 
1H), 1.88–1.79 (m, 4H), 1.76 (t, J = 7.5 Hz, 2H), 1.15 (pent, J = 7.5 Hz, 
2H); 13C NMR (125 MHz, CDCl3): δ 149.9, 146.5, 141.5, 130.0, 128.5, 
128.4, 126.2, 37.2, 34.7, 32.1, 30.9, 22.0; IR (ATR-CDCl3): υmax = 3204, 
3062, 2948, 2921, 1640, 1602, 1496, 1453, 968, 927, 745, 703 cm− 1; 
HRMS (EI): m/z calculated for C14H17NO: 215.1310; found: 215.1305. 
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2-(3-Phenyl-propenyl)-cyclopent-1-enecarbaldehyde oxime 
(8g): Prepared according to the general procedure discussed above with 
6g (0.40 mmol, 1.00 equiv) and hydroxylamine hydrochloride: RF =

0.55, 20% MTBE:hexanes; purified using automated flash column 
chromatography using an MTBE:hexanes gradient mobile phase 
employing a 5% isocratic hold; isolated yield 0.060 g, 66%; brown 
liquid; 1H NMR (500 MHz, CDCl3); major diastereomer: δ 8.25 (s, 1H), 
7.33–7.27 (m, 2H), 7.24–7.13 (m, 3H), 6.56 (d, J = 15.5 Hz, 1H), 5.93 
(dt, J = 15.5, 7.0 Hz, 1H), 3.50 (d, J = 7.0 Hz, 2H), 2.65 (br-t, J = 7.5 Hz, 
2H), 2.59 (br-t, J = 7.5 Hz, 2H), 1.89 (pent, J = 7.5 Hz, 2H); 13C NMR 
(125 MHz, CDCl3) major diastereomer: δ 146.2, 145.8, 139.9, 133.7, 
131.4, 128.8, 128.7, 126.5, 124.2, 39.8, 34.0, 32.6, 21.7; IR (ATR- 
CDCl3): υmax = 3526, 3026, 2845, 1602, 1495, 1452, 994, 957, 931, 748, 
698 cm− 1; HRMS (EI): m/z calculated for C15H17NO: 227.1310; found: 
227.1306. 

2-(2-Cyclopentyl-vinyl)-cyclopent-1-enecarbaldehyde oxime 
(8h): Prepared according to the general procedure discussed above with 
2-(2-cyclopentyl-vinyl)-cyclopent-1-enecarbaldehyde (0.34 mmol) and 
hydroxylamine hydrochloride, RF = 0.66, 20% MTBE:hexanes; purified 
using automated flash column chromatography using an MTBE:hexanes 
gradient mobile phase employing a 5% isocratic hold; isolated yield 
0.040 g, 57%; peach solid; mp = 123.4–128.0 ◦C; 1H NMR (500 MHz, 
CDCl3) major oxime diastereomer: δ 8.26 (s, 1H), 6.49 (d, J = 15.5 Hz, 
1H), 5.79 (dd, J = 15.5, 8.0 Hz, 1H), 2.67–2.57 (m, 4H), 2.56–2.49 (m, 
1H), 1.90 (pent, J = 7.5 Hz, 2H), 1.86–1.78 (m, 2H), 1.71–1.63 (m, 2H), 
1.62–1.55 (m, 2H), 1.37–1.28 (m, 2H); 13C NMR (125 MHz, CDCl3) 
major oxime diastereomer: δ 146.8, 146.5, 140.6, 130.2, 121.3, 44.2, 
34.0, 33.4, 32.6, 24.4, 21.8; IR (ATR-CDCl3): υmax = 3261, 2951, 2868, 
1637, 1617, 996, 956, 935 cm− 1; HRMS (EI): m/z calculated for 
C13H19NO: 205.1467; found: 205.1459. 

2-(2-Cyclohexyl-vinyl)-cyclopent-1-enecarbaldehyde oxime 
(8i): Prepared according to the general procedure discussed above with 
6h (0.49 mmol, 1.00 equiv) and hydroxylamine hydrochloride, RF =

0.56, 20% EtOAc:hexanes; purified using automated flash column 
chromatography using an MTBE:hexanes gradient mobile phase; iso
lated yield 0.060 g, 56%; cream colored solid; mp = 136.2–137.9 ◦C; 1H 
NMR (500 MHz, CDCl3) major diastereomer: δ 8.27 (s, 1H), 6.47 (d, J =
15.5 Hz, 1H), 5.74 (dd, J = 15.5, 7.5 Hz, 1H), 2.63 (t, J = 7.5 Hz, 2H), 
2.59 (t, J = 7.5 Hz, 2H), 1.90 (pent, J = 7.5 Hz, 2H), 1.78–1.71 (m, 4H), 
1.70–1.63 (m, 1H), 1.35–1.23 (m, 3H), 1.22–1.06 (m, 3H); 13C NMR 
(125 MHz, CDCl3) major diastereomer: δ 146.7, 146.1, 141.1, 130.6, 
120.6, 41.5, 33.9, 33.0, 32.6, 26.2, 26.1, 21.8; IR (ATR-CDCl3): υmax =

3267, 2994, 2921, 2848, 1637, 1585, 1451, 1003, 955, 933 cm− 1; HRMS 
(EI): m/z calculated for C14H21NO: 219.1623; found: 219.1627. 

