JOC The Journal of Organic Chemistry

Article

Subscriber access provided by UNIV AUTONOMA DE COAHUILA UADEC

A Photoredox/Cobalt-Catalyzed Phosphinyloxy Radical addition/ Cyclization Cascade: Synthesis of Phosphaisocoumarins

Ming-ming Qiao, Yi-Yin Liu, Sheng Yao, Tian-Cong Ma, Zi-Long Tang, De-Qing Shi, and Wen-Jing Xiao J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b00570 • Publication Date (Web): 16 May 2019 Downloaded from http://pubs.acs.org on May 16, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

A Photoredox/Cobalt-Catalyzed Phosphinyloxy Radical Addition/Cyclization Cascade: Synthesis of Phosphaisocoumarins

Ming-Ming Qiao¹, Yi-Yin Liu¹, Sheng Yao¹, Tian-Cong Ma¹, Zi-Long Tang², De-Qing Shi¹*, Wen-Jing Xiao^{1,3}

¹CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China

²College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

³State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

chshidq@mail.ccnu.edu.cn

Abstract

A novel visible-light photoredox catalyzed phosphinyloxy radical addition/cyclization cascade of arylphosphinic acids or arylphosphonic acid monoesters with alkynes has been developed, which provides an efficient and practical access to various phosphaisocoumarins by using a dual catalytic system containing an acridinium photosensitizer and a cobaloxime proton-reducing catalyst, [Co(dmgH)₂]PyCl at ambient temperature. This method has advantages of broad substrate scope, mild condition as well as without any sacrificial oxidant.

Introduction

Organophosphorus compounds are of great importance not only in many functional materials and bioactive fine chemicals, such as agrochemicals, pharmaceuticals and natural products, ¹ but also as synthetic reagents in organic synthesis, versatile phosphine ligands in transition metal catalysis or nucleophilic organo-catalysts.² Generally speaking, phosphorus substituents can regulate important biological, medicinal and materials functions, so, heterocycles containing phosphorus or phosphonyl group are received considerable attention to organic and medicinal chemists (**Figure 1**).¹

Figure 1. Some important biologically active P-containing molecules.

 $(R^1 = CI, OMe, NO_2), (R^2 = C_6H_5)$ inhibitors of Protein Tyrosine Phosphatase 1B

EC₅₀ = 20.2 uM T_{1/2} = 0.5 h

EC₅₀ = 4.2 uM T_{1/2} = 1.6 h

EC₅₀ = 1.7 uM T_{1/2} = 2.1 h

Phosphaisocoumarin, as a phosphorus analogue of isocoumarins, displayed versatile and interesting biological activies.³ In 2013, Ding group first reported the preparation of phosphaisocoumarins by Cu(I)-catalyzed intramolecular cyclization of *o*-ethynylphenylphosphonic acid monoesters (**Scheme**

 1a).^{4a} After that, Peng reported the CuX₂ (X = Br, Cl) mediated direct halocyclization for the synthesis of 4-halophosphaisocoumarins (**Scheme 1a**).^{4b} Afterwards, Lee developed rhodium- and ruthenium-catalyzed oxidative C–H activation/cyclization for the synthesis of phosphaisocoumarins using arylphosphinic acids or arylphosphonic acid monoesters and alkynes as the starting materials (**Scheme 1b**).⁵ Despite these remarkable advances, in order to achieve good yields, stoichiometric oxidant or elevated temperature is usually required in these transformations. In this regard, the development of an efficient and environmentally benign method for the synthesis of phosphaisocoumarins is still highly desirable.

Recently, visible-light photoredox catalysis has attracted increasing research interest from synthetic community due to its extremely mild condition and environmental friendly character,⁶ and a photoredox/cobaloxime dual catalytic system provides a new strategy for the construction of a variety of heterocycles without external oxidants.⁷ Herein, we developed an unprecedented visible-light photoredox-catalyzed phosphinyloxy radical formation by O–H cleavage of arylphosphinic acids or arylphosphonic acid monoesters with H_2 release in the presence of a cobalt catalyst, and its application in the synthesis of a variety of phosphaisocoumarins through the phosphinyoxy radical addition/cyclization with alkynes in high atom-economy at ambient temperature is accomplished (Scheme 1c).

Scheme 1 Preparation of phosphaisocoumarins

(a) Ding and Peng's work:

(c) This work: photoredox catalyzed phosphinyloxy radical addition/cyclization cascade

Results and Discussion

Initially, diphenylphosphinic acid **1a** and diphenylacetylene **2a** were chosen as the model substrates and CsF as the base under irradiation of 6 W blue LEDs in the presence of $Acr^+-MesClO_4^-$ (3 mol%) and [Co(dmgH)₂]PyCl (8 mol%) (**Table 1**). To our delight, this reaction indeed proceeded, delivering the desired product **3a** in 46% NMR yield (**Table 1**, entry 1). The structure of **3a** was unambiguously confirmed by X-ray single-crystal diffraction analysis.⁸ A variety of bases were evaluated, it's found that CsF was still the best choice for this transformation (**Table 1**, entries 1–3). The mixture of chloroform and water (*V/V*, 4:1) can improve the yield of **3a** to 52% (**Table 1**, entry 4). By screening photo-catalysts and Co(III) catalysts, it is found that other Co(III) catalysts, such as $Co(dmgH)_2(4-NMe_2Py)Cl$, $Co(dmgH)_2(4-CO_2MePy)Cl$, and $[Co(dmgH)_2Py_2]PF_6$ are less effective (**Table 1**, entries 5-7), and other photocatalysts, such as $Ru(bpz)_3(PF_6)_2$ and *fac*-Ir(ppy)_3 can not tigger the reaction (**Table 1**, entries 8-9). DiRocco⁹ and Nicewicz¹⁰ found that Acr^+ -MesClO₄⁻ can undergo demethylation and is prone to nucleophilic attack, which can lead to lose the photocatalytic activity. To our delight, when the reaction was carried out for 24 h, extra Acr^+ -MesClO₄⁻ (3 mol%) was added to the reaction mixture and continued to be stirred until 48 h, the product **3a** can improve to 72% isolated yield (**Table 1**, entry 10). Control experiments indicated that without the photocatalyst, base or visible light irradiation, the reaction did not occur, indicating that visible light, base and photocatalyst were essential for this reaction. Moreover, the addition of the cobalt catalyst [Co(dmgH)₂]PyCl can improve the reaction efficiency (see **Supporting Information**).

Table 1. Optimization of reaction condition^a

2 3 4 5 6 7 8 9	O Ph−P−OH + Ph Ph 1a 2a	Photocatalyst Co-catalyst (Base (1.5 eq), So 6 W blue LE	(3 mol%) 8 mol%) blvent (2 mL) Ds, 24 h	Ph Ph Ph Ph H_2	
0 entry 1 2	photocatalyst	solvent	base	Co(III) catalyst	yield ^b (%)
⁴ 1 5 1	Acr ⁺ -Mes ClO ₄ ⁻	CHCl ₃	CsF	[Co(dmgH) ₂]PyCl	46
⁶ 7 2	Acr ⁺ -Mes ClO ₄ ⁻	CHCl ₃	DMAP	[Co(dmgH) ₂]PyCl	Trace
8 93 0	Acr ⁺ -Mes ClO ₄ ⁻	CHCl ₃	Cs ₂ CO ₃	[Co(dmgH) ₂]PyCl	15
1 4 2	Acr ⁺ -Mes ClO ₄ ⁻	CHCl ₃ /H ₂ O (4:1)	CsF	[Co(dmgH) ₂]PyCl	52
³ 5	Acr ⁺ -Mes ClO ₄ ⁻	CHCl ₃ /H ₂ O (4:1)	CsF	Co(dmgH) ₂ (4-NMe ₂ Py)Cl	29
5 6 6 7 8	Acr ⁺ -Mes ClO ₄ ⁻	CHCl ₃ /H ₂ O (4:1)	CsF	Co(dmgH) ₂ (4-CO ₂ MePy)Cl	32

10 11 12	10 ^{c, d}	Acr ⁺ -Mes ClO ₄ ⁻	CHCl₃/H₂O (4:1)	CsF	[Co(dmgH) ₂]PyCl	72
, 8 9	9	<i>fac</i> -Ir(ppy) ₃	CHCl ₃ /H ₂ O (4:1)	CsF	[Co(dmgH) ₂]PyCl	N.R.
5 6 7	8	$Ru(bpz)_3(PF_6)_2$	CHCl ₃ /H ₂ O (4:1)	CsF	[Co(dmgH) ₂]PyCl	Trace
2 3 4	7	Acr ⁺ -Mes ClO ₄ ⁻	CHCl ₃ /H ₂ O (4:1)	CsF	[Co(dmgH) ₂ Py ₂]PF ₆	33

^a1a (0.2 mmol), 2a (0.4 mmol, 2.0 equiv.), photocatalyst (0.006 mmol, 3 mol%), base (0.3 mmol, 1.5 equiv.), Co(III) catalyst (0.016 mmol, 8 mol%), 2.0 mL of solvent, 6 W blue LEDs, 24 h. ^bdetermined by ³¹P NMR analysis using trioctylphosphine oxide as an internal standard. ${}^{c}Acr^{+}$ -MesClO₄ (5.0 mg, 0.012 mmol, 6 mol%) was added portionwise (3 mol% of PC was added first, after 24 h another 3 mol% of PC was added), 48 h. disolated yield based on 1a in parenthesis.

With the optimized reaction condition being established, the scope of arylphosphinic acids was then investigated. As highlighted in **Table 2**, substrates bearing either electron-donating groups (i.e., methyl-, t-Bu-) or electron-withdrawing group (i.e., fluoro-, CF₃-) on the benzene ring, either ortho-, meta- or *para*-substituted group, were found to be suitable for the reaction, delivering the corresponding products in moderate yields (45%-68%, **3b-3f**). It is worth noting that when 3-trifluoromethyl substituted phosphinic acid was employed, two products (3f and 3f') with ortho- and para-cyclization patterns can be isolated in 68% total yield. However, when heteroaryl-substituted phosphinic acids (e.g., thiophenesubstituted) were employed, unfortunately, the reaction did not occur. Encouraged by these results, to test the generality of the cascade reaction, we turned our attention to investigate whether a series of arylphosphonic acid monoesters could be acted as suitable candidates. As shown in **Table 2**, a series of arylphosphonic acid monoesters, either electron-donating groups (e. g., CH₃, OCH₃, t-Bu) or electronwithdrawing groups (e. g., F, CF₃ and acetyl), and different substituted pattern on the benzene ring, are compatible in the reaction, furnishing corresponding products **3g-30** in moderate to high yields (**Table 2**, 31-83% yields). It is found that the electronic property of substituents on the benzene ring has some influence on the reaction efficiency, for example, 4-trifluoromethyl substituted substrate can give the best result (**3m**, 83% yield). Moreover, when 3-trifluoromethyl substituted substrate was adopted, two products (**30** and **30**') with *ortho*- and *para*-cyclization can be isolated in 62% total yield.

