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Abstract: 2,2-Difluoro-1,3-diketones are introduced
as gem-difluoroenolate precursors for the first ex-
ample of an organocatalytic asymmetric aldol addi-
tion with N-benzylisatins to form 3-difluoroalkyl-3-
hydroxyoxindoles.
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Special chemical and biological properties associated
with fluorinated molecules have encouraged chemists
to develop new fluorination reactions, especially in an
asymmetric fashion."! The carbonyl a-position is an
important place for fluorine insertion.”) Shown in
Figure 1 are representative biologically active oxin-
doles bearing hydroxy and alkyl groups at the C-3 po-
sition.”) Mono- and difluorination of the carbonyl -
position of such compounds is a topic of current inter-
est.[6]

Compared to using a-fluorinated ketones as nucleo-
philes,” aldol additions using o,a-difluoroenoxysila-
nes'®® or a,a-difluoroenolates as nucleophiles to as-
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Figure 1. Bioactive 3-hydroxy-3-alkyloxindoles.
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semble 2,2-difluoro-3-hydroxy ketones I have attract-
ed more attention. ao,a-Difluoroketones Ia,”® a,o,0-
trifluoro-ketones  Ib,””!  a,a-difluoro-B-ketone-gem-
diols e, o,a-difluoro-a-(trimethylsilylacet)amides
IId," and a,a-difluoro-B-ketoesters Iel'? have been
developed as precursors for a,o-difluoroenolates III
(Scheme 1). The a,a-difluoromethylsulfone anion
(RSO,CF,”) derived from PhSO,CF,TMS or
PhSO,CF,H has also been reported for nucleophilic
additions.!®) Asymmetric nucleophilic additions of
a,a-difluoroenoxysilanes or a,a-difluoroenolates with
isatins 1 to prepare 3-hydroxy-3-difluoroalkyl-substi-
tuted oxindoles 3 have been documented (Scheme 2).
But so far only the organocatalytic reaction of difluor-
oenol silyl ether IV reported by Zhou’s group is suc-
cessful.l’! The Fang and Wu groups developed an or-
ganocatalytic aldol reaction of a-monofluoro-f3-
ketone-gem-diols Il¢’ for monofluorinated oxindoles
3. But this failed for the reaction of Ilc to afford
difluorinated oxindoles 3. We have recently reported
the deacylation of 2-fluoro-1,3-dicarbonyls for making
a-fluoro-a,B-unsaturated carbonyl compounds.'* We
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Scheme 1. Methods for the preparation of a,a-difluoroeno-
lates IIL
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Scheme 2. Asymmetric aldol additions towards fluorinated
oxindoles 3.

also found that readily available 2,2-difluoro-1,3-dike-
tones 2 could be deacylated under basic conditions to
form a,0-difluoroenolates IIL' We envisioned that
difluoro-1,3-diketones 2 could be a new synthon for
organocatalytic aldol reactions.

Results obtained from the initial reactions of N-
benzylisatin 1a with 2,2-difluoro-1,3-diones 2a in the
presence of different Cinchona alkaloid-thiourea or-
ganocatalysts C-1 to C-5 are shown in Table 1.1
Using CH,Cl, as a solvent at room temperature reac-
tions catalyzed with C-1 and using AcOH or benzoic
acid as an additive!*” only gave a trace amount of
product 3aa after 72h (Table 1, entries1 and 2).
When the additive was changed from acids to a base
(NH;), the reaction occurred at room temperature,
but had a poor ee (entry 3). Reactions at lower tem-
perature and for longer reaction time did not increase
the ee, but significantly decreased the yields (entries 4
and 5). To our surprise, an acceptable yield (78%)
and ee (55%) were obtained from a reaction without
using an additive (entry 6). Screening of different cat-
alysts C1-C4 revealed that C-3 is the winner (en-
tries 6-9). Further optimization of the conditions by
variation of solvent, reaction temperature and time
showed that the C-3 catalyzed reaction in MeOH for
48 h at room temperature could afford 3aa in 91%
yield and 92% ee (entry 15). The reaction with a fluo-
rous organocatalyst C-5 gave a similar result as that
with C-3 (entry 16).'"”! Recyclable C-5 could be easily
isolated from the reaction mixture by fluorous solid-
phase extraction (F-SPE)."® To evaluate the effect of
MeOH on the catalysis process, reactions using
MeOH as an additive or a co-solvent were conducted
(entries 17-19). These reactions gave good yields and
ee, albeit slightly lower than that from the reaction
using MeOH as a solvent (entry 15). No improve-
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ments in yield and ee were obtained by running the
reactions in MeOH at lower temperature but with in-
creased time (entries 20-22). A 7.7 mmol (2 g)-scale
reaction of 2a gave a similar yield and ee as the
0.2 mmol-scale reaction, which demonstrates the scale
up capability of this reaction (entry 23). The absolute
configuration of product 3aa was determined by com-
parison with literature data and also by X-ray crystal-
lographic analysis (Table 1).[42%%