2-[2-(3-Methoxy-phenyl)-vinyl]-cyclopent-1-enecarbaldehyde 
oxime (8j): Prepared according to the general procedure discussed 
above with 6i (0.35 mmol, 1.00 equiv) and hydroxylamine hydrochlo
ride, RF = 0.41, 20% MTBE:hexanes; purified using automated flash 
column chromatography using an MTBE:hexanes gradient mobile phase 
employing a 5% isocratic hold; isolated yield 0.040 g, 51%; off-white 
solid; mp = 156.4–158.8 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.41 (s, 
1H), 7.28–7.24 (m, 1H), 7.22 (d, J = 16.0 Hz, 1H), 7.07–7.03 (m, 1H), 
6.99–6.97 (m, 1H), 6.82 (ddd, J = 8.2, 2.4, 0.8 Hz), 6.58 (d, J = 16.0 Hz, 
1H), 3.85 (s, 3H), 2.78–2.68 (m, 4H), 1.98 (pent, J = 7.5 Hz, 2H); 13C 
NMR (125 MHz, CDCl3): δ 160.1, 146.6, 145.4, 138.7, 133.8, 132.0, 
129.9, 121.5, 119.6, 114.0, 111.8, 55.4, 33.8, 32.9, 21.8; IR (ATR- 
CDCl3): υmax = 3164, 3002, 2837, 1603, 1575, 1490, 1433, 1261, 1044, 
950, 770, 684 cm− 1; HRMS (EI): m/z calculated for C15H17NO2: 
234.1259; found: 243.1258. 

2-[2-(3,5-Difluoro-phenyl)-vinyl]-cyclopent-1-enecarbalde
hyde oxime (8k): Prepared according to the general procedure dis
cussed above with 6j (0.30 mmol, 1.00 equiv) and hydroxylamine 
hydrochloride, RF = 0.55, 20% MTBE:hexanes; purified using auto
mated flash column chromatography using an MTBE:hexanes gradient 
mobile phase employing a 5% isocratic hold; isolated yield 0.066 g, 
88%; pale-pink solid; mp = 171.4–176.1 ◦C; 1H NMR (500 MHz, CDCl3): 

δ 8.38 (s, 1H), 7.43 (br-s, 1H), 7.20 (d, J = 16.0 Hz, 1H), 6.97–6.92 (m, 
2H), 6.72–6.67 (m, 1H), 6.50 (d, J = 16.0 Hz, 1H), 2.77–2.69 (m, 4H), 
1.99 (pent, J = 7.5 Hz, 2H); 13C NMR (125 MHz, (CD3)2CO): δ 164.1 (dd, 
J = 250.0, 13.0 Hz), 145.8, 143.1, 142.6, 138.0, 129.6 (t, J = 3.0 Hz), 
125.4, 110.2 (dd, J = 19.5, 5.5 Hz), 103.1 (t, J = 26.5 Hz), 33.9, 33.7, 
23.3; IR (ATR-CDCl3): υmax = 3181, 3078, 2921, 2851, 1612, 1590, 
1437, 1122, 980, 951 cm− 1; HRMS (EI): m/z calculated for C14H13F2NO: 
249.0965; found: 249.0970. 

2-Phenyl-cyclopent-1-enecarbaldehyde oxime (8l): Prepared ac
cording to the general procedure discussed above with 6k (0.86 mmol, 
1.00 equiv) and hydroxylamine hydrochloride, RF = 0.34, 10% MTBE: 
hexanes; purified using automated flash column chromatography using 
an MTBE:hexanes gradient mobile phase employing a 5% isocratic hold; 
isolated yield 0.118 g, 74%; yellow solid; mp = 105.1–107.1 ◦C; 1H NMR 
(500 MHz, CDCl3): δ 8.10 (s, 1H), 7.39–7.35 (m, 2H), 7.32–7.27 (m, 3H), 
2.90–2.84 (m, 2H), 2.79–2.74 (m, 2H), 2.02 (pent, J = 7.5 Hz, 2H); 13C 
NMR (125 MHz, CDCl3): δ 148.6, 148.2, 136.7, 131.8, 128.4, 128.0, 
127.8, 38.4, 33.0, 22.0; IR (ATR-CDCl3): υmax = 3261, 3055, 3953, 3849, 
1601, 1620, 1493, 967, 760, 698 cm− 1; HRMS (EI): m/z calculated for 
C12H13NO: 187.0997; found: 187.1000. 

2-p-Tolyl-cyclopent-1-enecarbaldehyde oxime (8m): Prepared 
according to the general procedure discussed above with 6l (0.46 mmol, 
1.00 equiv) and hydroxylamine hydrochloride, RF = 0.39, 20% MTBE: 
hexanes; purified using automated flash column chromatography using 
an MTBE:hexanes gradient mobile phase employing a 2.5% isocratic 
hold; isolated yield 0.065 g, 70%; yellow solid; mp = 157.0–159.5 ◦C; 1H 
NMR (500 MHz, CDCl3): δ 8.20 (s, 1H), 7.34 (s, 4H), 2.96–2.91 (m, 2H), 
2.87–2.82 (m, 2H), 2.45 (s, 3H), 2.09 (pent, J = 7.5 Hz, 2H); 13C NMR 
(125 MHz, CDCl3): δ 149.2, 148.5, 137.9, 133.8, 130.7, 129.2, 128.1, 
38.5, 33.1, 22.1, 21.4; IR (ATR-CDCl3): υmax = 3529, 2961, 2853, 1620, 
1513, 1447, 969, 822 cm− 1; HRMS (EI): m/z calculated for C13H15NO: 
201.1154; found: 201.1153. 