Table 2. Substrate Scope of Arylphosphinic acids or Arylphosphonic Acid Monoesters^{*a,b*}

^{*a*}Reaction condition from **Table 1**, entry 10, 0.2 mmol scale. ^{*b*} Isolated yield based on **1**.

Subsequently, we continued to evaluate the alkyne scope of the cascade reaction between diphenylphosphinic acid **1a** and a variety of alkynes **2**. As summarized in **Table 3**, various symmetric biaryl alkynes **2** were found to be compatible for the reactions and gave the desired products **3p-3v** in 25-71% yields. The electronic property of substituents on the benzene ring (e. g., -F, -Cl, -Me and *-t*-Bu) had no obvious influence on the reaction efficiency, and the corresponding products **3p-3u** were provided in moderate isolated yields (**Table 3**, 57-71% yields). Notably, the bromo-substituted substrate tolerated well in this reaction and gave the bromo-containing product **3v**, albeit in low yield (**Table 3**, 25% yield), which is usually incompatible in transition-metal-catalyzed reactions. As for unsymmetric alkynes, when the disubstituents on the phenyl rings of the diarylacetylenes were $-CF_3$ and $-CH_3$, -F and $-CH_3$, respectively, the desired products **3w** and **3w'**, **3x** and **3x'** were isolated as the mixtures of

regio-isomers in 47-75% yields, the pure regio-isomers can be isolated further by HPLC, and their major isomers 3w and 3x were unambiguously confirmed by X-ray single-crystal diffraction analysis.⁸ The observation of regioselectivity could be due to the distinctly biased electronic property on the alkynes. However, alkyl substituted alkynes, such as phenylacetylene, (2-phenylethynyl) trimethyl silane, phenyl prop-1-yne, and heterocycle-stituted alkynes, for example thiophene-substituted alkyne, are not active in the cascade reaction.

Table 3. Substrate Scope of Alkynes^{*a,b*}

^a Reaction condition from **Table 1**, entry 10, 0.2 mmol scale. ^b Isolated yield based on **1a**.

In order to demonstrate the potential synthetic application, a gram-scale reaction of 1a with 2a was performed under standard condition, the desired product **3a** was achieved in 46 % yield (0.90 g). To

The Journal of Organic Chemistry

gain further insight into the mechanism, when radical scavengers, such as TEMPO or BHT, were introduced to the model reaction of substrates **1a** and **2a** under standard condition, reaction efficiencies were partially inhibited, the desired compound **3a** was isolated in 15 % and 14% yield, respectively, without the observation of the products of phosphinyoxy radical being captured (**Scheme 2**).

The Luminescence quenching experiments showed that both **1a** with CsF, and diphenylacetylene **2a** could quench the excited photocatalyst ^{*}Acr⁺-MesClO₄⁻ (see **Supporting Information**). A cyclic voltammogram indicated the oxidation potential of **1a** in the presence of CsF is 1.67 V *vs* SCE, which indicated that phosphinate of **1a** could be oxidized to phosphinyloxy radical **B** through single-electron transfer (SET) by the excited photocatalyst ^{*}Acr⁺-Mes ClO₄⁻ ($E_{1/2red}$ [Acr⁺-Mes⁺/Acr⁺-Mes] = +2.06 V *vs*. SCE). Moreover, the pathway that the acridine excited species can oxidize diphenylacetylene ($E_{1/2red}$ = +1.86 V *vs*. SCE) to an alkyne radical cation *via* a SET process is also possible.

Scheme 2. Gram-scale reaction and experiments for the mechanistic study

On the basis of above observations (see **Supporting Information**) and some related literatures,^{7i-j, 11} we proposed plausible mechanism for the phosphinyloxy radical-mediated radical addition/cyclization cascade reaction (**Figure 2**). In situ-generated anionic intermediate **A** is initially oxidized to the key phosphinyloxy radical **B** by the photoexcited state photocatalyst ^{*}Acr⁺-MesClO₄⁻ *via* a SET process

(Path A), subsequent radical addition to alkyne and cyclization results in an aryl radical species and further oxidation by cobalt catalyst leads to the desired product **3**. The latter step may proceed through hydrogen atom abstraction (HAT) or electron/proton transfer sequence. The cobalt catalyst would act as the proton or electron reservoir, leading to hydrogen gas release. ^{7a, 7b, 7d, 11} However, the reduction of Co ^{III}-H to Co ^{II}-H, following by protonation to release H₂ or the homolytic cleavage involving two Co ^{III}-H to evolve hydrogen gas can not be ruled out. ^{11, 12} On the other hand, the pathway that diphenylacetylene $(E_{1/2red} = +1.86 \text{ V } vs. \text{ SCE})$ can be oxidized to an alkyne radical cation by the photoexcited state Acr⁺-MesClO₄⁻ $(E_{1/2red} [\text{Acr}-\text{Mes}^+/\text{Acr}-\text{Mes}] = +2.06 \text{ V } vs. \text{ SCE})$ through a SET process (Path B) is also possible.¹³

In conclusion, the first photoredox/cobalt-catalyzed phosphinyloxy radical addition/cyclization cascade for the synthesis of phosphaisocoumarins with high atom economy under ambient temperature was developed. This method has advantages of mild condition, with no use of any sacrificial oxidant as well as wide substrate scopes, which will inspire the application of phosphinyloxy radical mediated synthetic transformations by visible light irradiation for the synthesis of structurally diversity phosphorus heterocycles.

Experimental Section

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. The solvents used were purified by distillation over the drying agents. All of the

reactions were monitored by analytical thin layer chromatography (TLC) on silica gel plates using UV light as visualizing agent (if applicable). Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on 400/600 MHz spectrophotometers. Chemical shifts are reported in delta (δ (ppm)) units in parts per million (ppm) relative to the singlet (0 ppm) for tetramethylsilane (TMS). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C{¹H}NMR spectra were recorded on Varian Mercury 400 (100 MHz) with complete proton decoupling spectrophotometers (CDCl₃: 77.0 ppm). HRMS was recorded on Bruker ultrafleXtreme MALDITOF/TOF mass spectrometer. All of the reactions were carried out using a schlenk borosilicate reaction tube (10 mL) flask without special photochemical equipment. There is 5.0 cm distance between the reactor and LEDs. The cobalt complexes Co(dmgH)₂(4-NMe₂Py)Cl, Co(dmgH)₂(4-CO₂MePy)Cl, Co(dmgH)₂(4-CONEt₂Py)Cl and [Co(dmgH)₂Py₂]PF₆ were prepared according to the reported procedure.^[14]

All alkynes **2** are known compounds, which were synthesized according to the reported method.^[15] *I*-*Methyl-4-[(p-tolyl) ethynyl] benzene (2r)*(known compound).^[15] A white solid; yield 670 mg (65%); mp 137 - 139 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.41 (d, *J* = 7.7 Hz, 4H), 7.14 (d, *J* = 7.6 Hz, 4H), 2.35 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 138.1, 131.4, 129.1, 120.3, 88.8, 21.6.

All diarylphosphinic acids **1** are known compounds, which were synthesized according to the reported method ^[16]. *Bis (4-tert-butyl) phenylphosphinic acid (1d)*(known compound).^[16] A white solid; yield 908 mg (55%); mp 200 - 202 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.58 (s, 1H), 7.67 (dd, *J* = 12.2, 8.1 Hz, 4H), 7.38 (dd, *J* = 8.4, 3.1 Hz, 4H), 1.29 (s, 18 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 155.0 (d, *J*_{C-P} = 2.5 Hz), 131.1 (d, *J*_{C-P} = 10.9 Hz), 129.8 (d, *J*_{C-P} = 141.6 Hz), 125.2 (d, *J*_{C-P} = 13.0 Hz), 34.9, 31.1.

Arylphosphonic mono-ester were synthesized according to the reported procedure ^[5c]. Except for **1g**, **1i**, **11**, **1m** and **1o** are new compounds, other arylphosphonic mono-esters are kown compounds.

(4-Methoxy phenyl) phosphonic acid monoethyl ester (**1***j*)(known compound).^[5c] A yellow oil; yield 71.3 mg (66 %). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 11.56 (s, 1H), 7.76-7.63 (m, 2H), 6.99-6.78 (m, 2H), 4.14-3.93 (m, 2H), 3.82 (s, 3H), 1.27 (q, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 162.6 (d, J_{C-P} =3.3 Hz), 133.2 (d, J_{C-P} =11.5 Hz), 120.0 (d, J_{C-P} = 199.7 Hz), 113.8 (d, J_{C-P} = 16.2 Hz), 61.7 (d, J_{C-P} = 5.7 Hz), 55.2, 16.1 (d, J_{C-P} = 6.9 Hz).

(4-Methyl phenyl) phosphonic acid monoethyl ester (**1g**). A yellow oil; yield 750 mg (75%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 11.40 (s, 1H), 7.68 (dd, J = 13.5, 7.7 Hz, 2H), 7.20 (dd, J = 8.0, 3.9 Hz, 2H), 4.06-3.99 (m, 2H), 2.35 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 142.5 (d, $J_{C-P} = 3.2$ Hz), 131.2 (d, $J_{C-P} = 10.6$ Hz), 128.9 (d, $J_{C-P} = 15.6$ Hz), 125.4 (d, $J_{C-P} = 194.7$ Hz), 61.7 (d, $J_{C-P} = 5.6$ Hz), 21.4, 16.1 (d, $J_{C-P} = 6.8$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 20.2$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₉H₁₄O₃P: 201.0675; found: 201.0645.

