Tetrahedron Letters 54 (2013) 4717-4720

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Dehydrative synthesis of chiral oxazolidinones catalyzed by alkali metal carbonates under low pressure of CO₂

Siong Wan Foo^a, Yuki Takada^a, Yusuke Yamazaki^a, Susumu Saito^{a,b,*}

^a Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
^b Institute for Advanced Research, Nagoya University, Chikusa, Nagoya 464-8601, Japan

ARTICLE INFO

Article history: Received 7 May 2013 Revised 18 June 2013 Accepted 21 June 2013 Available online 28 June 2013

Keywords: Carbon dioxide Amino alcohol Dehydration Cesium carbonate Alkali metal carbonate Oxazolidinone

ABSTRACT

Dehydrative synthesis of oxazolidinones from amino alcohols and CO_2 was achieved in the presence of alkali metal carbonates such as Cs_2CO_3 as catalyst. It is noteworthy that 1 atm of CO_2 is enough for the reaction to proceed and no special dehydrating agent is required in this system. A mechanstic study showed that the OH of amino alcohol acts as nucleophile and the OH in the carbamic acid moiety is liberated during the cyclization process.

© 2013 Elsevier Ltd. All rights reserved.

In recent years, the expected depletion of petroleum has impelled us to seek other carbon resources. Carbon dioxide (CO₂) is one of the potential candidates as it is the most abundant carbon source in the Earth's atmosphere—with around 300 billion tons.¹ Increasing exploitation of CO₂ as starting material in the chemical industry is thus highly desirable. It is an abundant, cheap, and nontoxic source of $C_{1.}^{2}$ In recent years, studies in CO₂ transformation have extended to the synthesis of polymers,³ carbonates,⁴ carbamates,⁵ formate,⁶ methanol,⁷ carbon monoxide,⁸ etc.

Oxazolidinones are in the family of carbamates, and are among the most widely used chiral auxiliaries in asymmetric natural product synthesis.⁹ Oxazolidinones are mainly manufactured by phosgenation of β -amino alcohols.^{10,11} However, the use of phosgene (Cl₂C=O) precludes widespread application in laboratory and industry due to phosgene's toxicity and adverse environmental impact.^{5b,11} Replacement of phosgene with CO₂ is an ideal alternative. In fact, research on the synthesis of oxazolidinones starting from β -amino alcohol^{5b,11,12} and CO₂ has been an important subject for many years.^{13–16} Nevertheless, simple and salt-free approach in oxazolidinone synthesis starting from β -amino alcohol has yet to be established. This might be due to thermodynamic reasons (vide infra) and catalyst deactivation caused by the coproduced water.^{5b,11} In order to overcome these drawbacks, many attempts have been made to shift the equilibrium to the product side. The most straightforward way is to use a dehydrating agent to trap the coproduced water^{14a,b,15}; other attempts include the use of aziridine¹⁷ (a predehydrated form of β -amino alcohol) and phosphorylating agents (similar to Mitsunobu's reaction).^{16i-m} Carbon monoxide (CO)^{5b,11,18} and supercritical CO₂ are additional popular alternatives for combating the thermodynamic issues in oxazolidinone synthesis.^{13,15} Although several groups have reported catalytic synthesis of oxazolidinone using cyclic carbonate as 'carbonyl source', it rarely attracted much attention because the use of cyclic carbonate incurred higher production cost and complexity in the reaction.¹⁹ Recently, CeO₂ nanoparticles were used as catalyst in the reaction of N-substituted- β -amino alcohols or other ω-amino alcohols with CO₂ (7 bar) at 160 °C but the conversion was unsatisfactory.²⁰ Therefore, simply dehydrative methods are rarely employed in the general synthesis of chiral auxiliaries. We report here a chiral oxazolidinone synthesis via the incorporation of CO_2 under atmospheric pressure (1 atm) into β -amino alcohols, with merely H₂O as byproduct and without using any special dehydrating agents (Scheme 1).

In order to assess a possibility of simple dehydrative method of oxazolidinone synthesis from CO₂, we started our considerations with fundamentals, that is, the Gibbs free energy and enthalpy calculations. The reaction with ethanolamine (R¹ = H) is endergonic and endothermic [ΔG = +3.1 kcal/mol and ΔH = +1.6 kcal/mol (B3LYP/6–31+G^{**}) and ΔG = +2.63 kcal/mol and ΔH = +1.33 kcal/mol (M062X/6–311++G^{**})]. Nonetheless, the thermodynamics are

^{*} Corresponding author. Tel./fax: +81 52 789 5945.

