This article was downloaded by: [North Carolina State University]

On: 11 December 2012, At: 01:24

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer

House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

A Simple Synthesis of Dibenzo[b,g] [1,8]naphthyridines

N. Sampathkumar ^a , N. Venkatesh Kumar ^a & S. P. Rajendran ^a

To cite this article: N. Sampathkumar, N. Venkatesh Kumar & S. P. Rajendran (2004): A Simple Synthesis of Dibenzo[b,g] [1,8]naphthyridines, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 34:11, 2019-2024

To link to this article: http://dx.doi.org/10.1081/SCC-120037914

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

^a Department of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India Version of record first published: 20 Aug 2006.

SYNTHETIC COMMUNICATIONS® Vol. 34, No. 11, pp. 2019–2024, 2004

A Simple Synthesis of Dibenzo[b,g][1,8]naphthyridines

N. Sampathkumar, N. Venkatesh Kumar, and S. P. Rajendran*

Department of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu, India

ABSTRACT

2-Chloro-3-formyl quinoline and its derivatives on reaction with anilines in DMF afforded the dibenzo[b,g][1,8]naphthyridines.

KeyWords: Dibenzo[*b*,*g*][1,8]naphthyridines; Anilines; 2-Chloro-3-formyl quinolines; DMF.

INTRODUCTION

Interesting pharmacological properties have been associated with [1,8]naphthyridine and its derivatives. [1-4] Available literature showed the reports on the synthesis of dibenzo[b,g][1,8]naphthyridines by the reaction

2019

DOI: 10.1081/SCC-120037914 Copyright © 2004 by Marcel Dekker, Inc.

0039-7911 (Print); 1532-2432 (Online) www.dekker.com

^{*}Correspondence: S. P. Rajendran, Department of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India; E-mail: rajendransp@yahoo.com.

2020

REPRINTS

of dimethyl bis (methylthio)methylene malonate with anilines. ^[5] Kidwai and Kohli ^[6] synthesised dibenzo [b,g]-5-methyl-1,8-naphthyridines in a three-step process from 2-hydroxy-4-methyl quinoline and aniline. Recently, we have reported the synthesis of 1,2,3,4-tetrahydro dibenzo [b,g] [1,8] naphthyridines ^[7] from 2-amino-3-formyl quinoline and cyclohexanone.

RESULTS AND DISCUSSION

The reaction of 2-chloro-3-formyl-quinoloine with aniline was attempted in DMF at 75°C. The resulting product was analysed by IR, 1 H NMR, mass spectroscopy, and elemental analysis and assigned the structure dibenzo [b,g][1,8]naphthyridine. A number of 2-chloro-3-formyl-quinolines were reacted with aniline to produce substituted dibenzo[b,g][1,8]naphthyridines, which revealed the generality of this protocol (Sch. 1).

EXPERIMENTAL SECTION

Melting points were determined on a Boetius microheating table and are uncorrected. Thin-layer chromatography were performed on glass plates coated with silica gel-G incorporating 13% CaSO₄ as binder. IR spectra were recorded on a Perkin–Elmer-597 infrared spectrophotometer as KBr pellets. ¹H NMR spectra were recorded on an AMX-400 MHz NMR spectrophotometer using Me₄Si as internal standard and chemical shifts are quoted in ppm. Mass spectra were recorded on an Autospec mass spectrophotometer. Elemental analyses were performed by Cario-Elmer 1106 and Perkin–Elmer analyser.

$$R_3$$
 R_2
 R_1
 R_1
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_3
 R_2
 R_3
 R_4
 R_2
 R_1
 R_2
 R_3
 R_2
 R_3
 R_2
 R_3
 R_3
 R_3
 R_4
 R_2
 R_3
 R_3
 R_4
 R_3
 R_4
 R_5
 R_7
 R_8

(continued)

	M.p.	Calcul	Calculated (found, %)	ıd, %)			
Compound	(°C) (yield %)	C	Н	z	${\rm IR}~\nu \\ ({\rm cm}^{-1})$	¹ H NMR (8, ppm)	MS $M/z(M^+)$
2a	128	83.46	4.38	12.16	1,610	8.95–7.30 (m, 10H, C ₁ -H, C ₂ -H, C ₃ -H, C ₄ -H,	230
2b	(92)	83.58	4.95	11.47	1,618	2.5 (s, 3H, C ₂ -CH ₃), 8.96 (s, 1H, C ₁₂ -H), 8.94	244
	(98)	(83.55)	(4.90)	(11.42)		(s. 1H, C ₁₁ -H), 7.94–7.30 (m, 7H, C ₁ -H, C ₃ -H, C ₄ -H, C ₇ -H, C ₉ -H, C ₉ -H, C ₉ -H, and C ₁₀ -H)	
2c	115 - 116	83.58	4.95	11.47	1,621	2.71 (s, 3H, C ₄ -CH ₃), 8.8 (s, 1H, C ₁₁ -H), 8.9	244
	(85)	(83.52)	(4.93)	(11.46)		(s, 1H, C ₁₂ -H), 8.0–7.4 (m, 7H, C ₂ -H, C ₃	
2d	8	83.69	5.46	10.85	1,600	2.4 (s, $3H$, C_2 -CH ₃), 2.7 (s, $3H$, C_4 -CH ₃), 8.5	258
	(98)	(83.68)	(5.47)	(10.84)		(s, 1H, C ₁₁ -H), 8.7 (s, 1H, C ₁₂ -H), 7.9–7.3 (m, 6H, C ₃ -H, C ₁ -H, C ₇ -H, C ₈ -H, C ₉ -H, and C ₁₀ -H)	
2e	182	78.44	4.65	10.76	1,616	3.95 (s, 3H, C ₂ -OCH ₃), 8.95 (s, 1H, C ₁₂ H), 8.94	260
	(81)	(78.42)	(4.67)	(10.74)		(s, 1H, C ₁₁ -H), 7.9–7.4 (m, 7H, C ₁ -H, C ₃ -H,	
						C_4 -H, C_7 -H, C_8 -H, C_9 -H, and C_{10} -H)	