(4-tert-Butyl phenyl) phosphonic acid monoethyl ester (1i). A yellow oil; yield 872 mg (72%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 11.54 (s, 1H), 7.75 (s, 2H), 7.48-7.44 (m, 2H), 4.14-4.04 (m, 2H), 1.33-1.23 (m, 12H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 155.6, 131.2 (d, J_{C-P} =10.6 Hz), 125.5 (d, J_{C-P} = 195.0 Hz), 125.3 (d, J_{C-P} = 15.5 Hz), 61.7 (d, J_{C-P} = 5.3 Hz), 34.9, 31.0, 16.1 (d, J_{C-P} = 6.9 Hz). ³¹P NMR (162 MHz, CDCl₃): δ = 20.9. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₂H₂₀O₃P: 243.1145; found: 243.1115.

(3,5-Dimethylphenyl) phosphonic acid monoethyl ester (11). A yellow oil; yield 674 mg (63%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 12.19 (s, 1H), 7.42 (d, J = 14.0 Hz, 2H), 7.14 (s, 1H), 4.10-4.03 (m, 2H), 2.32 (s, 6H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 137.9 (d, $J_{C-P} = 16.0$ Hz), 133.9 (d, $J_{C-P} = 3.4$ Hz), 128.2 (d, $J_{C-P} = 191.1$ Hz), 128.8 (d, $J_{C-P} = 10.0$ Hz), 61.8 (d, $J_{C-P} = 5.8$ Hz), 21.1, 16.1 (d, $J_{C-P} = 6.7$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 21.1$. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₀H₁₆O₃P: 215.0832; found: 215.0802.

[4-(*Trifluoromethyl*)phenyl]phosphonic acid monoethyl ester (**1m**). A yellow oil; yield 851 mg (67 %). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 10.75 (s, 1H), 7.91 (dd, *J* = 13.4, 7.9 Hz, 2H), 7.68 (dd, *J* = 8.3, 3.5 Hz, 2H), 4.13-4.04 (m, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 133.9-133.6 (m), 131.8 (d, *J*_{C-P} = 10.5 Hz), 125.3 -125.1 (m), 123.5 (d, *J*_{C-F} = 271.3 Hz), 62.5 (d, *J*_{C-P} = 5.9 Hz), 16.1 (d, *J*_{C-P} = 6.7 Hz). ³¹P NMR (162 MHz, CDCl₃): δ = 17.03. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₉H₁₁F₃O₃P: 255.0392; found: 255.0388.

[3-(Trifluoromethyl)phenyl]phosphonic acid monoethyl ester (**1o**). A yellow oil; yield 991 mg (78 %). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 11.84 (s, 1H), 8.06 (d, *J* = 14.0 Hz, 1H), 7.98 (dd, *J* = 13.4, 7.7 Hz, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.57 (td, *J* = 7.8, 3.8 Hz, 1H), 4.13-4.05 (m, 2H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 134.6 (d, *J*_{C-P} = 10.0 Hz), 131.1-130.6 (m), 130.2 (d, *J*_{C-P} = 194.5 Hz), 128.9, 128.2-128.1 (m), 123.6 (d, *J*_{C-F} = 271.4 Hz), 62.5 (d, *J*_{C-P} = 5.9 Hz), 16.1 (d, *J*_{C-P} *P* = 6.7 Hz). ³¹P NMR (162 MHz, CDCl₃): δ = 16.70. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₉H₁₁F₃O₃P: 255.0392; found: 255.0366.

General procedure for the synthesis of 3a-3x.

1a (0.2 mmol), **2a** (0.4 mmol), $Acr^+-MesClO_4^-$ (2.5 mg, 0.006 mmol), $[Co(dmgH)_2]PyCl$ (6.5 mg, 0.016 mmol) and CsF (46 mg, 0.3 mmol) were dissolved in CHCl₃/H₂O (2 mL, *V/V* = 4:1). Then, the resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times) under argon atmosphere. After that, the solution was stirred at a distance of ~5 cm from a 6 W blue LEDs (450-460 nm) at ambient temperature for 24 h. Then another $Acr^+-MesClO_4^-$ (2.5 mg, 0.006 mmol) was added and stirred at under irradiation of 6 W blue LEDs until the reaction was completed, as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 3:1) directly to give the desired product **3**.

1,3,4-Triphenyl-1H-2,1-benzoxaphosphorin-1-oxide (**3a**)(known compound). ^[5a] A light yellow solid; yield 56.80 mg (72%); mp 143 - 145 °C. IR (in KBr): 3132, 1489, 1245, 1122, 945, 731 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.97 - 7.91 (m, 2H), 7.62 - 7.56 (m, 2H), 7.54 - 7.49 (m, 2H), 7.43 (t, J =7.8 Hz, 1H), 7.40 - 7.30 (m, 4H), 7.30 - 7.25 (m, 2H), 7.25 - 7.20 (m, 2H), 7.17 - 7.10 (m, 2H), 7.09 -7.04 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 146.8 (d, $J_{C-P} = 11.0$ Hz), 138.6 (d, $J_{C-P} =$ 5.3 Hz), 136.0, 134.6 (d, $J_{C-P} = 5.1$ Hz), 132.9 (d, $J_{C-P} = 2.9$ Hz), 132.4 (d, $J_{C-P} = 2.5$ Hz), 132.3 (d, $J_{C-P} =$ = 11.0 Hz), 131.5, 130.2 (d, $J_{C-P} = 12.3$ Hz), 129.9 (d, $J_{C-P} = 144.3$ Hz) , 129.1, 128.9, 128.6, 128.4 (d, $J_{C-P} = 3.6$ Hz), 127.8, 127.6, 127.5, 126.7 (d, $J_{C-P} = 9.5$ Hz), 123.1 (d, $J_{C-P} = 128.8$ Hz), 119.1 (d, $J_{C-P} =$ 11.0 Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 24.6$. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₂₆H₂₀O₂P: 395.1195; found: 395.1182.

6-Methyl-1-(4-methylphenyl)-3,4-diphenyl-1H-2,1-benzoxa-phosphorin 1-oxide (**3b**). A yellow solid; yield 41.40 mg (49%); mp 200 - 202 °C. IR (in KBr): 3138, 2975, 1601, 1480, 1236, 1121 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.88 - 7.78 (m, 2H), 7.44 - 7.31 (m, 7H), 7.28 - 7.25 (m, 2H), 7.23 - 7.20 (m, 2H), 7.15 - 7.05 (m, 3H), 6.95 - 6.91 (dd, J = 8.3, 5.1 Hz, 1H), 2.44 (s, 3H), 2.31 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 146.2 (d, $J_{C-P} = 11.0$ Hz), 143.6 (d, $J_{C-P} = 2.9$ Hz), 137.8 (d, $J_{C-P} = 22.9$ Hz), 136.3, 136.0 (d, $J_{C-P} = 5.3$ Hz), 134.8 (d, $J_{C-P} = 5.1$ Hz), 133.3 (d, $J_{C-P} = 11.0$ Hz), 132.3 (d, $J_{C-P} = 11.5$ Hz), 131.6, 130.4 (d, $J_{C-P} = 12.2$ Hz), 130.0 ($J_{C-P} = 101.2$ Hz), 129.3 (d, $J_{C-P} = 3.8$ Hz), 129.0, 128.8, 128.2, 127.7, 127.5, 126.8 (d, $J_{C-P} = 10.0$ Hz), 123.2 (d, $J_{C-P} = 128.2$ Hz), 119.0 (d, $J_{C-P} = 10.9$ Hz), 21.7 (d, J = 1.4 Hz), 21.1. ³¹P NMR (162 MHz, CDCl₃): δ = 25.3. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₈H₂₄O₂P: 423.1508; found: 423.1504.

8-*Methyl-1-(2-methylphenyl)-3,4-diphenyl-1H-2,1-benzoxa-phosphorin 1-oxide (3c)*(known compound). ^[5a] A white solid; yield 42.24 mg (50%); mp 125 - 127 °C. IR (in KBr): 3131, 2926, 1622, 1488, 1245, 1090 cm^{-1.} ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.76 (dd, *J* = 15.6, 7.7 Hz, 1H), 7.64 - 7.61 (m, 1H), 7.42 - 7.23 (m, 3H), 7.20 - 7.09 (m, 6H), 7.07 - 7.03 (m, 4H), 6.86 (d, *J* = 7.6 Hz, 2H), 2.23 (s, 3H), 1.66 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 146.8 (d, *J*_{C-P} = 9.9 Hz), 142.5 (d, *J*_{C-P} = 8.4 Hz), 138.3 (d, *J*_{C-P} = 2 Hz), 137.4 (d, *J*_{C-P} = 5.5 Hz), 137.1 (d, *J*_{C-P} = 2.7 Hz), 136.9, 135.1 (d, *J*_{C-P} = 3.5 Hz), 133.4 (d, *J*_{C-P} = 14.8 Hz), 132.9 (d, *J*_{C-P} = 2.8 Hz), 131.5 (d, *J*_{C-P} = 12.0 Hz), 130.8, 129.8 (d, *J*_{C-P} = 186.1 Hz), 128.9, 128.3, 128.1 (d, *J*_{C-P} = 3.7 Hz), 128.0, 127.5, 127.2, 126.5 (d, *J*_{C-P} = 4.2 Hz), 125.0 (d, *J*_{C-P} = 15 Hz), 124.5, 123.0 (d, *J*_{C-P} = 12.8 Hz), 22.9 (d, *J*_{C-P} = 1.5 Hz), 20.8 (d, *J*_{C-P} = 4.2 Hz). ³¹P NMR (162 MHz, CDCl₃): δ = 31.0. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₈H₂₄O₂P: 423.1508; found: 423.1516.