E-mail addresses: saito.susumu@f.mbox.nagoya-u.ac.jp, saito.susumu@me.com (S. Saito).

^{0040-4039/\$ -} see front matter \circledast 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.06.100

more favorable when ethanolamine is replaced with L-valinol ($R^1 = {}^iPr$) [$\Delta G = +0.35$ kcal/mol and $\Delta H = -0.84$ kcal/mol (B3LYP/ 6–31+G^{**}) and $\Delta G = +0.01$ kcal/mol and $\Delta H = -0.80$ kcal/mol (M062X/6–311++G^{**})]. For this reason, amino alcohols derived from natural amino acids were selected ($R^1 \neq H$) (Scheme 1).

Based on the results obtained in the synthesis of dialkyl carbamates^{21a,b} and of dialkyl carbonates^{21c,d} from CH₂Cl₂ and CO₂ at a low pressure,^{21d} we found, to our surprise, that an alkali metal salt sufficed to promote the dehydration, when L-valinol ((*S*)-**1a**: [**1a**]₀ = 0.90 M) and Cs₂CO₃ (10 mol %: [Cs₂CO₃]₀ = 0.09 M) in DMSO-d₆ were exposed to a 1 atm of CO₂ (purity = 99.9%) at 150 °C for 24 h; (*S*)-**2a** was obtained in 90% (isolated yield: 80%,²² Table 1, entry 10).

The yield was only 6% when Cs₂CO₃ was replaced with ammonium carbonate (entry 1). Among the alkali metal (bi)carbonates (e.g., Li₂CO₃, Na₂CO₃, K₂CO₃, Rb₂CO₃, KHCO₃, and CsHCO₃) that promoted this reaction (entries 2–7 and 10). Cs₂CO₃ was the most effective. The catalytic activity decreased in the order Cs⁺ \approx Rb⁺ > $K^+ > Na^+ > Li^+$ (entries 2–5 and 10). Based on this observed trend, dissociation of the alkali metal cation from the carbonate anion appeared to be playing an important role in the reactivity. Hence, in the case of K_2CO_3 , 18-crown-6 was used as an additive (10 mol %), and in fact the product yield was improved to 64% (compared to entry 4). Equivalent amount of CsHCO₃ (10 mol %) gave a less encouraging result (entries 7 and 10). Other Cs sources, for example, CsOAc or Cs_2SO_4 (**2a**: 4% and 6%, respectively), were ineffective compared to Cs₂CO₃ (entry 10). Different solvents such as DMF (4%), NMP (8%), DMI (55%), DMA (9%), and MeCN (<1%) did not provide a satisfying yield of 2a. No significant difference in reactivity was observed between a commercial DMSO directly used and anhydrous DMSO-d₆ distilled over CaH₂ (2a: 91% and 90%, respectively). Thus, the moisture present in a commercial DMSO did not interfere with the action of Cs_2CO_3 . A ≥ 1 mL of DMSO per 1 mmol of 1a was needed to obtain satisfactory results (entry 8). When dimethyl sulfone was used as solvent or no catalyst was present (entry 11), only a trace amount of the desired product was obtained (2a: <1%).

With the optimized conditions in hand, various amino alcohols have been screened (Table 2). Oxazolidinones, especially those widely used as Evans auxiliaries,⁹ were obtained in satisfactory yields (entries 4, 5, and 7). Regardless of whether the substituent (R¹) on the amino-alcohol skeleton was a primary, secondary, or tertiary carbon, trapping of CO₂ proceeded smoothly. Albeit some of them needed slightly higher CO₂ pressure (3–5 atm) compared to the optimized conditions, moderate to good yields were obtained. When R¹ was the methyl group, the product yield was not as good as when it was a larger substituent (entries 1-8). The larger the R^1 , the better the yield of **2**. This observation can be rationalized by the Thorpe-Ingold effect.²³ According to the initial calculations, the reaction with ethanolamine $(R^1 = H)$ faces a thermodynamic disadvantage, and the experimental observation is in accordance with the calculations (vide supra). Indeed, when ethanolamine was used, only 7% of the desired product was obtained under the optimized conditions. A higher catalyst load (20 mol %) or an increased CO₂ pressure (9 atm) failed to increase

Scheme 1. Synthesis of oxazolidinone from CO₂ under atmospheric pressure.