2-(4-tert-Butyl-phenyl)-cyclopent-1-enecarbaldehyde oxime 
(8n): Prepared according to the general procedure discussed above with 
6m (0.58 mmol, 1.00 equiv) and hydroxylamine hydrochloride, RF =

0.50, 20% MTBE:hexanes; purified using automated flash column 
chromatography using an MTBE:hexanes gradient mobile phase 
employing a 5% isocratic hold; isolated yield 0.060 g, 47%; white solid; 
mp = 136.0–137.5 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.14 (s, 1H), 
7.41–7.37 (m, 2H), 7.25–7.20 (m, 2H), 2.90–2.84 (m, 2H), 2.80–2.73 
(m, 2H), 2.01 (pent, J = 7.5 Hz, 2H), 1.35 (s, 9H); 13C NMR (125 MHz, 
CDCl3): δ 151.1, 148.8, 148.2, 133.8, 130.9, 127.9, 125.4, 39.4, 34.8, 
33.1, 31.4, 22.1; IR (ATR-CDCl3): υmax = 3270, 3036, 2960, 2868, 1617, 
1508, 1462, 1442, 969, 834 cm− 1; HRMS (EI): m/z calculated for 
C16H21NO: 243.1623; found: 243.1620. 

2-(4-Methoxy-phenyl)-cyclopent-1-enecarbaldehyde oxime 
(8o): Prepared according to the general procedure discussed above with 
6n (0.76 mmol, 1.00 equiv) and hydroxylamine hydrochloride, RF =

0.32, 20% MTBE:hexanes; purified using automated flash column 
chromatography using an EtOAc:hexanes gradient mobile phase 
employing a 2.5% isocratic hold; isolated yield 0.085 g, 51%; yellow 
solid; mp = 103.0–106.0 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.12 (s, 1H), 
7.24–7.21 (m, 2H), 6.92–6.88 (m, 2H), 3.83 (s, 3H), 2.86–2.82 (m, 2H), 
2.78–2.73 (m, 2H), 2.00 (pent, J = 7.5 Hz, 2H); 13C NMR (125 MHz, 
CDCl3): δ 159.5, 148.5, 148.1, 130.1, 129.4, 129.2, 114.0, 55.4, 38.4, 
30.1, 22.0; IR (ATR-CDCl3): υmax = 3270, 3044, 2838, 1607, 1510, 1462, 
1441, 1249, 1178, 1033, 965, 832 cm− 1; HRMS (EI): m/z calculated for 
C13H15NO2: 217.1103; found: 217.1098. 

2-(4-Dimethylamino-phenyl)-cyclopent-1-enecarbaldehyde 
oxime (8p): Prepared according to the general procedure discussed 
above with 6o (0.35 mmol, 1.00 equiv) and hydroxylamine hydro
chloride, RF = 0.43, 20% MTBE:hexanes; purified using automated flash 
column chromatography using an MTBE:hexanes gradient mobile phase 
employing a 2.5% isocratic hold; isolated yield 0.049 g, 60%; beige 
solid; mp = 186.0–187.5 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.20 (s, 1H), 
7.22–7.18 (m, 2H), 6.72 (br-d, J = 8.5 Hz, 2H), 2.98 (s, 6H), 2.86–2.81 
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(m, 2H), 2.77–2.72 (m, 2H), 1.98 (pent, J = 7.5 Hz, 2H); 13C NMR (125 
MHz, CDCl3): δ 150.2, 148.8, 148.6, 129.22, 129.2X (overlaps with 
129.22), 112.22, 40.6, 38.2, 33.1, 22.0; IR (ATR-CDCl3): υmax = 3195, 
2953, 2853, 1610, 1521, 1359, 965, 905, 727 cm− 1; HRMS (EI): m/z 
calculated for C14H18N2O: 230.1419; found: 230.1425. 

4-[2-(Hydroxyimino-methyl)-cyclopent-1-enyl]-N-(2-methoxy- 
ethyl)-benzamide (8q): Prepared according to the general procedure 
discussed above with 4-(2-formyl-cyclopent-1-enyl)-N-(2-methoxy- 
ethyl)-benzamide (0.37 mmol) and hydroxylamine hydrochloride, RF =

0.32, 75% EtOAc:hexanes; purified using automated flash column 
chromatography using an EtOAc:hexanes gradient mobile phase; iso
lated yield 0.050 g, 48%; white film; 1H NMR (500 MHz, CDCl3): δ 8.33 
(br-s, 1H), 8.07 (s, 1H), 7.80–7.70 (m, 2H), 7.35–7.30 (m, 2H), 6.65 (br- 
t, J = 5.0 Hz, 1H), 3.70–3.65 (m, 2H), 3.60–3.56 (m, 2H), 3.41 (s, 3H), 
2.89–2.84 (m, 2H), 2.79–2.74 (m, 2H), 2.02 (pent, J = 7.5 Hz, 2H); 13C 
NMR (125 MHz, CDCl3): δ 167.2, 147.5, 147.1, 140.0, 133.7, 133.0, 
128.3, 127.2, 71.4, 59.0, 38.8, 38.4, 32.3, 22.1; IR (ATR-CDCl3): υmax =

3289, 3047, 2926, 2852, 1638, 1609, 1542, 1304, 1117, 966, 853, 732 
cm− 1; HRMS (EI): m/z calculated for C16H20N2O3: 288.1474; found: 
288.1479. 