6-tert-Butyl-1-(4-tertiary butylphenyl)-3,4-diphenyl-1H-2,1-benzoxa-phosphorin 1-oxide (**3d**). A white solid; yield 55.72 mg (55%); mp 104 - 105 °C. IR (in KBr): 3132, 2968, 1633, 1400, 1233, 1090 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.84 (dd, J = 12.9, 8.0 Hz, 2H), 7.65 (d, J = 14.8 Hz, 1H), 7.57-7.45 (m, 3H), 7.37 (d, J = 6.6 Hz, 4H), 7.22 (d, J = 7.7 Hz, 2H), 7.16 -7.05 (m, 4H), 6.97 (dd, J = 8.6, 5.4 Hz,1H), 1.35 (s, 9H), 1.26 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 156.4 (d, $J_{C-P} = 2.9$ Hz), 151.0 (d, $J_{C-P} = 13.1$ Hz), 146.4 (d, $J_{C-P} = 11.0$ Hz), 136.4, 136.3 (d, $J_{C-P} = 5.6$ Hz), 134.9 (d, $J_{C-P} = 5.1$ Hz), 131.9 (d, $J_{C-P} = 11.4$ Hz), 131.6, 129.9 (d, $J_{C-P} = 2.7$ Hz), 125.6 (d, $J_{C-P} = 13.7$ Hz), 122.8 (d, $J_{C-P} = 128.0$ Hz), 118.9 (d, $J_{C-P} = 10.7$ Hz), 35.2, 34.8, 31.1 (d, $J_{C-P} = 6.2$ Hz). ³¹P NMR (162 MHz, CDCl₃) : $\delta = 25.9$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₄H₃₆O₂P: 507.2447; found: 507.2442.

6-Fluoro-1-(4-fluoro phenyl)-3,4-diphenyl-1H-2,1-benzoxa-phosphorin 1-oxide (3e). A white solid; yield 38.73 mg (45%); mp 175 - 177 °C. IR (in KBr): 3133, 2363, 1639, 1400, 1240, 1093, 949, 761 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.02 - 7.90 (m, 2H), 7.41 - 7.35 (m, 3H), 7.29 - 7.18 (m, 7H), 7.18 - 7.03 (m, 5H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 165.9 (dd, J_{C-F} = 253.7 Hz , J_{C-P} = 3.5 Hz), 161.4 (dd, J_{C-F} = 251.1 Hz , J_{C-P} = 19.8 Hz), 146.3 -146.2 (m), 135.1 (d, J_{C-P} = 21.7 Hz), 135.13,

 135.10, 134.9 - 134.8 (m), 134.3 (d, $J_{C-P} = 5.1$ Hz), 131.4, 129.6 (dd, $J_{C-F} = 11.2$ Hz, $J_{C-P} = 7.3$ Hz), 129.01, 128.96, 128.6, 128.0, 127.6, 125.8-125.9 (m), 124.5 (dd, $J_{C-F} = 19.2$ Hz, $J_{C-P} = 6.1$ Hz), 120.0 (dd, $J_{C-F} = 21.5$ Hz, $J_{C-P} = 2.7$ Hz), 118.6 (d, $J_{C-P} = 11.0$ Hz), 116.6 -116.0 (m). ³¹P NMR (162 MHz, CDCl₃): $\delta = 21.5$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₆H₁₈F₂O₂P: 431.1007; found: 431.1008.

7-*Trifluoromethyl* -1-(3-*trifluoromethyl* phenyl)-3,4-diphenyl-1H-2,1-benzoxa- phosphorin 1-oxide (**3f**). A colorless oil; yield 33.94 mg (32 %); IR (in KBr): 3131, 2361, 1637, 1401, 1248, 1131, 958, 752.cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.24 (d, *J* = 13.5 Hz, 1H), 8.12 (dd, *J* = 13.0, 7.6 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.73 - 7.64 (m, 2H), 7.59 (d, *J* = 7.7 Hz, 1H), 7.41 (t, *J* = 3.4 Hz, 3H), 7.34 (d, *J* = 4.1 Hz, 1H), 7.31 - 7.26 (m, 2H), 7.24 - 7.21 (m, 2H), 7.18 (d, *J* = 6.4 Hz, 1H), 7.16 - 7.09 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 148.2 (d, *J*_{C-P}=11.1 Hz), 139.6 (d, *J*_{C-P}=5.8 Hz), 135.7 (d, *J*_{C-P} = 10.8 Hz), 134.7, 133.9 (d, *J*_{C-P} = 4.2 Hz), 131.6 (d, *J*_{C-P} = 6.0 Hz), 131.4 130.9 (d, *J*_{C-P}=12.8 Hz), 129.8, 129.5, 129.4, 129.3, 129.1, 128.5, 127.8, 127.2 (d, *J*_{C-F} = 114.1 Hz), 125.9 (d, *J*_{C-P} = 128.7 Hz), 124.5, 124.3 - 124.2 (m), 124.1-124.0 (m), 123.8 - 123.6 (m), 122.1 (d, *J*_{C-P} = 2.3 Hz), 118.8 (d, *J*_{C-P} = 11.0 Hz). ³¹P NMR (162 MHz, CDCl₃): δ = 20.8. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₈H₁₈F₆O₂P: 531.0943; found: 531.0916.

5-*Trifluoromethyl* -1-(3-*trifluoromethyl* phenyl)-3,4-diphenyl-1H-2,1-benzoxa-phosphorin 1-oxide (**3***f*^{*}). A white solid; yield 38.19 mg (36 %); mp 211 - 213 °C. IR (in KBr): 3131, 2361, 1635, 1400, 1249, 1130, 968, 732.cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.16 (dd, *J* = 13.6, 8.8 Hz, 2H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.72 - 7.65 (m, 2H), 7.60 (t, *J* = 8.1 Hz, 1H), 7.42 (t, *J* = 3.4 Hz, 3H), 7.36 (dd, *J* = 8.3, 3.4 Hz, 1H), 7.32 - 7.27 (m, 2H), 7.18 (d, *J* = 7.6 Hz, 3H), 7.12 (d, *J* = 7.3 Hz, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 146.7 (d, *J*_{C-P} = 10.7 Hz), 141.3 (d, *J*_{C-P} = 3.2 Hz), 135.8 (d, *J*_{C-P} = 11.1 Hz), 135.7, 133.6 (d, *J*_{C-P} = 4.7 Hz), 132.4 (d, *J*_{C-P} = 2.1 Hz), 131.8 (d, *J*_{C-P} = 8.8 Hz), 131.5, 131.4 (d, *J*_{C-P} = 8.3 Hz), 130.9 (d, *J*_{C-P} = 32.7 Hz), 130.7 (d, *J*_{C-P} = 32.7 Hz), 129.7-129.6 (m), 129.3, 129.0, 128.9, 128.8, 128.7, 128.3, 127.7, 126.4-126.2 (m), 123.6 (dd, *J*_{C-P} = 21.4 Hz), 120.9 (d, *J*_{C-P} = 124.0 Hz), 119.5 (d, *J*_{C-P} = 11.5 Hz). ³¹P NMR (162 MHz, CDCl₃): δ = 19.1. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₂₈H₁₈F₆O₂P: 531.0943; found: 531.0927.

3,4-Diphenyl-1-ethoxy-6-methylbenz[c-1,2]oxaphosphinine 1-oxide (3g). A yellow oil; yield 41.40 mg (55%); IR (in KBr): 3131, 1633, 1401, 1161, 1040, 957, 757. cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.82-7.72 (m, 1H), 7.40 - 7.30 (m, 3H), 7.29 (s, 1H), 7.24 - 7.10 (m, 7H), 6.85 (dd, J = 8.2, 6.6 Hz, 1H), 4.33 - 4.16 (m, 2H), 2.42 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm)= 147.0 (d, $J_{C-P} = 9.0$ Hz), 137.9 (d, $J_{C-P} = 15.3$ Hz), 137.6 (d, $J_{C-P} = 6.8$ Hz), 136.2, 134.6 (d, $J_{C-P} = 5.7$ Hz), 133.7 (d, $J_{C-P} = 2.4$ Hz), 131.5, 129.6 (d, $J_{C-P} = 9.1$ Hz), 128.9, 128.8, 128.4, 127.8, 127.6, 127.2 (d, $J_{C-P} = 12.4$ Hz), 120.7 (d, $J_{C-P} = 170.0$ Hz), 119.8 (d, $J_{C-P} = 14$ Hz), 62.9 (d, $J_{C-P} = 6.7$ Hz),

21.1, 16.5 (d, J = 6.1 Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 11.1$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₂O₃P: 377.1301; found: 377.1294.

 3,4-Diphenyl-1-ethoxy-6-acetylbenz[c-1,2]oxaphosphinine 1-oxide (**3h**)(known compound). ^[5a] A yellow oil; yield 43.67 mg (54%); IR (in KBr): 3132, 2926, 2362, 1686, 1401, 1290, 1180, 1026, 954, 756 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.50 (dd, J = 15.5, 1.9 Hz, 1H), 8.05 (d, J = 8.5 Hz, 1H), 7.39 (s, 1H), 7.38 (d, J = 4.0 Hz, 2H), 7.30 - 7.23 (m, 4H), 7.24 - 7.14 (m, 3H), 7.07 (dd, J = 8.5, 6.1 Hz, 1H), 4.38 - 4.24 (m, 2H), 2.65 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 196.2, 149.9 (d, $J_{C-P} = 10.8$ Hz), 144.2 (d, $J_{C-P} = 7.0$ Hz), 135.6, 135.5 (d, $J_{C-P} = 1.6$ Hz), 134.0 (d, $J_{C-P} = 5.5$ Hz), 132.1, 131.4, 129.9 (d, $J_{C-P} = 9.8$ Hz), 129.1, 128.9, 128.2, 127.8, 127.4 (d, $J_{C-P} = 10.2$ Hz), 127.1, 121.1 (d, $J_{C-P} = 182.0$ Hz), 119.6 (d, $J_{C-P} = 11.3$ Hz), 63.4 (d, $J_{C-P} = 6.7$ Hz), 26.6, 16.5 (d, $J_{C-P} = 5.9$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 9.5$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₄H₂₂O₄P: 405.1250; found: 405.1245.