Table 1

Synthesis of oxazolidinone (S)-2a from (S)-1a^a

OH (S)-1a	+ CO ₂ 1 atm	cat. (10 mol %) DMSO 150 °C, 24 h	NH O (S)-2a	+ H ₂ O
Entry		Cat.		Yield ^b (%)
1		$(NH_4)_2CO_3$		6
2		Li ₂ CO ₃		3
3		Na_2CO_3		22
4		K ₂ CO ₃		49
5		Rb ₂ CO ₃		88
6		KHCO ₃		56
7		CsHCO ₃		48
8		Cs_2CO_3		34 ^{c,d}
9		Cs_2CO_3		62 ^c
10		Cs_2CO_3		90 ^e (80)
11		None		<1

^a The reaction was performed using (*S*)-**1a** (1 mmol) in DMSO (1 mL) with an initial CO₂ pressure of 1 atm at 25 °C.

^b Determined by ¹H NMR (DMF as internal standard); the number in parentheses is the isolated yield.

 c 5 mol % of Cs₂CO₃.

^d 0.5 mL of DMSO.

^e Anhydrous DMSO-*d*₆ was used.

Table 2

ubstrate
ubstrate

Entry	Amino alcohol 1	Oxazolidinone 2	Yield ^{b,c} (%)
	Ŗ ¹	R ¹	
		人	
1 ^d	(S)- 1b (R = Me)	(S)- 2b (R = Me)	42 (36)
2 ^d	(S)-1c (R = Et)	(S)- 2c (R = Et)	63 (51)
3 ^d	$(S)-1d (R = {}^{i}Bu)$	$(S)-2d (R = {}^{i}Bu)$	57 (49)
4 ^d	(S)-1e (R = Bn)	(S)- 2e (R = Bn)	88 (90)
5	(R) - 1a $(R = {}^{i}Pr)$	(R) - 2a $(R = {}^{i}Pr)$	89 (70)
6	(S)- 1f (R = ^s Bu)	(S)- 2f (R = ^s Bu)	81 (78)
7	(S)- 1g (R = ^t Bu)	(S)- 2g (R = ^t Bu)	- (80)
8 ^e	(R)- 1h (R = Ph)	(R)- 2h (R = Ph)	61 (69)

^a Unless otherwise specified, the reaction conditions were: **1** (1 mmol), Cs₂CO₃ (10 mol %), CO₂ ($P_{CO2} = 1$ atm; CO₂ balloon) in anhydrous DMSO or DMSO- d_6 (1 mL), at 150 °C for 24 h.

^b Determined by ¹H NMR (DMF as internal standard); the number in parentheses is the isolated yield.

^c Conversion of **1**:>99%. Other products: carbamic acid (RNHCO₂H, major) and carbamate (RNHCO₂)⁻(RNH₃)⁺ or ammonium bicarbonate RNH₃⁺HCO₃⁻were detected by ¹H NMR (DMSO- d_6) in a crude mixture (R = –(R¹)CHCH₂OH). See Refs. 24a,b for the assignment.

^d P_{CO2} = 3 atm, adjusted using autoclave.

^e P_{CO2} = 5 atm, adjusted using autoclave.

the product yield. The retention of the absolute configuration at the β -positions of amino alcohols **1a**–**h** was consistently observed, giving products **2a**–**h** as single enantiomers (see Supplementary data).

Carbamic acid (Scheme 1) can be formed from amino alcohol when exposed to 1 atm of CO_2 and was detected in DMSO- d_6 as a more favorable structure than the ammonium carbamate.²⁴ Carbamic acid has two hydroxyl groups (the alcohol OH and the acid OH). One acts as nucleophile and the other is liberated, as will be shown in Scheme 3. Generally, the alcohol OH acts as a nucleophile in the C–O bond formation.²⁵ Nonetheless, selectivity of the leaving OH can be altered by steric control.^{26,27} Thus, control experiments

Scheme 2. Reaction with (R)-1-aminopropan-2-ol ((R)-1i).

were carried out to clarify which OH is liberated as water (Scheme 2).