With the optimized reaction conditions in hand, we
investigated the substrate generality using different
N-substituted isatins 1la-k and 2,2-difluoro-1,3-dioke-
tones 2a—j (Table 2). Reactions of N-benzylisatin la
with 2a—j afford the corresponding products 3aa-aj in
good to excellent yields (82-95%) and ee (66-92%)
(Table 2, entries 1-9). The position and electronic
property of the substituents on the phenyl rings have
no significant impact on the yield. The reaction of 2h,
which has a 2-fluorophenyl as R, gave 3ah with a de-
creased ee (66% ) (entry 8). The reaction of 2k, which
has Me instead of Ar as R’ gave 3ak in low yiled
(42%) and decreased ee (63%) (entry 11). The config-
uration of 3ak was confirmed by comparison with the
literature data.[**!) Reactions of 2a with N-substituted
isatins 1la—k were also conducted. Substitutions such
as halogen atoms and electron-donating MeO group
on the aromatic ring of 1 are tolerated to give prod-
ucts 3 in excellent yields (82-93%) with good ee (62—
98%) (Table 2, entries 12-19). Reactions of N-methyl-
isatin 1j and N-phenylisatin 1k also gave the corre-
sponding compounds 3ja and 3ka in good yields (79%
and 58%), but slightly low ee (79% and 58%) (en-
tries 20 and 21).

Two control reactions were conducted to gain
mechanistic insights of the aldol reaction of difluoroe-
nolates. The first one is a reaction of isatin 1la with
monofluoro-1,3-diketone 4 under C-3 catalysis. Com-
pound 5 was obtained in 97% yield, but with neither
diastereoselectivity nor enantioselectivity (Scheme 3,
A). This may suggest that the asymmetric aldol reac-
tions of a-fluoro-1,3-diketones take a different path-
way from that of a-flourinated-p-ketone-gem-diols re-
ported in Fang and Wu’s work."*?! The second control
reaction of difluoro-1,3-dione 21 which has two differ-
ent substitution groups on the phenyl rings was con-
ducted to verify if two enolates could be generated
from the deacylation of 2l. Indeed, the reaction of
1.5 equiv. of 2I with 1a generated 3af and 3ad in 46%
and 43% yields, and 80% and 76% ee, respectively
(Scheme 3, B).

Monitoring the reaction of la and 2g (Table 2,
entry 7) by YFNMR allowed us to observe the pro-
cess of deacylation of 2g to form difluoroenolate 6g,
as well as methyl 4-fluorobenzoate by-product (see
the Supporting Information). Based on our experi-
mental results and literature information,® a mecha-
nism for the organocatalytic aldol addition involving
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Table 1. Optimization of the reaction conditions."”!