3,4-Diphenyl-1-ethoxy-6- tert-butylbenz[c-1,2]oxaphosphinine 1-oxide (**3i**). A white solid; yield 35.15 mg (42%); mp 140 - 141 °C. IR (in KBr): 3132, 2362, 1634, 1478, 1401, 1268, 1169, 1052, 951, 752 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.96 (dd, J = 15.9, 2.2 Hz, 1H), 7.51 (dd, J = 8.3, 2.2 Hz, 1H), 7.40 - 7.30 (m, 3H), 7.28 - 7.08 (m, 7H), 6.90 (dd, J = 8.5, 6.8 Hz, 1H), 4.28 - 4.23 (m, 2H), 1.33 (d, J = 10.4 Hz, 12H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 151.1 (d, $J_{C-P} = 14.6$ Hz), 147.1 (d, $J_{C-P} = 10.8$ Hz), 137.6 (d, $J_{C-P} = 6.9$ Hz), 136.2 (d, $J_{C-P} = 1.5$ Hz), 134.5 (d, $J_{C-P} = 5.7$ Hz), 131.4, 130.2 (d, $J_{C-P} = 3.1$ Hz), 128.8, 128.7, 128.4, 127.8, 127.6, 127.0 (d, $J_{C-P} = 12.9$ Hz), 125.8 (d, $J_{C-P} = 2.4$ Hz), 120.6 (d, $J_{C-P} = 152.6$ Hz), 119.7 (d, $J_{C-P} = 11.7$ Hz), 62.8 (d, $J_{C-P} = 7.0$ Hz), 34.9, 31.1, 16.4 (d, $J_{C-P} = 6.1$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 11.4$. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₂₆H₂₈O₃P: 419.1771; found: 419.1771.

3,4-Diphenyl-1-ethoxy-6- methoxybenz[c-1,2]oxaphosphinine 1-oxide (**3***j*) (known compound). ^[5b] A yellow solid; yield 24.32 mg (31%); mp 95 - 97 °C. IR (in KBr): 3131, 2361, 1631, 1401, 1236, 1150, 1063, 948, 756 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.46 (d, J = 2.8 Hz, 1H), 7.42 (d, J = 2.8 Hz, 1H), 7.38 -7.30 (m, 3H), 7.21 (dd, J = 8.5, 4.0 Hz, 3H), 7.17 - 7.11 (m, 3H), 7.00 (dd, J = 8.9, 2.8 Hz, 1H), 6.89 (dd, J = 9.0, 7.2 Hz, 1H), 4.32 - 4.19 (m, 2H), 3.88 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 158.8 (d, $J_{C-P} = 19.0$ Hz), 145.8 (d, $J_{C-P} = 10.6$ Hz), 136.3, 134.5 (d, $J_{C-P} = 5.6$ Hz), 133.1 (d, $J_{C-P} = 6.2$ Hz), 131.4, 129.1(d, $J_{C-P} = 3.0$ Hz), 119.7 (d, $J_{C-P} = 11.5$ Hz), 112.5 (d, $J_{C-P} = 10.2$ Hz), 63.0 (d, $J_{C-P} = 6.6$ Hz), 55.7, 16.4 (d, $J_{C-P} = 6.0$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 10.6$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₂O₄P: 393.1250; found: 393.1253.

 3,4-Diphenyl-1-ethoxy-6-fluorobenz[c-1,2] oxaphosphinine 1-oxide (**3k**) (known compound).^[5b] A yellow oil; yield 26.62 mg (35%); IR (in KBr): 3132, 2362, 1634, 1477, 1401, 1083, 958, 785 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.66 - 7.60 (m, 1H), 7.37 - 7.35 (m, 3H), 7.25 - 7.10 (m, 8H), 6.99 - 6.94 (m, 1H), 4.36 - 4.18 (m, 2H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 162.6 (d, *J*_{C-P} = 21.7 Hz), 160.1 (d, *J*_{C-P} = 21.7 Hz), 147.1 (d, *J*_{C-P} = 3.1 Hz), 136.5 (dd, *J*_{C-P} = 5.9 Hz, *J*_{C-F} = 2.8 Hz), 135.8, 134.2 (d, *J*_{C-F} = 5.9 Hz), 131.4, 129.8 (dd, *J*_{C-P} = 14.0 Hz, *J*_{C-F} = 7.3 Hz), 129.0, 128.7, 128.6, 128.0, 127.7, 120.2 (dd, *J*_{C-F} = 20.7 Hz, *J*_{C-P} = 2.1 Hz), 118.2 (*J*_{C-P} = 211.6 Hz), 115.8 (dd, *J*_{C-F} = 22.8 Hz, *J*_{C-F} = 9.2 Hz), 63.3 (d, *J*_{C-P} = 6.3 Hz), 16.4 (d, *J*_{C-P} = 5.8 Hz). ³¹P NMR (162 MHz, CDCl₃): δ = 8.7. HRMS (ESI-TOF) *m*/z: [M + H]⁺ calcd for C₂₂H₁₉FO₃P: 381.1050; found: 381.1051.

3,4-Diphenyl-1-ethoxy-5-methyl-7-methylbenz[c-1,2]-oxaphosphinine 1-oxide (3l). A white solid; yield 49.19 mg (63%); mp 128 -130 °C. IR (in KBr): 3133, 2989, 1401, 1256, 1027, 961, 767 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.40 - 7.29 (m, 3H), 7.20 (dd, J = 7.0, 3.3 Hz, 3H), 7.16 - 7.09 (m, 4H), 7.04 (d, J = 4.3 Hz, 1H), 6.58 (d, J = 5.7 Hz, 1H), 4.33 - 4.14 (m, 2H), 2.73 (d, J = 1.8 Hz, 3H), 2.21 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 147.2 (d, $J_{C-P} = 10.4$ Hz), 142.9 (d, $J_{C-P} = 2.3$ Hz), 141.1 (d, $J_{C-P} = 9.9$ Hz), 141.08, 136.6, 134.6 (d, $J_{C-P} = 5.8$ Hz), 131.6, 131.1, 130.9, 128.8, 128.3, 127.7, 127.5, 125.7 (d, $J_{C-P} = 12.3$ Hz), 119.4 (d, $J_{C-P} = 11.5$ Hz), 116.4 (d, $J_{C-P} = 178.6$ Hz), 62.6 (d, $J_{C-P} = 6.9$ Hz), 21.7, 21.4, 16.4 (d, $J_{C-P} = 5.8$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 10.8$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₄H₂₄O₃P: 391.1458; found: 391.1463.

3,4-Diphenyl-1-ethoxy-6-trifluoromethylbenz[c-1,2]oxaphosphinine 1-oxide (**3m**). A yellow oil; yield 71.43 mg (83%); IR (in KBr): 3131, 1601, 1488, 1271, 1241, 1026, 955, 756 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.20 (dd, J = 15.3, 2.0 Hz, 1H), 7.68 (d, J = 8.5 Hz, 1H), 7.44 - 7.32 (m, 3H), 7.29 - 7.13 (m, 7H), 7.09 (dd, J = 8.5, 6.0 Hz, 1H), 4.41- 4.22 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm)= 149.7 (d, $J_{C-P} = 10.3$ Hz), 143.4 (d, $J_{C-P} = 7.0$ Hz), 135.4, 133.9 (d, $J_{C-P} = 5.7$ Hz), 129.7, 129.6, 129.3, 129.1 (d, $J_{C-P} = 9.8$ Hz), 128.9, 128.3, 127.8, 127.6. 127.5, 126.5 - 126.6 (m), 124.8, 121.6 (d, $J_{C-F} = 182.8$ Hz), 119.3 (d, $J_{C-P} = 11.4$ Hz), 63.5 (d, $J_{C-P} = 6.6$ Hz), 16.5 (d, $J_{C-P} = 5.8$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 8.5$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₃H₁₉F₃O₃P: 431.1018; found: 431.1019.

3,4-Diphenyl-1-ethoxybenz[c-1,2]oxaphosphinine 1-oxide (**3n**) (known compound). ^[5a] A yellow solid; yield 34.06 mg (47%); mp 124 -126 °C. IR (in KBr): 3132, 1606, 1467, 1441, 1269, 1025, 950, 761 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.98 - 7.92 (m, 1H), 7.50 - 7.41 (m, 2H), 7.39 - 7.31 (m, 3H), 7.30 - 7.09 (m, 7H), 7.02 - 6.93 (m, 1H), 4.39 - 4.15 (m, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 147.8 (d, *J*_{C-P} = 10.3 Hz), 140.1 (d, *J*_{C-P} = 6.8 Hz), 136.0 (d, *J*_{C-P} = 1.2 Hz), 134.4 (d, *J*_{C-P} = 5.5 Hz), 132.8 (d, *J*_{C-P} = 2.5 Hz), 131.5, 129.3 (d, *J*_{C-P} = 8.9 Hz), 128.8, 128.7, 128.5, 127.8, 127.6, 127.5, 127.1 (d, $J_{C-P} = 12$ Hz), 120.8 (d, $J_{C-P} = 180.5$ Hz), 119.8 (d, $J_{C-P} = 11.8$ Hz), 63.0 (d, $J_{C-P} = 6.6$ Hz), 16.4 (d, $J_{C-P} = 5.8$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 10.6$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₀O₃P: 363.1145; found: 363.1146.

3,4-Diphenyl-1-ethoxy-7-trifluoromethylbenz[c-1,2]oxaphosphinine 1-oxide (**3o**). A white solid; yield 29.26 mg (34%); mp 124 -127 °C. IR (in KBr): 3130, 1634, 1401, 1265, 1237, 1033, 973, 696 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.07 (dd, J = 14.6, 7.9 Hz, 1H), 7.67 (dd, J = 7.7, 2.4 Hz, 1H), 7.45 - 7.30 (m, 3H), 7.28 - 7.09 (m, 8H), 4.35 - 4.25 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 149.2 (d, $J_{C-P} = 10.5$ Hz), 141.1 (d, $J_{C-P} = 7.0$ Hz), 135.0, 134.0 (d, $J_{C-P} = 5.6$ Hz), 131.3, 130.1, 130.0, 129.2, 129.0, 128.8, 128.4, 127.8, 125.0 (d, $J_{C-F} = 73.4$ Hz), 124.1-123.9 (m), 123.8 -123.5 (m), 121.9, 119.3 (d, J = 11.6 Hz), 63.5 (d, $J_{C-P} = 6.6$ Hz), 16.5 (d, $J_{C-P} = 5.8$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 8.3$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₃H₁₉F₃O₃P: 431.1018; found: 431.1021.