 $\mathop{\mathrm{MS}}_{M/z(\mathrm{M}^+)}$ 260 260 290 280 9.4–7.7 (m, 12H, C₁-H, C₂-H, C₃-H, C₄-H, C₅-H, 8.8 (s, 1H, C₁₁-H), 8.7 (s, 1H, C₁₂-H), 8.1–7.3 (m, 6H, C₂-H, C₃-H, C₇-H, C₈-H, C₉-H, and 3.98 (s, 3H, C₄-OCH₃), 8.91 (s, 1H, C₁₂-H), 8.8 (s, 1H, C₁₁-H), 7.9–7.3 (m, 7H, C₂-H, C₃-H, C₁-H, C₇-H, C₈-H, C₉-H, and C₁₀-H) 3.97 (s, 3H, C₃-OCH₃), 8.9 (s, 1H, C₁₂H), 8.94 (s, 1H, C₁₁-H), 7.8–7.1 (m, 7H, C₁-H, C₂-H, C₆-H, C₇-H, C₈-H, C₉-H, C₁₀-H, C₁₁-H, and 4.1 (s, 3H, C₄-OCH₃), 3.95 (s, 3H, C₁-OCH₃), C₄-H, C₇-H, C₈-H, C₉-H, and C₁₀-H) 1 H NMR (δ , ppm) C₁₀-H) C₁₂-H) Table 1. Continued. ${\rm IR}~\nu \over {\rm (cm}^{-1})$ 1,614 1,618 1,620 1,620 10.76 (10.75) 10.76 (10.74) (9.64)9.99 (9.95) Z Calculated (found, %) 4.65 (4.62) 4.65 (4.61) 4.86 (4.88) 4.32 (4.30) ${\mathbb H}$ 78.44 (78.42) 78.44 (78.40) (74.45) (85.64) 74.47 C M.p. (°C) (yield %) 151 - 152160 - 161(85) 134 (85) 135 (80) Compound 2 2 **2f** 7

^aRecrystallised from ethyl acetate—light petroleum (50:50).

REPRINTS

Dibenzo[b,g][1,8]naphthyridines (2). Compound 1 (0.01 mol), aniline (0.0125 mol) in DMF (20 mL) were stirred at (75°C) for 2 hr. The reaction was monitored by TLC. DMF was removed under reduced pressure, the residue washed with 2 N NaOH solution (50 mL), water and then chromatographed on silica gel (60–120) using light petroleum—ethyl acetate (98:2) as eluant to give 2 (86%), recrystallised from ethyl acetate—light petroleum (Table 1).

ACKNOWLEDGMENTS

We thank the services rendered by the "Sophisticated Instrumentation Facility" at Indian Institute of science, Bangalore, "Indian Institute of Chemical Technology," Hyderabad in recording the ¹H NMR and mass spectra.

REFERENCES

- Lowe, P.A. Naphthyridines pyridoquinolines, anthyridines and similar compounds. In *Comprehensive Heterocyclic Chemistry*, *Part 2A*; *Six Membered Rings with One Nitrogen Atom*; Pregamon Press: New York, 1984; Vol. 2, 581–627.
- Ferrarini, P.L.; Mori, C.; Badwneh, M.; Calderone, V.; Calzolari, L.; Loffredo, T.; Martinotti, E.; Saccomanni, G. Synthesis of 1,8-naphthyridine derivatives: potential antihypertensive agents—part 7. Eur. J. Med. Chem. 1998, 33, 383–387.
- 3. Ferrani, P.L.; Manera, C.; Mori, C.; Badwneh, M.; Saccomanni, G. Synthesis and evaluation of antimycobacterial activity of 4-phenyl-1,8-naphthyridine derivatives. IL Farmaco **1998**, *53*, 741–746.
- 4. Nyce, P.L.; Gala, D.; Steinman, M. An efficient synthesis of 1,8-naph-thyridin-2(1H)-ones: synthesis of leukotriene inhibitors SCH 37244. Synthesis 1991, 7, 571–574.
- Tominaga, Y.; Michioka, T.; Moriyama, K.; Hosomi, A. Synthesis of quinoline derivatives using ketene dithioacetal. J. Heterocyclic. Chem. 1990, 27, 1217–1225.
- 6. Kidwai, M.; Kohli, S. Synthesis of dibenzo(*b*,*g*)-5-methyl-1,8-naphthyridines. Indian J. Chem. **2001**, *40B*, 248–249.
- 7. Prakash, G.A.; Rajendran, S.P. Synthesis of 1,2,3,4-tetrahydro dibenzo [*b*,*g*][1,8]naphthyridines. Heterocyclic Commun. **2000**, *6* (1), 63–66.

2024 Sampathkumar, Venkatesh Kumar, and Rajendran

8. Meth-Cohn, O.; Narine, B.; Tarnowski, B. A versatile new synthesis of quinolines and related fused pyridines. Part-5. The synthesis of 2-chloro-quinoline-3-carbaldehydes. J. Chem. Soc. Perkin Trans-I **1981**, 1520–1530.

Received in India January 5, 2004

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/ Order Reprints" link below and follow the instructions. Visit the U.S. Copyright Office for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on Fair Use in the Classroom.

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our Website User Agreement for more details.

Request Permission/Order Reprints

Reprints of this article can also be ordered at http://www.dekker.com/servlet/product/DOI/101081SCC120037914