2-(4-Methylsulfanyl-phenyl)-cyclopent-1-enecarbaldehyde 
oxime (8r): Prepared according to the general procedure discussed 
above with 6p (0.73 mmol, 1.00 equiv) and hydroxylamine hydro
chloride, RF = 0.34, 20% MTBE:hexanes; purified using automated flash 
column chromatography using an MTBE:hexanes gradient mobile phase 
employing a 10% isocratic hold; isolated yield 0.097 g, 57%; yellow 
solid; mp = 141.0–142.5 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.10 (s, 1H), 
7.26–7.22 (m, 2H), 7.21–7.17 (m, 2H), 2.87–2.81 (m, 2H), 2.78–2.73 
(m, 2H), 2.49 (s, 3H), 2.01 (pent, J = 7.5 Hz, 2H); 13C NMR (125 MHz, 
CDCl3): δ 148.3, 148.2, 138.6, 133.4, 131.2, 128.6, 126.4, 38.3, 33.1, 
22.1, 15.8; IR (ATR-CDCl3): υmax = 3256, 3002, 2951, 2924, 2850, 1623, 
1605, 1591, 965, 818 cm− 1; HRMS (EI): m/z calculated for C13H15NOS: 
233.0874; found: 233.0875. 

2-Benzo[1,3]dioxol-5-yl-cyclopent-1-enecarbaldehyde oxime 
(8s): Prepared according to the general procedure discussed above with 
6q (0.41 mmol, 1.00 equiv) and hydroxylamine hydrochloride, RF =

0.34, 20% MTBE:hexanes; purified using automated flash column 
chromatography using an MTBE:hexanes gradient mobile phase 
employing a 5% isocratic hold; isolated yield 0.062 g, 65%; tan solid; 
mp = 139.0–141.5 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.10 (s, 1H), 
6.82–6.79 (m, 1H), 6.77–6.74 (m, 2H), 5.98 (s, 2H), 2.84–2.79 (m, 2H), 
2.77–2.71 (m, 2H), 2.00 (pent, J = 7.5 Hz, 2H); 13C NMR (125 MHz, 
CDCl3): δ 148.5, 148.1, 147.8, 147.5, 130.7, 122.03, 122.0X (overlaps 
with 122.03), 108.5, 108.4, 101.3, 38.6, 33.1, 22.0; IR (ATR-CDCl3): 
υmax = 3271, 2957, 2895, 2850, 1621, 1605, 1504, 1487, 1440, 1248, 
1039, 936 cm− 1; HRMS (EI): m/z calculated for C13H13NO3: 231.0895; 
found: 231.0889. 

2-(3,3-Dimethyl-butyl)-cyclopent-1-enecarbaldehyde oxime 
(8t): Prepared according to the general procedure discussed above with 
2-(3,3-dimethyl-butyl)-cyclopent-1-enecarbaldehyde (0.33 mmol) and 
hydroxylamine hydrochloride, RF = 0.55, 20% MTBE:hexanes; purified 
using automated flash column chromatography using an MTBE:hexanes 
gradient mobile phase employing a 7.5% isocratic hold; isolated yield 
0.032 g, 50%; amorphous; 1H NMR (500 MHz, CDCl3): δ 8.10 (s, 1H), 
2.54 (br-t, J = 7.5 Hz, 2H), 2.45 (br-t, J = 7.5 Hz, 2H), 2.24–2.18 (m, 
2H), 1.86 (pentet, J = 7.5 Hz, 2H), 1.31–1.24 (m, 2H), 0.92 (s, 9H); 13C 
NMR (125 MHz, CDCl3): δ 152.2, 146.5, 128.6, 42.7, 37.2, 30.6, 29.3, 
24.1, 21.9; IR (ATR-CDCl3): υmax = 3290, 2953, 2866, 1639, 1601, 904, 
727, 650 cm− 1; HRMS (EI): m/z calculated for C12H21NO: 195.1623; 
found: 195.1620. 

2-Vinyl-cyclopent-1-enecarbaldehyde oxime (8u): Prepared ac
cording to the general procedure discussed above with 2-vinyl-cyclo
pent-1-enecarbaldehyde (0.50 mmol) and hydroxylamine 
hydrochloride, RF = 0.54, 20% MTBE:hexanes; purified using auto
mated flash column chromatography using an MTBE:hexanes gradient 
mobile phase employing a 7.5% isocratic hold; isolated yield 0.014 g, 

20%; brown oil; 1H NMR (500 MHz, CDCl3) major oxime diastereomer: δ 
8.28 (s, 1H), 6.81 (dd, J = 17.0, 10.0 Hz, 1H), 5.29 (d, J = 17.5 Hz, 1H), 
5.27 (d, J = 10.0 Hz, 1H), 2.67 (t, J = 7.5 Hz, 2H), 2.62 (t, J = 7.5 Hz, 
2H), 1.92 (pent, J = 7.5 Hz, 2H); 13C NMR (125 MHz, CDCl3) major 
oxime diastereomer: δ 146.4, 145.6, 133.2, 129.5, 117.5, 33.2, 32.8, 21.6; 
IR (ATR-CDCl3): υmax = 3271, 3093, 2925, 2849, 1603, 1009, 992, 937, 
909, 733 cm− 1; HRMS (EI): m/z calculated for C8H11NO (M − H): 
136.0757; found: 136.0765. 