3,4-Diphenyl-1-ethoxy-5-trifluoromethylbenz[c-1,2] oxaphosphinine 1-oxide (**30**'). A white solid; yield 24.09 mg (28%); mp 179 -180 °C. IR (in KBr): 3132, 1621, 1400, 1267, 1214, 1020, 971, 757 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.74 (dd, *J* = 7.8, 4.8 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 1H), 7.39 -7.35 (m, 3H), 7.25 -7.14 (m, 8H), 4.47- 4.33 (m, 2H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 148.0 (d, *J*_{C-P} = 10.3 Hz), 142.5 (d, J = 4.5 Hz), 135.9, 133.8 (d, *J*_{C-P} = 5.5 Hz), 132.0, 131.5, 131.2 (d, *J*_{C-P} = 10.3 Hz), 129.1, 128.9, 128.7, 128.2, 127.7, 125.8-125.6 (m), 123.3 (dd, *J*_{C-P} = 6.1 Hz). ³¹P NMR (162 MHz, CDCl₃): δ = 5.6. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₂₃H₁₉F₃O₃P: 431.1018; found: 431.1020.

3,4-Bis(4-tert-butylphenyl)-1-phenyl-1H-2,1-benzoxaphosphorin 1-oxide (**3p**). A white solid; yield 71.94 mg (71%); mp 113 - 115 °C. IR (in KBr): 3130, 2961, 1608, 1244, 1060, 744 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.00 - 7.89 (m, 2H), 7.63 - 7.57 (m, 2H), 7.51 (m, J = 7.6, 3.7 Hz, 2H), 7.43 (dd, J = 16.0, 8.0 Hz, 3H), 7.31 (dd, J = 7.5, 2.9 Hz, 1H), 7.23 - 7.18 (m, 2H), 7.19 - 7.12 (m, 2H), 7.13 - 7.05 (m, 3H), 1.37 (s, 9H), 1.22 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 151.2 (d, $J_{C-P} = 57.7$ Hz), 146.8 (d, $J_{C-P} = 11.0$ Hz), 139.1 (d, $J_{C-P} = 5.3$ Hz), 133.1, 132.7 (d, $J_{C-P} = 2.7$ Hz), 132.4, 132.3, 131.8 (d, $J_{C-P} = 5.2$ Hz), 131.2, 130.3 (d, $J_{C-P} = 144.2$ Hz), 130.2 (d, $J_{C-P} = 12.2$ Hz), 128.7, 128.6, 128, 127.3 (d, $J_{C-P} = 14.3$ Hz), 126.9 (d, $J_{C-P} = 9.5$ Hz), 125.8, 124.4, 123.0 (d, $J_{C-P} = 128.8$ Hz), 118.5 (d, $J_{C-P} = 10.8$ Hz), 34.7, 34.5, 31.4, 31.1. ³¹P NMR (162 MHz, CDCl₃): $\delta = 24.3$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₄H₃₆O₂P: 507.2447; found: 507.2442.

3,4-Bis(3,5-dimethylphenyl)-1-phenyl-1H-2,1-benzoxaphosphorin 1-oxide (3q). a white solid; yield 62.17 mg (69%); mp 80 - 81 °C. IR (in KBr): 3131, 2917, 2361, 1598, 1401, 1244, 1123, 905, 730 cm⁻¹.

 ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.97 - 7.87 (m, 2H), 7.65 - 7.57 (m, 2H), 7.56 - 7.39 (m, 4H), 7.29 (s, 1H), 7.07 (dd, J = 8.2, 4.7 Hz, 1H), 7.00 (s, 1H), 6.90 (d, J = 10.7 Hz, 4H), 2.30 (s, 6H), 2.11 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 146.8 (d, $J_{C-P} = 11.1$ Hz), 139.1 (d, $J_{C-P} = 5.4$ Hz), 136.7, 135.9, 134.4 (d, $J_{C-P} = 7.0$ Hz), 132.8 (d, $J_{C-P} = 2.9$ Hz), 132.4 (d, $J_{C-P} = 2.6$ Hz), 132.3, 132.2, 131.0, 130.2, 130.1 (d, $J_{C-P} = 2.7$ Hz), 129.6, 129.2 (d, $J_{C-P} = 3.3$ Hz), 128.5 (d, $J_{C-P} = 13.9$ Hz), 127.3 (d, $J_{C-P} = 14.3$ Hz), 127.0, 126.9, 123.0 (d, $J_{C-P} = 128.8$ Hz), 118.9 (d, $J_{C-P} = 10.8$ Hz), 21.2, 21.1. ³¹P NMR (162 MHz, CDCl₃): $\delta = 24.3$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₀H₂₈O₂P: 451.1821; found: 451.1806.

3,4-Bis(4-methylphenyl)-1-phenyl-1H-2,1-benzoxaphosphorin 1-oxide (**3r**) (known compound).^[5a] A yellow solid; yield 48.16 mg (57%); mp 222 - 224 °C. IR (in KBr): 3139, 2363, 1639, 1401, 1237, 1057, 944, 739 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.92 (dd, J = 13.2, 7.7 Hz, 2H), 7.65 - 7.55 (m, 2H), 7.54 - 7.46 (m, 2H), 7.42 (t, J = 7.5 Hz, 1H), 7.31 (t, J = 6.8 Hz, 1H), 7.23 - 7.11 (m, 6H), 7.09 - 7.01 (m, 1H), 6.90 (t, J = 11.5 Hz, 2H), 2.38 (s, 3H), 2.23 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 146.9 (d, $J_{C-P} = 11.0$ Hz), 139.0 (d, $J_{C-P} = 5.2$ Hz), 138.4, 137.4, 133.1, 132.9 (d, $J_{C-P} = 2.6$ Hz), 132.4 (d, $J_{C-P} = 2.6$ Hz), 132.3 (d, $J_{C-P} = 5.2$ Hz), 131.9 (d, $J_{C-P} = 5.2$ Hz), 131.4, 131.0, 130.2 (d, $J_{C-P} = 12.3$ Hz), 129.7, 129.5 (d, $J_{C-P} = 13.4$ Hz), 128.6 (d, $J_{C-P} = 69.5$ Hz), 128.5 (d, $J_{C-P} = 11.0$ Hz), 21.3, 21.2. ³¹P NMR (162 MHz, CDCl₃) : $\delta = 24.4$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₈H₂₄O₂P: 423.1508; found: 423.1510.

3,4-Bis(2-methylphenyl)-1-phenyl-1H-2,1-benzoxaphosphorin 1-oxide (3s). A white solid; yield 67.59 mg (80%); mp 76 - 77 °C. IR (in KBr): 3146, 2974, 2360, 1627, 1401, 1063, 948, 756 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.96 - 7.83 (m, 2H), 7.59 - 7.52 (m, 2H), 7.55 - 7.47 (m, 2H), 7.48 - 7.36 (m, 2H), 7.15 (d, J = 6.0 Hz, 2H), 7.10 - 7.03 (m, 5H), 6.95 - 6.78 (m, 2H), 2.40 (s, 3H), 2.17 (s, 1.7 H), 2.11 (s, 1.3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 148.5 (d, $J_{C-P} = 11.2$ Hz), 148.3 (d, $J_{C-P} = 11.1$ Hz), 137.9, 137.3, 137.7 (d, $J_{C-P} = 5.2$ Hz), 137.0 (d, $J_{C-P} = 4.5$ Hz), 134.8 (d, $J_{C-P} = 15.7$ Hz), 134.2 (d, $J_{C-P} = 4.5$ Hz), 133.0 (d, $J_{C-P} = 3.0$ Hz), 132.8, 132.6, 132.5, 131.9 (d, $J_{C-P} = 11.3$ Hz), 131.4, 131.3, 130.5 (d, $J_{C-P} = 11.6$ Hz), 130.4 (d, $J_{C-P} = 10.1$ Hz), 130.1, 130.0, 120.4 (d, $J_{C-P} = 88.1$ Hz), 129.4, 128.8, 128.5, 128.4, 128.0, 125.6, 124.9 (d, $J_{C-P} = 3.6$ Hz), 123.2 (d, $J_{C-P} = 128.5$ Hz), 122.5 (d, $J_{C-P} = 127.2$ Hz), 119.3 (d, $J_{C-P} = 11.3$ Hz), 118.4 (d, $J_{C-P} = 10.7$ Hz), 29.7, 20.0 (d, $J_{C-P} = 4.3$ Hz), 19.8. ³¹P NMR (162 MHz, CDCl₃): $\delta = 25.3$, 24.1. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₈H₂₄O₂P: 423.1508; found: 423.1509.

3,4-Bis(4-fluorophenyl)-1-phenyl-1H-2,1-benzoxaphosphorin 1-oxide (3t). A white solid; yield 60.25 mg (70%); mp 167 - 168 °C. IR (in KBr): 3133, 1619, 1507, 1401, 1226, 1059, 950, 743 cm⁻¹. ¹H NMR

 (400 MHz, CDCl₃) δ (ppm) = 7.93 (dd, J = 13.4, 7.5 Hz, 2H), 7.68 - 7.58 (m, 1H), 7.57 - 7.51 (m, 3H), 7.47 (t, J = 7.8 Hz, 1H), 7.36 (dd, J = 7.5, 2.8 Hz, 1H), 7.25 - 7.19 (m, 4H), 7.10 (t, J = 8.4 Hz, 2H), 7.03 (dd, J = 8.2, 4.8 Hz, 1H), 6.83 (t, J = 8.5 Hz, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 162.4 (d, $J_{C-F} = 248.6$ Hz), 161.3 (d, $J_{C-F} = 246.7$ Hz), 146.2 (d, $J_{C-P} = 10.8$ Hz), 133.3, 133.2, 133.1 (d, $J_{C-P} = 2.8$ Hz), 132.6 (d, $J_{C-P} = 2.5$ Hz), 132.5, 132.3, 131.8 (d, $J_{C-P} = 3.7$ Hz), 131.1 (d, $J_{C-P} = 8.3$ Hz), 130.4, 130.3, 128.6 (d, $J_{C-P} = 14.0$ Hz), 127.8 (d, $J_{C-P} = 14.5$ Hz), 126.5 (d, $J_{C-P} = 9.8$ Hz), 123.2 (d, $J_{C-P} =$ = 128.9 Hz), 118.2 (d, $J_{C-P} = 12.2$ Hz), 116.1 (d, $J_{C-F} = 21.1$ Hz), 114.8 (d, $J_{C-F} = 21.6$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 24.5$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₆H₁₈F₂O₂P: 431.1007; found: 431.1004.