o)
0o o0
N FF

1a 2a

cat. (10 mol%)

additive
_—
solvent

c-1 c-3 c-4 -

Entry Catalyst [10 mol%] Additive [20 mol%] Solvent Temperature [°C] Time [h] 3aa [%]” ee [%]9
1 C-1 AcOH CH,Cl, 25 72 trace -
2 C1 PhCOOH CH,Cl, 25 72 trace -
3 C-1 NH; CH,(Cl, 25 24 83 5
4 C1 NH, CH,(Cl, 0 72 32 40
5 C1 NH; CH,(Cl, -20 72 trace -
6 C-1 - CH,(Cl, 25 72 78 55
7 Cc2 - CH,CL, 25 7 79 49
8 C-3 - CH,(Cl, 25 72 89 75
9 C4 - CH,(Cl, 25 72 80 62
10 C-3 - THF 25 72 81 73
11 C-3 - PhMe 25 72 66 58
12 C-3 - MeOH 25 72 93 89
13 C-3 - DMF 25 72 90 71
14 C-3 - iPrOH 25 72 67 82
15 C-3 - MeOH 25 48 91 92
16 C-5 - MeOH 25 48 87 90
17 C-3 MeOH 50 mol% CH,(Cl, 25 72 87 77
18 C-3 MeOH 300 mol% CH,(Cl, 25 72 89 81
19 C-3 - CH,CL,/MeOH=1/1 25 48 83 84
20 C-3 - MeOH 25 24 76 88
21 C3 - MeOH 0 72 trace -
22 C-3 NH; MeOH 0 72 46 40
234 C-3 - MeOH 25 48 93 90

] Reaction of 1a (0.2 mmol), 2a (0.3 mmol) and catalyst (0.02 mmol).

) Isolated yield.
[l Determined by chiral HPLC.
[ Scale-up reaction with a 2 g scale of 1a.

difluoroenolate is proposed in Scheme 4. The deacyla-
tion of 2a catalyzed with C-3 results in difluoroenlate
6a.”"! It is then paired with the bridgehead amino
group of C-3. The aldol reaction is activated by the
hydrogen bonds between two hydrogens in the thiour-
ea and two carbonyls in isatin. The transition state of
the complex is arranged in a way where the unfavora-
ble interaction between the isatin benzene ring and
the enolate could be avoided. Attack of the difluoroe-
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nolate from the favorable Re face of isatin affords the
(S)-enantiomer as the aldol addition product.!**!

In conclusion, the first example of aldol addition of
difluoroenlates derived from 2,2-difluoro-1,3-dike-
tones with isatins is introduced. The reactions are pro-
moted with a Cinchona alkaloid-thiourea bifunctional
organocatalyst to afford various 3-hydroxy-3-difluoro-
alkylated oxindoles in good yields and enantioselec-
tivities. Readily available difluoroenlate precursors
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Table 2. Scope of the reactions with isatins 1 and 2.1

O o o
T R R
N F F
1 R? 2

C-3 (10 mol%)

MeOH, 25 °C
Entry RY/R? R’ Time [h] Yield [%]™ ee [% ]
1 H/Bn (1a) Ph (2a) 48 91 (3aa) 92
2 H/Bn (1a) 4-MeC:H, (2b) 48 87 (3ab) 75
3 H/Bn (1a) 3-MeC¢H, (2¢) 48 82 (3ac) 88
4 H/Bn (1a) 4-+-BuC¢H, (2d) 48 80 (3ad) 74
5 H/Bn (1a) 4-CIC¢H, (2e) 36 89 (3ae) 86
6 H/Bn (1a) 4-BrC¢H, (2f) 48 95 (3af) 82
7 H/Bn (1a) 4-FC¢H, (2g) 36 91 (3ag) 79
8 H/Bn (1a) 2-FC4H, (2h) 36 88 (3ah) 66
9 H/Bn (1a) 4-CF,C.H, (2i) 36 93 (3ai) 88
10 H/Bn (1a) 2-thienyl (2j) 36 85 (3aj) 77
11 H/Bn (1a) Me (2k) 36 42 (3ak) 63
12 4-Br/Bn (1b) Ph (2a) 48 85 (3ba) 70
13 5-Me/Bn (1¢) Ph (2a) 48 89 (3ca) 89
14 5-OMe/Bn (1d) Ph (2a) 48 87 (3da) 70
15 5-Cl/Bn (1e) Ph (2a) 48 85 (3ea) 84
16 5-F/Bn (1f) Ph (2a) 48 82 (3fa) 98
17 6-Cl/Bn (1g) Ph (2a) 48 90 (3ga) 90
18 6-Br/Bn (1h) Ph (2a) 48 88 (3ha) 92
19 7-F/Bn (1i) Ph (2a) 48 89 (3ia) 62
20 H/Me (1j) Ph (2a) 48 87 (3ja) 79
21 H/Ph (1K) Ph (2a) 48 93 (3ka) 58
[ Reaction of 1a (0.2 mmol), 2 (0.3 mmol, C-3 (0.02 mmol) in MeOH (1.5 mL).
) Isolated yield.
[l Determined by HPLC.
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Scheme 3. Control reactions. Scheme 4. A proposed mechanism.
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and scalability of the reaction make it a feasible
method for asymmetrical introduction of difluorome-
thene and hydroxy groups through the aldol addition.

