Regiospecific Synthesis of 3,4-Dihydrocoumarins via Substrate-Controlled [1,3]- or [3,3]-Sigmatropic Rearrangement

Xiangsheng Xu,* Xiaoqing Li, Xinhuan Yan, Hanshen Wang, Yun Deng, Jiangbin Shao

College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China Fax +86(571)88320799; E-mail: future@zjut.edu.cn

Received 21 October 2011

Abstract: A regiospecific synthesis of 3,4-dihydrocoumarin derivatives has been achieved involving tandem rearrangement–cyclization of (E)-2-(aryloxymethyl)alk-2-enoates catalyzed by a Pd/Cu bimetallic system. Unexpected substrate-controlled [1,3]- or [3,3]sigmatropic rearrangement was observed in the transformations.

Key words: [1,3]-sigmatropic rearrangement, [3,3]-sigmatropic rearrangement, palladium/copper bimetallic catalyst, substrate-controlled selectivity, 3,4-dihydrocoumarin

The 3,4-dihydrocoumarin (DHC) moieties represent an important class of structural unit frequently found in many natural and synthetic compounds that exhibit a variety of pharmacological properties, such as antiherpetic activity, ^{1a} inhibition of protein kinases^{1b} and aldose reductase, ^{1c} activity against several cancer lines, ^{1d-f} and selective inhibition of HIV-1 reverse transcriptase.^{1g} Thus, considerable efforts have been devoted to the efficient and selective synthesis of this type of heterocycles.²

The Baylis-Hillman adducts have been increasingly attractive to synthetic organic chemists, as they are versatile molecules with a minimum of three functional groups.³ Various cyclic and acyclic compounds could be prepared from Baylis-Hillman adducts by various chemical transformations.⁴ Recently, it was found that aryl allyl ethers **1** derived from Baylis-Hillman adducts underwent temperature-controlled [1,3]- or [3,3]-sigmatropic rearrangement to form DHC derivatives with diverse substituted patterns in moderate to good yields (Scheme 1).⁵ However, such method requires an expensive Au/Ag catalyst and suffers from high reaction temperature in some cases. Therefore, an alternative cheap catalytic system would be needed for this transformation. Herein, we report a regiospecific synthesis of DHC via the [1,3]- or [3,3]-sigmatropic rearrangement of aryl allyl ethers 1 and 3 in the presence of relatively cheaper Pd(OAc)₂/Cu(OTf)₂ bimetallic catalyst. It is worth to mention that an unexpected substrate-controlled [1,3]- or [3,3]-sigmatropic rearrangement was observed in the transformations.

A model study was initiated with (*E*)-methyl 2-(phenoxymethyl)-3-phenylacrylate (**1a**) as substrate. We expected the formation of DHC in the presence of some common Lewis acid catalysts.⁶

DOI: 10.1055/s-0031-1289908; Art ID: W19411ST

First, with several monometal catalytic systems tested, only $Cu(OTf)_2$ showed some catalytic activity to give **2a** in 10% yield via a [1,3]-sigmatropic rearrangement– cyclization process (Table 1, entry 5). A Brønsted acid,

 Table 1
 Optimization of Reaction Conditions for Access to 2a^a

	ia		28		
Entry	Catalyst	Solvent	Temp (°C)	Time (h)	Yield (%) ^b
1	Pd(OAc) ₂ ^c	DCE	80	15	0
2	$PdCl_2^{\ c}$	DCE	80	15	0
3	$ZnCl_2^c$	DCE	80	20	0
4	AlCl ₃ ^c	DCE	80	20	0
5	Cu(OTf) ₂ ^c	DCE	80	15	10
6	FeCl ₃ ^c	DCE	80	20	0
7	HOTf	DCE	80	20	21
8	$Pd(OAc)_2/Cu(OTf)_2^d$	DCE	80	15	65
9	Pd(OAc) ₂ /CuCl ^e	DCE	80	20	0
10	Pd(OAc) ₂ /CuI ^e	DCE	80	20	0
11	Pd(OAc) ₂ /CuCl ₂ ^e	DCE	80	20	0
12	Pd(OAc) ₂ /HOTf	DCE	80	15	25
13	$Pd(OAc)_2/Cu(OTf)_2^d$	dioxane	100	15	23
14	$Pd(OAc)_2/Cu(OTf)_2^d$	CH_2Cl_2	45	15	0
15	$Pd(OAc)_2/Cu(OTf)_2^d$	MeCN	80	15	11
16	Pd(OAc) ₂ /Cu(OTf) ₂ ^d	toluene	110	15	53
17	$Pd(OAc)_2/Cu(OTf)_2^d$	DCE	120	15	55