3-Phenyl-6,7-dihydro-5H-[2]pyrindine (8v): Material afforded as 
a byproduct to chromatographic purification of 8f above. RF = 0.80, 
20% MTBE:hexanes; purified using automated flash column chroma
tography using an MTBE:hexanes gradient mobile phase employing a 
5% isocratic hold; film; 1H NMR (500 MHz, CD3OD): δ 8.42 (s, 1H), 
7.88–7.84 (m, 2H), 7.71 (s, 1H), 7.49–7.44 (m, 2H), 7.42–7.40 (m, 1H), 
3.05–2.98 (m, 4H), 2.17 (pent, J = 7.5 Hz, 2H); 13C NMR (125 MHz, 
CDCl3): δ 157.5, 157.0, 145.5, 140.8, 140.7, 129.8, 129.7, 128.2, 118.9, 
33.7, 30.8, 26.2; IR (ATR-CDCl3): υmax = 3201, 3029, 2847, 1606, 1556, 
1475, 1448, 1073, 736, 694 cm− 1; HRMS (EI): m/z calculated for 
C14H13N: 195.1048; found: 195.1048. 

2-Styryl-cyclohex-1-enecarbaldehyde oxime (9a): Prepared ac
cording to the general procedure discussed above with 7a (0.54 mmol, 
1.00 equiv) and hydroxylamine hydrochloride, RF = 0.50, 20% MTBE: 
hexanes; purified using automated flash column chromatography using 
an MTBE:hexanes gradient mobile phase employing a 2.5% isocratic 
hold; isolated yield 0.061 g, 50%; white solid; mp = 142.0–143.0 ◦C; 1H 
NMR (500 MHz, CDCl3): δ 8.61 (s, 1H), 7.47–7.43 (m, 2H), 7.39–7.32 
(m, 3H), 7.28–7.23 (m, 1H), 6.70 (d, J = 15.9 Hz, 1H), 2.49–2.41 (m, 
4H), 1.78–1.65 (m, 4H); 13C NMR (125 MHz, CDCl3): δ 149.1, 139.1, 
167.5, 129.6, 129.3, 128.8, 127.9, 126.7, 125.0, 26.9, 25.5, 22.4, 22.1; 
IR (ATR-CDCl3): υmax = 3289, 3056, 2931, 2861, 1599, 1582, 1495, 950, 
748, 691 cm− 1; HRMS (EI): m/z calculated for C15H17NO: 227.1310; 
found: 227.1304. 

2-(2-p-Tolyl-vinyl)-cyclohex-1-enecarbaldehyde oxime (9b): 
Prepared according to the general procedure discussed above with 7b 
(0.35 mmol, 1.00 equiv) and hydroxylamine hydrochloride, RF = 0.49, 
20% MTBE:hexanes; purified using automated flash column chroma
tography using an MTBE:hexanes gradient mobile phase employing a 
7.5% isocratic hold; isolated yield 0.059 g, 69%; white solid; mp =
145.5–155.5 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.60 (s, 1H), 7.34 (d, J =
8.0 Hz, 2H), 7.32 (d, J = 16.0 Hz, 1H), 7.15 (d, J = 8.0 Hz, 2H), 6.67 (d, 
J = 16.0 Hz, 1H), 2.49–2.40 (br-m, 4H), 2.35 (s, 3H), 1.77–1.65 (m, 4H); 
13C NMR (125 MHz, CDCl3): δ 149.3, 139.3, 138.0, 134.7, 129.6, 129.6, 
128.8, 126.7, 124.0, 26.9, 25.5, 22.4, 22.1, 21.4; IR (ATR-CDCl3): υmax 
= 3249, 3053, 3017, 2931, 2861, 1611, 1578, 1444, 950, 800 cm− 1; 
HRMS (EI): m/z calculated for C16H19NO: 241.1467; found: 241.1465. 

2-(2-p-Tolyl-vinyl)-benzaldehyde oxime (13a): Prepared accord
ing to the general procedure discussed above with 11a (0.52 mmol, 1.00 
equiv) and hydroxylamine hydrochloride, RF = 0.36, 20% MTBE:hex
anes; purified using automated flash column chromatography using an 
MTBE:hexanes gradient mobile phase employing a 10% isocratic hold; 
isolated yield 0.050 g, 41%; pale-yellow solid; mp = 125.7–127.3 ◦C; 1H 
NMR (500 MHz, CDCl3): δ 8.55 (s, 1H), 7.70 (dd, J = 7.7, 1.3 Hz, 1H0, 
7.67 (d, J = 8.0 Hz, 1H), 7.57 (br-s, 1H), 7.49–7.37 (m, 4H), 7.34–7.26 
(m, 1H), 7.18 (d, J = 7.7 Hz, 2H), 6.96 (d, J = 16.0 Hz, 1H), 2.38 (s, 3H); 
13C NMR (125 MHz, CDCl3): δ 149.5, 138.2, 137.3, 134.5, 132.5, 130.1, 
129.6, 129.5, 127.6, 126.9, 126.8, 124.6, 21.4; IR (ATR-CDCl3): υmax =

3307, 3056, 3027, 2920, 1634, 1597, 1515, 1485, 1451, 1302, 961, 804, 
753 cm− 1; HRMS (EI): m/z calculated for C16H15NO: (M − H) 236.1070; 
found: 236.1068. 