3,4-Bis(4-chlorophenyl)-1-phenyl-1H-2,1-benzoxaphosphorin 1-oxide (**3u**) (known compound).^[5a] A white solid; yield 56.52 mg (61%); mp 90 - 93 °C. IR (in KBr): 3131, 1589, 1487, 1400, 1236, 1090, 948, 748 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.97 - 7.86 (m, 2H), 7.67 - 7.50 (m, 4H), 7.47 (t, J = 7.7 Hz, 1H), 7.46 - 7.38 (m, 3H), 7.21 (d, J = 7.9 Hz, 2H), 7.18 - 7.09 (m, 4H), 7.01 (dd, J = 8.2, 4.9 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 146.0 (d, $J_{C-P} = 10.9$ Hz), 137.9 (d, $J_{C-P} = 5.1$ Hz), 134.7, 134.2 (d, $J_{C-P} = 6.5$ Hz), 133.2 (d, $J_{C-P} = 2.9$ Hz), 133.0, 132.9, 132.6 (d, $J_{C-P} = 2.5$ Hz), 132.4 (d, $J_{C-P} = 11.1$ Hz), 130.5, 130.3, 130.1, 129.4, 128.7 (d, $J_{C-P} = 14.0$ Hz), 128.6, 128.0, 127.9 (d, $J_{C-P} = 14.3$ Hz), 126.6 (d, $J_{C-P} = 9.5$ Hz), 123.2 (d, $J_{C-P} = 128.9$ Hz), 118.5 (d, $J_{C-P} = 11.1$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 24.5$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₆H₁₈Cl₂O₂P: 463.0416; found: 463.0430.

3,4-Bis(4-bromophenyl)-1-phenyl-1H-2,1-benzoxaphosphorin 1-oxide (3v) (known compound).^[5a] A white solid; yield 27.61 mg (25%); mp 193 - 194 °C. IR (in KBr): 3132, 1633, 1400, 1239, 1072, 947, 746 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.89 - 7.79 (m, 2H), 7.60 - 7.50 (m, 1H), 7.47 (dd, J = 6.1, 4.1 Hz, 5H), 7.40 (t, J = 8.2 Hz, 1H), 7.33 - 7.27 (m, 1H), 7.23 - 7.17 (m, 2H), 7.08 (d, J = 7.9 Hz, 2H), 7.02 (d, J = 8.4 Hz, 2H), 6.94 (dd, J = 8.1, 4.8 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 146.0 (d, $J_{C-P} = 10.8$ Hz), 137.9 (d, $J_{C-P} = 5.1$ Hz), 134.7, 133.4 (d, $J_{C-P} = 5.1$ Hz), 133.2, 133.1, 132.7 (d, $J_{C-P} = 2.4$ Hz), 132.5, 132.4, 132.3, 131.0, 130.4 (d, $J_{C-P} = 12.4$ Hz), 123.6 (d, $J_{C-P} = 14.1$ Hz), 128.0 (d, $J_{C-P} = 14.4$ Hz), 126.6 (d, $J_{C-P} = 9.4$ Hz), 123.2 (d, $J_{C-P} = 128.8$ Hz), 123.1, 122.3, 118.6 (d, $J_{C-P} = 11.1$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 24.6$. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₆H₁₈Br₂O₂P: 550.9406; found: 550.9408.

According to the general procedure, the mixture of 3w and 3w' were obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 3/1) as a white solid, yield 64.3 mg (75%). The ratio of the isomers were determined based on the intergration of the character peak located at 2.40 ppm (H-1 of 3w) and 2.25 ppm (H-1'of 3w') and by ³¹P NMR, the ratio of isomers (3w/3w') is

 3:1.4. The mixture of **3w** and **3w**': IR (in KBr): 3130, 2361, 1637, 1506, 1400, 952, 750 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.96 - 7.90 (m, 2H), 7.65 - 7.51 (m, 4H), 7.48 - 7.42 (m, 1H), 7.35 - 7.31 (m, 1H), 7.25 -7.19 (m, 3H), 7.16 - 6.99 (m, 4H), 6.94 (d, *J* = 8.1 Hz, 1H), 6.81 (t, *J* = 8.7 Hz, 1H), 2.41 (s, 2.05 H), 2.25 (s, 0.95 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 162.4 (d, *J*_{C-F} = 248.3 Hz), 145.8 (d, *J*_{C-P} = 10.7 Hz), 138.8-138.7 (m), 137.8, 133.4 (d, *J*_{C-P} = 7.7 Hz), 133.1(d, *J*_{C-P} = 2.8 Hz), 132.8, 132.5, 132.5, 132.5, 132.4, 132.4, 132.3, 131.4, 131.1 (d, *J*_{C-P} = 8.3 Hz), 130.3, 130.2, 129.8, 129.0, 128.7, 128.5, 128.4, 127.8 (d, *J*_{C-F} = 9.6 Hz), 126.9 (d, *J*_{C-F} = 9.6 Hz), 123.1 (d, *J*_{C-P} = 129.0 Hz), 114.7 (d, *J*_{C-P} = 21.6 Hz), 21.3, 21.2. MP 76 - 78 °C. ³¹P NMR (162 MHz, CDCl₃): δ = 24.5, 24.4 (3:1.4). HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₇H₂₁FO₂P: 427.1258; found: 427.1245.

According to the general procedure, the mixture of **3x** and **3x'** were obtained by column chromatography with the eluting (petroleum ether/ethyl acetate = 3/1) as a white solid, yield 45.2 mg (47%). The ratio of the isomers were determined based on the intergration of the character peak located at 2.40 ppm (H-1 of **3x**) and 2.25 ppm (H-1' of **3x'**) and by ³¹P NMR. The ratio of isomers (**3x/3x'**) is 3:1.3. The pure isomer **3x** was isolated further by HPLC. **3x**: mp 77 - 78 °C. IR (in KBr): 3478, 3234, 3133, 2027, 1638, 1617, 1469, 1401, 1242, 949, 742 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.98 - 7.89 (m, 2H), 7.62 (d, *J* = 1.6 Hz, 2H), 7.56 - 7.52 (m, 2H), 7.47 (t, *J* = 8.0 Hz, 1H), 7.36 (s, 5H), 7.22 (d, *J* = 7.7 Hz, 2H), 7.15 (d, *J* = 7.6 Hz, 2H), 7.09 (dd, *J* = 8.2, 4.8 Hz, 1H), 2.42 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 144.9 (d, *J*_{C-P} = 10.7 Hz), 138.4 (d, *J*_{C-P} = 5.2 Hz), 138.1, 133.2 (d, *J*_{C-P} = 3.0 Hz), 132.6 (d, *J*_{C-P} = 2.6 Hz), 132.4, 132.3, 132.2, 131.2, 130.2 (d, *J*_{C-P} = 12.4 Hz), 130.1 (d, *J*_{C-P} = 14.5 Hz), 127.1 (d, *J*_{C-P} = 9.5 Hz), 123.8 (d, *J*_{C-P} = 170.8 Hz), 124.5 - 124.4 (m), 123.4 (d, *J*_{C-F} = 12.1 Hz), 120.5 (d, *J*_{C-P} = 11.0 Hz), 21.3. ³¹P NMR (162 MHz, CDCl₃): δ = 24.6. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₈H₂₁F₃O₂P: 477.1226; found: 477.1201.

Acknowledgment: We are grateful to the National Natural Science Foundation of China (NOs. 21472057, 21772053) and Program of Introducing Talents of Discipline to Universities of China (111 Program, B17019) and the Open Project of Key Laboratory of Theoretical Chemistry & Molecular Simulation of Ministry of Education, Hunan University of Science and Technology (LKF104) for the financial support of this research.

Supporting Information Available Full experimental details, spectroscopic data of 3, CIF file for 3a,
3w and 3x. This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

References

(1) (a) Montchamp, J. L. Phosphinate Chemistry in the 21st Century: A Viable Alternative to the Use of Phosphorus Trichloride in Organophosphorus Synthesis. *Acc. Chem. Res.* **2014**, *47*, 77. (b) Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L. Review on Modern Advances of Chemical Methods for the Introduction of a Phosphonic Acid Group. *Chem. Rev.* **2011**, *111*, 7981. (c) Mucha, A.; Kafarski, P.; Berlicki, L. Remarkable potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. *J. Med. Chem.* **2011**, *54*, 5955. (d) Quin, L. D. A Guide to Organophosphorus Chemistry, Wiley, New York, **2000**. (e) Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and Technology, CRC Press, 6th edn. **2013**. (f) Seto, H.; Kuzuyama, T. Bioactive Natural Products with Carbon-Phosphorus Bonds and their Biosynthesis. *Nat. Prod. Rep.* **1999**, *16*, 589. (g) Han, L.-B.; Ono, Y.; Xu, Q.; Shimada, S. Highly Selective Markovnikov Addition of Hypervalent H-Spirophosphoranes to Alkynes Mediated by Palladium Acetate: Generality and Mechanism. *Bull. Chem. Soc. Jpn.* **2010**, *83*, 1086.

(2) (a) Maryanoff, B. E.; Reitz, A. B. The Wittig Olefination Reaction and Modifications Involving Phosphoryl-Stabilized Carbanions. Stereochemistry, Mechanism, and Selected Synthetic Aspects. *Chem. Rev.* 1989, 89, 863. (b) Ma, X.-T.; Wang, Y.; Dai, R.-H.; Liu, C.-R.; Tian, S.-K. Catalytic Allylation of Stabilized Phosphonium Ylides with Primary Allylic Amines. *J. Org. Chem.* 2013, *78*, 11071. (c) Boutagy, J.; Thomas, R. Olefin Synthesis with Organic Phosphonate Carbanions. *Chem. Rev.* 1974, *74*, 87. (d) Kamer, P. C. J.; Leeuwen, P. W. N. M. Phosphorus (III) Ligands in Homogeneous Catalysis: Design and Synthesis; Wiley, 2012. (e) McManus, H. A.; Guiry, P. J. Recent Developments in the Application of Oxazoline-Containing Ligands in Asymmetric Catalysis. *Chem. Rev.* 2004, *104*, 4151. (f) Birkholz, M. N.; Freixa, Z.; van Leeuwen, P. W. Bite Angle Effects of Diphosphines in C-C and C-X Bond Forming Cross Coupling Reactions. *Chem. Soc. Rev.* 2009, *38*, 1099. (g) Tang, W.-J.; Zhang, X.-

The Journal of Organic Chemistry

M. New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. *Chem. Rev.* 2003, *103*, 3029.
(h) Zhou, Y.-G. Asymmetric Hydrogenation of Heteroaromatic Compounds. *Acc. Chem. Res.* 2007, *40*, 1357.