^a The reaction was carried out under Ar, using **1a** (1.0 mmol) and catalyst in the indicated solvent (2 mL).

^b Isolated yield.

^e Conditions: 5 mol% Pd(OAc)₂, 10 mol% Cu catalyst.

SYNLETT 2011, No. 20, pp 3026–3030 Advanced online publication: 28.11.2011

[©] Georg Thieme Verlag Stuttgart · New York

^c Conditions: 5 mol% catalyst.

^d Conditions: 5 mol% Pd(OAc)₂, 5 mol% Cu(OTf)₂.

Scheme 1 Temperature-controlled tandem rearrangement-cyclization of (E)-2-(aryloxymethyl)alk-2-enoates catalyzed by AuCl₃/3AgOTf

such as HOTf, also gave poor yield of **2a** in 21% (Table 1, entry 7). Fortunately, when $Pd(OAc)_2/Cu(OTf)_2$ was used as catalyst, the yield of **2a** was dramatically improved to 65% with 31% of starting material recovered, and isomeric product arising from [3,3]-sigmatropic rearrangement–cyclization process was not observed according to the NMR and GC-MS analysis. Next, other Pd/Cu bimetallic catalysts such as $Pd(OAc)_2/CuCl$, $Pd(OAc)_2/CuI$, and $Pd(OAc)_2/CuCl_2$ were investigated; none of them showed catalytic activity (Table 1, entry 8–11). The product yield was also not improved by using the combination of $Pd(OAc)_2/HOTf$ (Table 1, entry 12). Other solvents such

as dioxane, CH_2Cl_2 , MeCN, and toluene were proved to be less effective for the reaction (Table 1, entry 13–16).

In order to determine whether the rearrangement of (E)-2-(phenyloxymethyl)alk-2-enoates was also temperaturedepended in the presence of Pd(OAc)₂/Cu(OTf)₂, compound **1a** was subjected to react under 120 °C (Table 1, entry 17). Compound **2a** was isolated in 55% yield and no [3,3]-sigmatropic-rearrangement isomer was detected. This result is in marked contrast to that of the AuCl₃/ 3AgOTf-catalyzed reaction, in which case 4-aryl-3-methylene-3,4-DHC was produced via the [3,3]-sigmatropic rearrangement–cyclization of **1a** at 120 °C.⁵

 Table 2
 Rearrangement–Cyclization Reactions of (E)-2-(Phenyloxymethyl)alk-2-enoates 1^a

^a General reaction conditions: substrate 1 (1 mmol), $Pd(OAc)_2$ (5 mol%), $Cu(OTf)_2$ (5 mol%), DCE (2 mL), 80 °C, Ar, 15 h. ^b Isolated yield.

Scheme 2 Proposed mechanism for the tandem rearrangement and cyclization of (*E*)-2-(aryloxymethyl)alk-2-enoates catalyzed by Pd/Cu bimetallic system

A selection of various (E)-2-(phenyloxymethyl)alk-2enoates **1** was investigated using Pd(OAc)₂/Cu(OTf)₂ as a catalyst in DCE. Table 2 summarizes the results. The methyl substituent in the *para* position of the enoates **1b** (Table 2, entry 2) did not much influence the yield as compared to **1a** (Table 2, entry 1), whereas **1c**, bearing an electron-withdrawing chloride group in the same position, only lowered the yield slightly (Table 2, entry 3).⁷ The methyl substituent in the *para* position of phenol side also had no significant influence on the reaction (Table 2, entry 4).