In contrast to the absolute retention at the β -carbon of β -amino alcohols, the chirality at the α -position can provide useful information on which OH group (the alcohol OH or the acid OH) in the carbamic acid is liberated (Scheme 3). In this case, (*R*)-1-aminopropan-2-ol ((*R*)-**1**i) was used under similar reaction conditions (Scheme 2). The chiral GC analysis of the product showed complete retention of the parent chiral center bearing the methyl substituent, demonstrating the exclusive formation of (*R*)-**2i** (see Supplementary data). In addition, when C¹⁸O₂ was used upon reaction with **1a**, one ¹⁸O was incorporated predominantly into **2a**.^{21a,28} These results suggest that the alcohol OH acts as a nucleophile and the acid OH is a leaving group. The HCO₃⁻ anion seems one of the most critical species involved in the reaction.²⁹

In summary, oxazolidinones were synthesized from amino alcohols and CO₂ (1–5 atm) with the aid of catalytic alkali metal (bi)carbonates represented by Cs_2CO_3 . Special dehydrating agents were not needed in this system. The reaction protocol reported herein is very simple, straightforward, and can be replicated in any laboratory. The preliminary mechanistic study revealed that the OH of amino alcohol acts as nucleophile and the OH at carbamic acid moiety is liberated during the cyclization process.³⁰

Scheme 3. Possible pathways in the reaction of (R)-1i.

Acknowledgments

This work was supported by funds from Asahi Glass, Asahi Kasei Chemicals, Kuraray, Mitsubishi Chemical, Mitsui Chemicals, Nissan Chemical Ind., and Sumitomo Chemical, Asahi Glass Foundation and ACT-C, JST. S.W.F. and Y.T. were financially supported by the GCOE in chemistry, Nagoya University (NU) and IGER in chemistry, NU. The authors wish to thank Professor R. Noyori (NU & RIKEN) for fruitful discussions and Professor P. Butko (NU) for technical advice.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013. 06.100.