Experimental Section

General Information

All reactions were run using flame-dried glassware and mag-
netic stirring. Chemicals and solvents were purchased from
commercial suppliers and used as received. 'H, F and
BCNMR spectra were recorded on a 500 MHz Bruker
DRX 500 and tetramethylsilane (TMS) was used as a refer-
ence. Chemical shifts are reported in parts per million
(ppm), and the residual solvent peak was used as an internal
reference: proton (chloroform 8=7.26, acetone 0=2.09,
DMSO 6=2.50), carbon (chloroform 6=77.0, acetone 6=
205.87, 30.60, DMSO 8=40.45). GC-MS were performed on
an ISQ Trace 1300 (electrospray ionization: EI). For thin-
layer chromatography (TLC), Sorbent silica gel XHL TLC
plates (130815) were used, and compounds were visualized
with a UV light at 254 nm. Melting points were measured
on a melting point apparatus and are uncorrected. Mass
spectra were recorded on the Waters Q-Tof micro™ (elec-
trospray ionization: ESI). HPLC analysis was performed on
an Agilent1200 instrument with a Daicel Chiralpak AD-H
column.

Synthesis of 2,2-Difluoro-1,3-diones 2

Step A: To a suspension of ketone (10 mmol) in THF
(40 mL) was added NaH (0.8 g, 20 mmol, 60%). After the
reaction mixture was stirred at 0°C for about 1 h, the ester
was added dropwise at the same temperature. Then the mix-
ture was stirred at room temperature until TLC indicated
the total consumption of the ketone. The reaction mixture
was poured into ice-water (100 mL), acidified with aqueous
HCI (3 M) to pH 2-3 and extracted with EtOAc (100 mL x
3). The combined organic layer was dried over sodium sul-
fate and evaporated under reduced pressure. The 1,3-dike-
tone obtained was used for the next step without further pu-
rification.

Step B: The 1,3-diketone (10 mmol) was added to a solu-
tion of Selectfluor™ (7.187 g, 21 mmol) in CH,;CN
(30 mLwith 3 mL water ). This mixture was stirred at room
temperature for 24-36 h until TLC indicated the total con-
sumption of the 1,3-diketone. The solvent was removed by
rotary evaporation to provide the raw products. The residue
was then extracted with CH,Cl,, dried over Na,SO,. The sol-
vent was removed under reduced pressure to yield corre-
sponding 2,2-difluoro-1,3-diketones.

General Procedure for Asymmetric Synthesis of 3-
Hydroxy-3-substituted Oxindoles

A solution of N-substituted isatin (0.200 mmol) and C-3
(10 mol%) in MeOH (2.5 mL) was stirred for 20 min at
room temperature, then the 2,2-difluoro-1.3-dione (0.300
mmol) was added. Upon consumption of N-substituted
isatin (monitored by TLC), the reaction mixture was con-
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centrated and purified by column chromatography to afford
the decarboxylative aldol products 3.
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