2-[2-(4-Methoxy-phenyl)-vinyl]-benzaldehyde oxime (13b): 
Prepared according to the general procedure discussed above with 11b 
(0.81 mmol, 1.00 equiv) and hydroxylamine hydrochloride, RF = 0.36, 
20% MTBE:hexanes; purified using automated flash column chroma
tography using an MTBE:hexanes gradient mobile phase; isolated yield 
0.090 g, 65%; pale-yellow solid; mp = 142.3–144.2 ◦C; 1H NMR (500 
MHz, CDCl3): δ 8.52 (s, 1H), 7.67 (dd, (J = 7.8, 1.3 Hz, 1H), 7.59 (d, J =
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7.8 Hz, 1H), 7.47–7.43 (m, 2H), 7.39–7.35 (m, 1H), 7.34 (d, J = 16.3 Hz, 
1H), 7.28–7.26 (m, 1H), 6.95–6.88 (m, 3H), 3.83 (s, 3H); 13C NMR (125 
MHz, CDCl3): δ 159.7, 149.6, 137.4, 132.0, 130.0, 129.97, 129.3, 128.1, 
127.5, 127.4, 126.7, 123.4, 114.2, 55.4; IR (ATR-CDCl3): υmax = 3193, 
2990, 2966, 2912, 2838, 1603, 1511, 1246, 1176, 1030, 980, 959, 824, 
811, 761, 546, 517 cm− 1; HRMS (EI): m/z calculated for C16H15NO2: 
253.1103; found: 253.1091. 

4′-Methoxy-biphenyl-2-carbaldehyde oxime (13c): Prepared ac
cording to the general procedure discussed above with 11c (0.65 mmol, 
1.00 equiv) and hydroxylamine hydrochloride, RF = 0.39, 20% MTBE: 
hexanes; purified using automated flash column chromatography using 
an MTBE:hexanes gradient mobile phase employing a 20% isocratic 
hold; isolated yield 0.074 g, 51%; amorphous; 1H NMR (500 MHz, 
CDCl3): δ 8.12 (s, 1H), 7.89 (7.3, 1.8 Hz, 1H), 7.42 (dt, J = 7.5, 1.3 Hz, 
1H), 7.38–7.31 (m, 2H), 7.26–7.21 (m, 3H), 7.00–6.96 (m, 2H), 3.87 (s, 
3H); 13C NMR (125 MHz, CDCl3): δ 159.3, 150.2, 142.1, 132.0, 131.0, 
130.5, 129.8, 129.75, 128.3, 127.4, 114.0, 55.1; IR (ATR-CDCl3): υmax =

3299, 3068, 2835, 1610, 1515, 1482, 1442, 1298, 1245, 1178, 955, 834, 
763 cm− 1; HRMS (EI): m/z calculated for C14H13NO2: 227.0946; found: 
227.0947. 

2-Styryl-pyridine-3-carbaldehyde oxime (14a): Prepared accord
ing to the general procedure discussed above with 12a (0.32 mmol, 1.00 
equiv) and hydroxylamine hydrochloride, RF = 0.23, 20% MTBE:hex
anes; purified using automated flash column chromatography using an 
MTBE:hexanes gradient mobile phase employing a 30% isocratic hold; 
isolated yield 0.030 g, 42%; white solid; mp = 168.1–171.1 ◦C; 1H NMR 
(500 MHz, CDCl3): δ 8.62 (dd, J = 4.7, 1.8 Hz, 1H), 8.54 (s, 1H), 7.98 
(dd, J = 8.0, 1.8 Hz, 1H), 7.81 (d, J = 15.6 Hz, 1H), 7.61–7.57 (m, 2H), 
7.56 (br-s, 1H), 7.49 (d, J = 15.6 Hz, 1H), 7.40–7.35 (m, 2H), 7.33–7.28 
(m, 1H), 7.18 (dd, J = 8.0, 4.7 Hz, 1H); 13C NMR (125 MHz, CDCl3): δ 
153.2, 150.6, 147.7, 136.8, 135.9, 135.4, 128.9, 128.8, 127.6, 125.3, 
123.3, 122.3; IR (ATR-CDCl3): υmax = 3058, 2879, 2772, 1634, 1578, 
1494, 904, 727, 650 cm− 1; HRMS (EI): m/z calculated for C14H12N2O: 
(M − H) 223.0866; found: 223.0872. 

2-(2-p-Tolyl-vinyl)-pyridine-3-carbaldehyde oxime (14b): Pre
pared according to the general procedure discussed above with 12b 
(0.60 mmol, 1.00 equiv) and hydroxylamine hydrochloride, RF = 0.16, 
20% MTBE:hexanes; purified using automated flash column chroma
tography using an MTBE:hexanes gradient mobile phase employing a 
35% isocratic hold; isolated yield 0.101 g, 72%; white solid; mp =
143.9–146.5 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.62 (dd, J = 4.7, 1.8 Hz, 
1H), 8.56 (br-s, 1H), 7.99 (dd, J = 7.9, 1.8 Hz, 1H), 7.80 (d, J = 15.9 Hz, 
1H), 7.53–7.48 (m, 3H), 7.45 (d, J = 15.9 Hz, 1H), 7.22–7.16 (m, 3H), 
2.38 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 153.1, 149.9, 147.3, 139.2, 
136.7, 135.9, 133.8, 129.7, 127.6, 125.5, 122.1, 121.5, 21.5; IR (ATR- 
CDCl3): υmax = 2986, 2883, 1636, 1581, 1510, 1477, 1407, 1066, 1058, 
980, 812, 798 cm− 1; HRMS (EI): m/z calculated for C15H14N2O: (M − H) 
237.1022; found: 237.1029. 