References and notes

- 1. Gibson, D. H. Chem. Rev. 1996, 96, 2063-2095.
- Federal, C.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 6254–6257.
 Review of polymer from CO₂: (a) Darensbourg, D. J. Chem. Rev. 2007, 107, 2388–
- 2410; (b) Żevenhoven, R.; Eloneva, S.; Teir, S. *Catal. Today* **2006**, *115*, 73–79; (c) Luinstra, G. A. *Polym. Rev.* **2008**, *48*, 192–219.
- Review of carbonate from CO₂: Sakakura, T.; Kohno, K. Chem. Commun. 2009, 1312–1330.
- Review of carbamate from CO₂: (a) Bruneau, C.; Dixneuf, P. H. J. Mol. Catal. 1992, 74, 97–107; (b) Sakakura, T.; Choi, J.; Yasuda, H. Chem. Rev. 2007, 107, 2365–2387; (c) Chaturvedi, D.; Chaturvedi, A. K.; Mishra, V. Curr. Org. Chem. 2012, 16, 1609–1635.
- Formate or formic acid from CO_2 : (a) Jessop, P. G.; Joó, F.; Tai, C. *Coord. Chem. Rev.* **2004**, 248, 2425–2442; (b) Jessop, P. G.; Ikariya, T.; Noyori, R. *Chem. Rev.* 1995, 95, 259-272; (c) Leitner, W. Angew. Chem., Int. Ed. Engl. 1995, 34, 2207-2221; (d) Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168-14169; (e) Ezhova, N. N.; Kolesnichenko, N. V.; Bulygin, A. V.; Slivinskii, E. V.; Han, S. Russ. Chem. Bull., Int. Ed. 2002, 51, 2165-2169; (f) Jessop, P. G.; Ikariya, T.; Noyori, R. Nature 1994, 368, 231–233; (g) Angermund, K.; Baumann, W.; Dinjus, E.; Fornika, R.; Gorls, H.; Kessler, M.; Kruger, C.; Leitner, W.; Lutz, F. Chem. Eur. J. 1997, 3, 755–764; (h) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1996**, 118, 344–355; (i) Urakawa, A.; Jutz, F.; Laurenczy, G.; Baiker, A. Chem. Eur. J. 2007, 13, 3886–3899; (j) Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C.; Jessop, P. G. J. Am. Chem. Soc. 2002, 124, 7963-7971; (k) Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Kasuga, K. Organometallics 2007, 26, 702-712; (1) Graf, E.; Leitner, W. J. Chem. Soc., Chem. Commun. 1992, 623–624; (m) Gassner, F.; Leitner, W. J. Chem. Soc., Chem. Commun. **1993**, 1465– 1466; (n) Sato, S.; Morikawa, T.; Saeki, S.; Kajino, T.; Motohiro, T. Angew. Chem., *Int. Ed.* **2010**, 49, 5101–5105; (o) Sato, S.; Arai, T.; Morikawa, T.; Uemura, K.; Suzuki, T. M.; Tanaka, H.; Kajino, T. J. Am. Chem. Soc. 2011, 133, 15240-15243.
- Methanol from CO₂ using homogeneous catalysis: (a) Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122–18125; (b) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609–614; (c) Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W. J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499–7502; Methanol from CO₂ using heterogeneous catalysis: (d) Liao, F.; Huang, Y.; Ge, J.; Zheng, W.; Tedsree, K.; Collier, P.; Hong, X.; Tsang, S. C. Angew. Chem., Int. Ed. 2011, 50, 2162–2165; (e) Fujita, S.; Moribe, S.; Kanamori, Y.; Kakudate, M.; Takezawa, N. Appl. Catal. A 2001, 207, 121–128; (f) Toyir, J.; de la Piscina, P. R.; Fierro, J. L. G.; Homs, N. Appl. Catal. B 2001, 207–215; (g) Arena, F.; Barbera, K.; Italiano, G.; Bonura, G.; Spadaro, L.; Frusteri, F. J. Catal. 2007, 249, 185–194; (h) Słoczyński, J.; Grabowski, R.; Kozłowska, A.; Olszewski, P.; Stoch, J.; Skrzypek, J.; Lachowska, M. Appl. Catal. A 2009, 88, 315–322; Frustrated Lewis pairs mediated MeOH synthesis: (j) Ashley, A. E.; Thompson, A. L.; O'Hare, D. Angew. Chem., Int. Ed. 2009, 48, 9839–9843.
- 8 CO from thermal reduction: (a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703-3727; (b) Liu, Y.; Liu, D. Int. J. Hydrogen Energy 1999, 24, 351-354; (c) Stone, F. S.; Waller, D. Top. Catal. 2003, 22, 305-318; (d) Chen, C. S.; Cheng, W. H.; Lin, S. S. Appl. Catal. A 2003, 238, 55-67; (e) Chen, C. S.; Cheng, W. H.; Lin, S. S. Chem. Commun. 2001, 1770-1771; (f) Chen, C. S.; Cheng, W. H.; Lin, S. S. Appl. Catal. A 2004, 257, 97-106; (g) Wang, L.; Zhang, S.; Liu, Y. J. Rare Earths 2008, 26, 66-70; Photochemical reduction: (h) Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. J. Am. Chem. Soc. 2008, 130, 2023-2031; (i) Ishida, H.; Terada, T.; Tanaka, K.; Tanaka, T. Inorg. Chem. 1990, 29, 905–911; (j) Ishida, H.; Tanaka, K.; Tanaka, T. Chem. Lett. 1985, 405–406; (k) Gholamkhass, B.; Mametsuka, H.; Koike, K.; Tanabe, T.; Furue, M.; Ishitani, O. Inorg. Chem. 2005, 44, 2326-2336; (1) Fujita, E. Coord. Chem. Rev. 1999, 185-186, 373-384; (m) Bian, Z.; Sumi, K.; Furue, M.; Sato, S.; Koike, K.; Ishitani, O. Inorg. Chem. 2008, 47, 10801-10803; Electrochemical reduction: (n) Frese, K. W., Jr.; Leach, S. J. Electrochem. Soc. 1985, 132, 259-260; (o) Hawecker, J.; Lehn, J.; Ziessel, R. Helv. Chim. Acta 1986, 69, 1990-2012; (p) Hiratsuka, K.; Takahashi, K.; Sasaki,

H.; Toshima, S. Chem. Lett. 1977, 1137–1140; (q) Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 1695–1698; (r) Hoshi, N.; Suzuki, T.; Hori, Y. Electrochim. Acta
1996, 41, 1617–1653; (s) Hoshi, N.; Suzuki, T.; Hori, Y. J. Phys. Chem. B 1997, 101, 8520–8524; (t) Hoshi, N.; Ito, H.; Suzuki, T.; Hori, Y. J. Electroanalyt. Chem.
1995, 395, 309–312; (u) Ishida, H.; Tanaka, K.; Tanaka, T. Organometallics 1987, 6, 181–186.