(3) (a) Ruda, G. F.; Wong, P. E.; Alibu, V. P.; Norval, S.; Read, K. D.; Barrett, M. P.; Gilbert, I. H. Aryl Phosphoramidates of 5-Phospho Erythronohydroxamic Acid, a new class of Potent Trypanocidal Compounds. *J. Med. Chem.* 2010, *53*, 6071. (b) Li, B.; Zhou, B.; Lu, H.; Ma, L.; Peng, A.-Y. Phosphaisocoumarins as a new class of Potent Inhibitors for Pancreatic Cholesterol Esterase. *Eur. J. Med. Chem.* 2010, *45*, 1955. (c) Li, X. S.; Zhang, D. W.; Pang, H.; Shen, F.; Fu, H.; Jiang, Y. Y.; Zhao, Y. F. Synthesis of a Diverse Series of Phosphacoumarins with Biological Activity. *Org. Lett.* 2005, *7*, 4919.

(4) (a) Peng, A.-Y.; Ding, Y.-X. The Synthesis of Phosphaisocoumarins by Cu(I)-Catalyzed Intramolecular Cyclization of *O*-Ethynylphenylphosphonic Acid Monoesters. *J. Am. Chem. Soc.* 2003, *125*, 15006. (b) Peng, A.-Y.; Hao, F.; Li, B.; Wang, Z.; Du, Y. An Efficient Route to 4-Halophosphaisocoumarins via CuX₂-Mediated Direct Halocyclization of 2-(1-Alkynyl)phenylphosphonic Acid Diesters. *J. Org. Chem.* 2008, *73*, 9012.

(5) (a) Park, Y.; Jeon, I.; Shin, S.; Min, J.; Lee, P. H. Ruthenium-Catalyzed C-H Activation/Cyclization for the Synthesis of Phosphaisocoumarins. *J. Org. Chem.* 2013, 78, 10209. (b) Seo, J.; Park, Y.; Jeon, I.; Ryu, T.; Lee, P. H. Synthesis of Phosphaisocoumarins through Rhodium-Catalyzed Cyclization using Alkynes and Arylphosphonic Acid Monoesters. *Org. Lett.*, 2013, *15*, 3358.
(c) Park, Y.; Seo, J.; Park, S.; Yoo, E. J.; Lee, P. H. Rhodium-Catalyzed Oxidative C-H Activation/Cyclization for the Synthesis of Phosphaisocoumarins and Phosphorous 2-Pyrones. *Chem. Eur. J.* 2013, *19*, 16461.

(6) (a) Prier, C. K.; Rankic D. A.; MacMillan, D. W. Visible light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. *Chem. Rev.* 2013, *113*, 5322. (b) Narayanam, J. M.; Stephenson, C. R. Visible Light Photoredox Catalysis: Applications in Organic Synthesis. *Chem. Soc. Rev.* 2011, *40*, 102. (c) Xuan, J.; Xiao, W. J. Visible-Light Photoredox Catalysis.

Angew. Chem., Int. Ed. 2012, 51, 6828. (d) Romero, N. A.; Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075. (e) Hari, D. P.; König, B. The Photocatalyzed Meerwein Arylation: Classic Reaction of Aryl Diazonium Salts in a new Light. Angew. Chem., Int. Ed. 2013, 52, 4734. (f) Yasu, Y.; Koike, T.; Akita, M. Three-Component Oxytrifluoromethylation of Alkenes: Highly Efficient and Regioselective Difunctionalization of C-C Bonds Mediated by Photoredox Catalysts. Angew. Chem. Int. Ed. 2012, 51, 9567.

(7) (a) Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.; Wu, L,-Z.; Lei, A. External Oxidant-Free Oxidative Cross-Coupling: A Photoredox Cobalt-Catalyzed Aromatic C-H Thiolation for Constructing C-S bonds. J. Am. Chem. Soc. 2015, 137, 9273. (b) Hu, X.; Zhang, G.; Bu, F.; Lei, A. Selective Oxidative [4+2] Imine/Alkene Annulation with H₂ Liberation Induced by Photo-Oxidation. Angew. Chem. Int. Ed. 2018, 57, 1286. (c) Yang, Q.; Zhang, L.; Ye, C.; Luo, S.; Wu, L.-Z.; Tung, C.-H. Visible-Light-Promoted Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angew. Chem. Int. Ed. 2017, 56, 3694. (d) Xiang, M.; Meng, Q.-Y.; Li, J.-X.; Zheng, Y.-W.; Chen Ye, C.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Activation of C-H Bonds through Oxidant-Free Photoredox Catalysis: Cross-Coupling Hydrogen-Evolution Transformation of Isochromans and β-Keto Esters. Chem. Eur. J. 2015, 21, 18080. (e) Yang, X.-L.; Gao, J.-D.; Lei, T.; Chen, B.; Tung, C,-H.; Wu, L.-Z. Oxidative Cyclization Synthesis of Tetrahydroquinolines and Reductive Hydrogenation of Maleimides under Redox-neutral Conditions. Org. Lett. 2018, 20, 2916. (f) Zhong, J.-J.; Wu, C.-J.; Meng, Q.-Y.; Gao, X.-W.; Lei, T.; Tung, C.-H.; Wu, L.-Z. A Cascade Cross-Coupling and in Situ Hydrogenation Reaction by Visible Light Catalysis. Adv. Synth. Catal. 2014, 356, 2846. (g) Zhao, Q.-Q.; Hu, X. Q.; Yang, M.-N.; Chen, J.-R.; Xiao, W.-J. A Visible-light Photocatalytic N-radical Cascade of Hydrazones for the Synthesis of Dihydropyrazolefused Benzosultams. Chem. Commun. 2016, 52, 12749. (h) He, K.-H.; Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-J.; Yang, X.-L.; Li, Y. Acceptorless Dehydrogenation of N-heterocycles by Merging Visible-light Photoredox Catalysis and Cobalt Catalysis. Angew. Chem. Int. Ed. 2017, 56, 3080. (i) Tian, W.-F.; Wang, D.-P.; Wang, S.-F.; He, K.-H.; Cao, X.-P.; Li, Y. Visible-Light Photoredox-Catalyzed Iminyl

Radical Formation by N-H Cleavage with Hydrogen Release and Its Application in Synthesis of Isoquinolines. *Org. Lett.* **2018**, *20*, 1421. (j) Yang, Q.; Jia, Z.; Li, L.; Luo, S. Visible-light Promoted Arene C-H/C-X Lactonization via Carboxylic Radical Aromatic Substitution. *Org. Chem. Front.*, **2018**, *5*, 237.

(8) CCDC 1851666 (**3a**), 1880620 (**3w**) and 1879737 (**3x**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

(9) Joshi-Pangu, A.; Lévesque, F.; Roth, H. G.; Oliver, S. F.; Campeau, L.-C.; Nicewicz, D. A.;
DiRocco, D. A. Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis. J. Org. Chem. 2016, 81, 7244.

(10) Romero, N. A.; Nicewicz, D. A. Mechanistic Insight into the Photoredox Catalysis of anti-Markovnikov Alkene Hydrofunctionalization Reactions. *J. Am. Chem. Soc.* **2014**, *136*, 17024.

(11) The Cobalt catalyst showed rather lower oxidation potential Co $(dmgH)_2$ PyCl $(E^{ox}_{(CoIII/II)} = -0.68$ V vs SCE and $E^{ox}_{(CoIII/I)} = -1.13$ V vs SCE), excluding the possibility of direct participation of Co catalyst in substrate oxidation (oxidation potential of **1a** in the presence of CsF is 1.67 V vs SCE). Please see: Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R. and Gray, H. B. Hydrogen Evolution Catalyzed by Cobaloximes. *Acc. Chem. Res.*, **2009**, *42*, 1995.

(12) Lazarides, T.; McCormick, T.; Du, P.; Luo, G.; Lindley, B.; Eisenberg, R. Making Hydrogen from Water using a Homogeneous System without Noble Metals. *J. Am. Chem. Soc.* **2009**, *131*, 9192.

(13) Lei, W.-L.; Yang, B.; Zhang, Q.-B.; Yuan, P.-F.; Wu, L.-Z.; Liu, Q. Visible-light-enabled Aerobic Synthesis of Benzoin Bis-ethers from Akynes and Alcohols. *Green Chem.*, **2018**, *20*, 5479.

(14) Du, P.; Schneider, J.; Luo, G.; Brennessel, W. W.; Eisenberg, R. Visible Light-Driven Hydrogen Production from Aqueous Protons Catalyzed by Molecular Cobaloxime Catalysts. *Inorg. Chem.* 2009, *48*, 4952.

(15) (a) Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.;Markworth, C. J.; Grieco, P. A. One-Pot Synthesis of Symmetrical and Unsymmetrical Bisarylethynes

> by a Modification of the Sonogashira Coupling Reaction. *Org. Lett.* **2002**, *4*, 3199. (b) Park, K.; Bae, G.; Moon, Choe, J.; Song, K. H.; Lee, S. Synthesis of Symmetrical and Unsymmetrical Diarylalkynes from Propiolic Acid using Palladium-Catalyzed Decarboxylative Coupling. *J. Org. Chem.* **2010**, *75*, 6244. (c) Severin, R.; Reimer, J.; Doye, S. One-pot Procedure for the Synthesis of Unsymmetrical Diarylalkynes. *J. Org. Chem.* **2010**, *75*, 3518.

> (16) Qi, N.; Zhang, N.; Allu, S. R.; Gao, J.; Guo, J.; He, Y. Insertion of Arynes into P-O Bonds:One-Step Simultaneous Construction of C-P and C-O Bonds. *Org. Lett.* 2016, *18*, 6204.