2-[2-(4-Methoxy-phenyl)-vinyl]-pyridine-3-carbaldehyde 
oxime (14c): Prepared according to the general procedure discussed 
above with 12c (0.21 mmol, 1.00 equiv) and hydroxylamine hydro
chloride, RF = 0.11, 20% MTBE:hexanes; purified using automated flash 
column chromatography using an MTBE:hexanes gradient mobile phase 
employing a 15% isocratic hold; isolated yield 0.026 g, 47%; amor
phous; 1H NMR (500 MHz, CDCl3): δ 8.59 (dd, J = 4.7, 1.7 Hz, 1H), 8.54 
(s, 1H), 7.96 (dd, J = 7.9, 1.7 Hz, 1H), 7.77 (d, J = 15.7 Hz, 1H), 
7.56–7.52 (m, 2H), 7.44 (br-s, 1H), 7.35 (d, J = 15.7 Hz, 1H), 7.15 (dd, J 
= 7.9, 4.7 Hz, 1H), 6.93–6.88 (m, 2H), 3.84 (s, 3H); 13C NMR (125 MHz, 
CDCl3): δ 160.3, 153.6, 150.5, 147.6, 135.6, 135.3, 129.5, 129.0, 125.0, 
121.9, 121.0, 114.3, 55.5; IR (ATR-CDCl3): υmax = 3162, 3064, 2837, 
2771, 1632, 1605, 1575, 1511, 1427, 1253, 1174, 1031, 971, 826 cm− 1; 
HRMS (EI): m/z calculated for C15H14N2O2: 254.1055; found: 254.1052. 

2-Phenyl-pyridine-3-carbaldehyde oxime (14d): Prepared ac
cording to the general procedure discussed above with 12d (0.44 mmol, 
1.00 equiv) and hydroxylamine hydrochloride, RF = 0.11, 20% MTBE: 
hexanes; purified using automated flash column chromatography using 

an MTBE:hexanes gradient mobile phase employing a 25% isocratic 
hold; isolated yield 0.061 g, 70%; white solid; mp = 103.2–104.7 ◦C; 1H 
NMR (500 MHz, CDCl3): δ 8.71 (dd, J = 4.8, 1.8 Hz, 1H), 8.22 (dd, J =
8.0, 1.8 Hz, 1H), 8.16 (br-s, 1H), 7.55–7.51 (m, 2H), 7.50–7.42 (m, 3H), 
7.32 (dd, J = 8.0, 4.8 Hz, 1H); 13C NMR (125 MHz, CDCl3): δ 158.5, 
150.5, 148.5, 138.6, 134.6, 129.8, 129.0, 128.6, 126.1, 122.5; IR (ATR- 
CDCl3): υmax = 3060, 2865, 1564, 1439, 1420, 976, 880, 747, 701 cm− 1; 
HRMS (EI): m/z calculated for C12H10N2O: 198.0793; found: 198.0793. 

2-p-Tolyl-pyridine-3-carbaldehyde oxime (14e): Prepared ac
cording to the general procedure discussed above with 12e (0.22 mmol, 
1.00 equiv) and hydroxylamine hydrochloride, RF = 0.21, 20% MTBE: 
hexanes; purified using automated flash column chromatography using 
an MTBE:hexanes gradient mobile phase employing a 15% isocratic 
hold; isolated yield 0.030 g, 63%; white solid; mp = 203.6–206.2 ◦C; 1H 
NMR (500 MHz, CDCl3): δ 8.70 (dd, J = 4.7, 1.7 Hz, 1H), 8.19 (dd, J =
8.0, 1.7 Hz, 1H), 8.17 (s, 1H), 7.45–7.41 (m, 2H), 7.35 (br-s, 1H), 
7.30–7.27 (m, 3H), 2.43 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 158.6, 
150.6, 148.9, 138.9, 135.8, 134.6, 129.8, 129.3, 125.8, 122.2, 21.5; IR 
(ATR-CDCl3): υmax = 3163, 3052, 2990, 2871, 2764, 1615, 1582, 1512, 
1424, 977, 881, 827, 773 cm− 1; HRMS (EI): m/z calculated for 
C13H12N2O: 212.0950; found: 212.0951. 

2-(4-Methoxy-phenyl)-pyridine-3-carbaldehyde oxime (14f): 
Prepared according to the general procedure discussed above with 12f 
(0.32 mmol, 1.00 equiv) and hydroxylamine hydrochloride, RF = 0.08, 
20% MTBE:hexanes; purified using automated flash column chroma
tography using an MTBE:hexanes gradient mobile phase employing a 
10% isocratic hold; isolated yield 0.061 g, 84%; pale-yellow solid; mp =
208.4–212.1 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.71–8.68 (m, 1H), 
8.21–8.16 (br-m, 2H), 7.52–7.47 (m, 2H), 7.30–7.26 (m, 1H), 7.05–6.98 
(m, 2H), 3.88 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 160.4, 158.2, 150.6, 
149.0, 134.7, 131.3, 131.1, 125.7, 122.0, 114.1, 55.5; IR (ATR-CDCl3): 
υmax = 3163, 3068, 2829, 2764, 1608, 1581, 1515, 1423, 1250, 1177, 
903, 726 cm− 1; HRMS (EI): m/z calculated for C13H12N2O2: 228.0899; 
found: 228.0907. 