- (a) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. **1996**, *96*, 835–875; (b) Lazny, R.; Nodzewska, A. Chem. Rev. **2010**, *110*, 1386–1434; (c) Pridgen, L. N.; Abdel-Magid, A. F.; Lantos, I.; Shilcrat, S.; Egglestont, D. S. J. Org. Chem. **1993**, *58*, 5107– 5117; (d) Doyle, M. P.; Winchester, W. R.; Hoorn, J. A. A.; Lynch, V.; Simonsen, S. H.; Ghosh, R. J. Am. Chem. Soc. **1993**, *115*, 9968–9978; (e) Evans, D. A. Aldrichim. Acta **1982**, *15*, 21–43.
- Liu, J.-M.; Peng, X.-G.; Liu, J.-H.; Zheng, S.-Z.; Sun, W.; Xia, C.-G. Tetrahedron Lett. 2007, 48, 929–932.
- Carbon Dioxide as Chemical Feedstock; Aresta, M., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010.
- β-Amino alcohol was chosen also because it can be obtained from simple reduction of the naturally abundant or synthetic amino acids. Dickman, D. A.; Meyers, A. I.; Smith, G. A.; Gawley, R. E. Org. Syn. Coll. **1990**, 7, 530–533. 63 **1985** 136–139.
- With high pressure (without catalyst). (a) Steele, A. B. 1959, US patent 2868801; (b) Lynn, J.W. 1961, US patent 2975187; (c) Bhanage, B. M.; Fujita, S.; Ikushima, Y.; Arai, M. *Green Chem.* 2003, *5*, 340–342.
- With organometallic catalyst: (a) Matsuda, H.; Baba, A.; Nomura, R.; Kori, M.; Ogawa, S. Ind. Eng. Chem., Prod. Res. Dev. **1985**, 24, 239–242; (b) Nomura, R.; Yamamoto, M.; Matsuda, H. Ind. Eng. Chem., Res. **1987**, 26, 1056–1059; (c) Tominaga, K.; Sasaki, Y. Synlett **2002**, 2, 307–309.
- With K₂CO₃ in ionic liquids (ILs): Fujita, S.; Kanamaru, H.; Senboku, H.; Arai, M. Int. J. Mol. Sci. 2006, 7, 438-450.
- (a) Åkasaki, Y.; Hatano, S.; Fukuyama, M. 1978, JP Patent 78111062; (b) Dozen, Y.; Ukita, M. 1982, JP patent 57042678; (c) Kawanami, H.; Ikushima, Y. J. Jpn. Petrol. Inst. 2002, 45, 321–324; (d) Feroci, M.; Inesi, A.; Mucciante, V.; Rossi, L. Tetrahedron Lett. 1999, 40, 6059–6060; (e) Casadei, M. A.; Feroci, M.; Inesi, A.; Rossi, L.; Sotgiu, G. J. Org. Chem. 2000, 65, 4759–4761; (f) Feroci, M.; Gennaro, A.; Inesi, A.; Orsini, M.; Palombi, L. Tetrahedron Lett. 2002, 43, 5863–5965; (g) Kodaka, M.; Tomohiro, T.; Lee, A. L.; Okuno, H. J. Chem. Soc., Chem. Commun. 1989, 1479–1481; (h) Ariza, X.; Pineda, O.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 2001, 42, 4995–4999; (i) Kodaka, M.; Tomohiro, T.; Okuno, H. J. Chem. Soc., Chem. Commun. 1993, 81–82; (j) Dinsmore, C. J.; Mercer, S. P. Org. Lett. 2004, 6, 2885–2888; (k) Kubota, Y.; Kodaka, M.; Tomohiro, T.; Okuno, H. J. Chem. Soc., Perkin Trans 1 1993, 5–6; (l) Paz, J.; Pérez-Balado, C.; Iglesias, B.; Muñoz, L, J. Org. Chem. 2010, 75, 3037–3046; (m) Paz, J.; Pérez-Balado, C.; Iglesias, B.; Muñoz, L, Synlett 2009, 3, 395–398.
- (a) Kawanami, H.; Matsumoto, H.; Ikushima, Y. Chem. Lett. 2005, 34, 60–61; (b) Miller, A. W.; Nguyen, S. T. Org. Lett. 2004, 6, 2301–2304; (c) Sudo, A.; Morioka, Y.; Sanda, F.; Endo, T. Tetrahedron Lett. 2004, 45, 1363–1365; (d) Wu, Y.; Liu, G. Tetrahedron Lett. 2011, 52, 6450–6452; (e) Watile, R. A.; Bagal, D. B.; Patil, Y. P.; Bhanage, B. M. Tetrahedron Lett. 2011, 52, 6383–6387; (f) Jiang, H.-F.; Ye, J.-W.; Qi, C.-R.; Huang, L.-B. Tetrahedron Lett. 2010, 51, 928–932; (g) Sudo, A.; Morioka, Y.; Koizumi, E.; Sanda, F.; Endo, T. Tetrahedron Lett. 2003, 44, 7889– 7891; (h) Du, Y.; Wu, Y.; Liu, A.-H.; He, L.-N. J. Org. Chem. 2008, 73, 4709–4712; (i) Shen, Y.-M.; Duan, W.-L.; Shi, M. Eur. J. Org. Chem. 2004, 3080–3089; (j) Tascedda, P.; Duñach, E. Chem. Commun. 2000, 449–450; (k) Hancock, M. T.; Pinhas, A. R. Tetrahedron Lett. 2003, 44, 5457–5460; (l) Phung, C.; Ulrich, R. M.; Ibrahim, M.; Tighe, N. T. G.; Lieberman, D. L.; Pinhas, A. R. Green Chem. 2011, 13, 3224–3229; (m) Ueno, A.; Kayaki, Y.; Ikariya, T. Green Chem. 2013, 15, 425–430.
- (a) Gabriele, B.; Mancuso, R.; Salerno, G.; Costa, M. J. Org. Chem. 2003, 68, 601–604; (b) Zheng, S.; Li, F.; Liu, J.; Xia, C. Tetrahedron Lett. 2007, 48, 5883–5886; (c) Gabriele, B.; Salerno, G.; Brindisi, D.; Costa, M.; Chiusoli, G. P. Org. Lett. 2000, 2, 625–627; (d) Chiarotto, I.; Feroci, M. Tetrahedron Lett. 2001, 42, 3451–3453; (e) Li, F.; Xia, C. J. Catal. 2004, 227, 542–546; (f) Imada, Y.; Mitsue, Y.; Ike, K.; Washizuka, K.; Murahashi, S.-I. Bull. Chem. Soc. Jpn. 1996, 69, 2079–2090; (g) Tam, W. J. Org. Chem. 1986, 51, 2977–2981; (h) Li, P.; Yuan, X.; Wang, S.; Lu, S. Tetrahedron 2007, 63, 12419–12423.
- (a) Henkelmann, J.; Ruhl, T. **1998**, US Patent 5783706; (b) Patil, Y. P.; Tambade,
 P. J.; Jagtap, S. R.; Bhanage, B. M. *J. Mol. Catal. A: Chem.* **2008**, 289, 14–21; (c)
 Dyer, E.; Scott, H. *J. Am. Chem. Soc.* **1956**, 79, 672–675.