3-Styryl-thiophene-2-carbaldehyde oxime (16a): Prepared ac
cording to the general procedure discussed above with 15a (0.27 mmol, 
1.00 equiv) and hydroxylamine hydrochloride, RF = 0.51, 20% MTBE: 
hexanes; purified using automated flash column chromatography using 
an MTBE:hexanes gradient mobile phase employing a 25% isocratic 
hold; isolated yield 0.038 g, 62%; light-brown solid; mp =

132.9–135.1 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.56 (s, 1H), 7.51 (d, J =
8.1 Hz, 2H), 7.40–7.35 (m, 2H), 7.34–7.28 (m, 2H), 7.26–7.23 (m, 1H), 
7.14 (s, 1H), 7.02 (d, J = 16.2 Hz, 1H); 13C NMR (125 MHz, CDCl3): δ 
144.1, 140.5, 137.0, 131.5, 130.4, 128.9, 128.3, 127.4, 126.7, 125.7, 
120.0; HRMS (EI): m/z calculated for C13H11NOS: 229.0561; found: 
229.0555. 

3-(4-Methoxy-phenyl)-thiophene-2-carbaldehyde oxime (16b): 
Prepared according to the general procedure discussed above with 15b 
(0.24 mmol, 1.00 equiv) and hydroxylamine hydrochloride, RF = 0.20, 
20% MTBE:hexanes; purified using automated flash column chroma
tography using an MTBE:hexanes gradient mobile phase employing a 
15% isocratic hold; isolated yield 0.022 g, 38%; amorphous; 1H NMR 
(500 MHz, CDCl3): δ 7.70 (br-s, 1H), 7.55 (dd, J = 5.8, 0.7 Hz, 1H), 
7.35–7.30 (m, 2H), 7.10 (d, J = 5.0 Hz, 1H), 6.99–6.95 (m, 2H), 3.85 (s, 
3H); 13C NMR (125 MHz, CDCl3): δ 159.5, 146.1, 141.3, 131.0, 130.4, 
128.53, 128.45, 124.9, 114.2, 55.5; IR (ATR-CDCl3): υmax = 3215, 3100, 
3002, 2932, 2841, 1608, 1575, 1528, 1249, 1178, 1031, 833 cm− 1; 
HRMS (EI): m/z calculated for C12H11NO2S: 233.0510; found: 233.0511. 

4.1. Minimum inhibitory concentration assays 

4.1.1. Cell culture and in vitro functional assays 
HEK293T cells were cultured in DMEM containing 10% FBS and 1% 

penicillin and streptomycin (P/S). To test the effects of the novel com
pounds on FGF-23-mediated activation of FGFR1/α-KL complex, 
HEK293T cells were transiently transfected with either empty 
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expression vector or full-length human α-KL along with the ERK lucif
erase reporter system12 and Renilla luciferase-null as internal control 
plasmid. Transfections were performed by electroporation using Cell 
Line Nucleofector Kit® according to the manufacturer’s protocol 
(Amaxa, Inc., Gaithersburg, MD). Thirty-six hours after transfection, the 
transfected cells were treated with each of the newly synthesized com
pound (10− 5 M) or selected compound with a range of 10− 9 ~ 10− 4 M in 
the presence or absence of 1 nM FGF23 for IC50. After 5 h, the cells were 
lysed and luciferase activities measured using a Synergy® H4 Hybrid 
Multi-Mode Microplate Reader (Winooski, VT, USA) and Promega® 
Dual-Luciferase Reporter Assay System (Madison, WI, USA). The IC50 
values of the test compounds were obtained graphically from 
concentration-effect curves using Prism 5.0 (GraphPad Software Inc). 

4.1.2. Cytotoxicity assays 
HEK293T cells were cultured in DMEM containing 10% FBS and 1% 

penicillin and streptomycin (P/S). To test cytotoxicity of the selected 
compounds, HEK293T cells were seeded into 96-well plate at a density 
of 5 × 104/well. The compound toxicity was evaluated by measuring 
lactate dehydrogenase (LDH) activity released in the media 5 h after the 
test compound or vehicle exposure using the CytoTox96 nonradioactive 
assay (Promega) and quantitated by measuring wavelength absorbance 
at 490 nm. The LDH released from the cells exposed to different con
centrations (10− 6 ~ 10− 3 M) of the compound were normalized to the 
amount of LDH released from vehicle-treated cells receiving 10 μL of 10 
× Lysis Solution (100%, maximum LDH release) and were corrected for 
baseline LDH released from vehicle-treated cells. The EC50 values of the 
test compounds were obtained graphically from concentration-effect 
curves using Prism 5.0 (GraphPad Software Inc). 

4.2. Statistical analysis 

We evaluated differences between two groups by unpaired t-test. All 
values are expressed as means ± S.D. All computations were performed 
using a commercial biostatistics software (GraphPad Software Inc. La 
Jolla, CA). 
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