- Juárez, R.; Concepción, P.; Corma, A.; García, H. Chem. Commun. 2010, 4181– 4183.
- 21. Stoichiometric Cs₂CO₃ for the synthesis of carbamates from CO₂, amine, and alkyl halides: (a) Salvatore, R. N.; Flanders, V. L.; Ha, D.; Jung, K. W. Org. Lett. **2000**, 2, 2797–2800; (b) Salvatore, R. N.; Ledger, J. A.; Jung, K. W. Tetrahedron Lett. **2001**, 42, 6023–6025; Carbonate synthesis: (c) Takada, Y.; Matsuoka, A.; Du, Y.; Naka, H.; Saito, S. Chem. Lett. **2013**, 42, 146–147; (d) Yamazaki, Y.; Kakuma, K.; Du, Y.; Saito, S. Tetrahedron **2010**, 66, 9675–9680; (e) Preliminary results of this report were used in application for a patent: Noyori, R.; Saito, S.; Naka, H.; Yamazaki, Y.; Foo, S. W. JP patent, Appl. #2012–28845, Filed: Feb 13, 2012.
- 22. DMSO or DMSO- d_6 has to be distilled away under vacuum conditions (6 mmHg, 50 °C) before the purification of **2** can be carried out.
- 23. Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735-1766.
- 24. Exposure of CO₂ (1 atm, filled in balloon) to a DMSO- d_6 solution of **1a** at 25 °C, followed by stirring at 150 °C for 3 h and cooling down to 25 °C, showed identical NMR spectra (the carbamic acid) before and after the temperature change. The carbamic acid derived from 1a in the form of RNHCO₂H [¹³C NMR (ppm in DMSO-*d*₆) δ 159.0, 62.1, 57.6, 28.4, 19.7, 17.9] essentially can preserve its structure (~50 °C) or can be formed reversibly in DMSO (~150 °C) under 1 atm of CO₂. See also Supplementary Figures S1 and S2. On the other hand, based on the low resolution FAB-MS analysis, the carbamic acid that precipitated out from a less polar solvent such as MeCN at 25 °C was mainly the ammonium carbamate; it is an intermolecular acid-base adduct comprised of two molecules of 1a and one molecule of CO_2 in the form of (RNHCO₂)⁻.(RNH₃)⁺. DMSO is indeed an excellent solvent to maintain the structure of carbamic acid, superior to (RNHCO₂)⁻ (RNH₃)⁺: (a) Ito, Y.; Ushitora, H. Tetrahedron 2006, 62, 226-235; (b) Matsuda, K.; Ito, Y.; Horiguchi, M.; Fujita, H. Tetrahedron 2005, 61, 213-229. See also: (c) Yamamoto, Y.; Hasegawa, J.; Ito, Y. J. Phys. Org. Chem. 2012, 25, 239-247; (d) Lewis, T.; Faubel, M.; Winter, B.; Hemminger, J. C. Angew. Chem., Int. Ed. 2011, 50, 10178-10181; (e) Hampe, E. M.; Rudkevich, D. M. Tetrahedron 2003, 59, 9619-9625.
- 25. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry; Oxford University Press Inc.: New York, 2001.
- 26. Mechanistic studies with chiral alcohol or C¹⁸O₂ in Mitsunobu-like reaction from other groups: the selectivity can depend on the starting amino alcohol, *N*-substituted with hydrogen (acid OH leaves) or with carbon (alcohol OH leaves) (Ref. 16j); it depended on the phosphine species, PBu₃ (acid OH leaves) and PPh₃ (alcohol OH leaves) (Ref. 16i).
- Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Melchiorre, P.; Sambri, L. Org. Lett. 2005, 7, 1983–1985.
- 2a-¹⁸O₂ was detected in a negligible amount, in addition to a modest amount of 2a without ¹⁸O-incorporation. The latter product may be due to fast exchange of the two oxygens of the carbamic acid with oxygen of water or of Cs₂CO₃.
- 29. A carbamic acid (RNHCO₂H) derived from beta-amino alcohol 1 and CO₂ has an acid proton more susceptible to deprotonation by Cs₂CO₃ than that of the alcohol OH. However, the reaction system is weakly acidic rather than basic, since carbamic acid remains consistently in an excess quantity during the course of the reaction (at least from the beginning to the later stage), compared with the amount of Cs₂CO₃, CsHCO₃ (<10 mol %), or RNHCO₂Cs (<10 mol %) that may not react as substrate. In fact, the yield of 2 has so far never exceeded 90% (Tables 1 and 2). In addition, when a similar oxazolidinone synthesis was carried out using a 2:1 molar ratio of 1a and Cs₂CO₃ or 1a and CsHCO₃ except that CO₂ was absence, only more acidic CsHCO₃ gave 2a but in a low yield (15% based on 1a; 30% based on CsHCO₃). The HCO₃²⁻, rather than a more basic CO₃²⁻, is capable of promoting the reaction. This suggests that a weak acid-weak base cooperative catalysis as shown in Scheme 3 would be responsible.
- 30. Although the three-component coupling among alcohol, amine and CO₂ (25 atm) was reported using catalytic Cs₂CO₃ at a higher temperature (200 °C), the mechanism disclosed therein is entirely different from ours: the carbamate was formed from intermediate carbamide: (a) Ion, A.; Doorslaer, C. V.; Parvulescu, V.; Jacobs, P.; Vos, D. D. Green Chem. 2007, 9, 158–161.