Next, rearrangement-cyclization reactions of (E)-2-(naphthyloxymethyl)alk-2-enoates **3** were investigated. Surprisingly, under the optimal conditions for **1a** (Table 1, entry 8), 4-aryl-3-methylene-3,4-DHC **4**, arising from normal Claisen rearrangement-cyclization process was exclusively obtained. (E)-2-(Naphthyloxymethyl)alk-2-enoates **3** substituted with both electron-withdrawing and electron-donating groups on the phenyl ring afforded 4-aryl-3-methylene-3,4-DHC **4** in moderate to good yield (Table 3). This is in sharp contrast with the AuCl₃/AgOTf system where [3,3]-sigmatropic rearrangement of (E)-2-(naphthyloxymethyl)alk-2-enoates could only take place at 120 °C.

Although the precise mechanism of this reaction remains unclear at this moment, we assume that the first step for the transformation of **1** to **2** is the oxidative addition of Pd(0) to aryl allyl ethers to form a $\eta^3 - \pi$ -allyl complex **I**,⁸ which undergoes reductive elimination to afford intermediate **II** and regenerates the catalyst. The coordination of Cu to the oxygen of the ether and ester groups makes the oxidative addition easier. The easy attack of the α -carbon of the Pd(II) phenolate onto the less substituted carbon of the allylic cation led to selective [1,3]-sigmatropic rearrangement. In the π -allyl–palladium complex, the aryl R¹ and the ester group prefer the *anti* configuration due to the steric repulsion between them which may lead to the *E* stereoselectivity. Moreover, the stereochemistry may also be ascribed to the thermodynamic outcome of metal-catalyzed double-bond isomerization. At the second step, DHC **2** could be eventually formed via the cyclization of intermediate **II** (Scheme 2, path A).

On the other hand, naphthoxyallyl is difficult to form a π -allyl–palladium complex. Therefore, the Pd/Cu-catalyzed [3,3]-sigmatropic rearrangement of **3** occurs to generate 3,4-dihydrocourmarins **4** after cyclization of intermediate **III** (Scheme 2, path B).

In summary, we have reported a regiospecific synthesis of 3,4-dihydrocoumarin derivatives via substrate-controlled [1,3]- or [3,3]-sigmatropic rearrangement of (E)-2-(aryl-oxymethyl)alk-2-enoates catalyzed by a Pd/Cu bimetallic system. Further investigations on the mechanistic details with respect to the stereoselectivity and the role of the Pd and Cu catalyst are under way in our laboratory.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

Acknowledgment

We are grateful for financial support from the National Natural Science Foundation of China (21076197, 21102130), Natural Science

Entry	Substrates	Products	Yield (%) ^b
1	CO ₂ Me		81
2	Me CO ₂ Me	4a Me C C C C C C C C C C C C C C C C C C	80
3	CI CI CI CI CI CO ₂ Me	4b Cl Cl Cl O	75
4	3c Br CO_2Me	4c Br 0	79
5	3d Cl CO ₂ Me	4d Cl Cl C	82
6	F ₃ C CO ₂ Me	4e F ₃ C C C C C C C C C C C C C C C C C C C	83

 Table 3
 Rearrangement–Cyclization Reactions of (E)-2-(Phenyloxymethyl)alk-2-enoates 3^a

^a General reaction conditions: substrate **3** (1 mmol), $Pd(OAc)_2$ (5 mol%), $Cu(OTf)_2$ (5 mol%), DCE (2 mL), 80 °C, Ar atmosphere, 15 h. ^b Isolated yield.

Foundation of Zhejiang Province (Y4090440), and Qianjiang Talent Program of Zhejiang Province (2010R10038) for financial support.

References and Notes

 (a) Takechi, M.; Tanaka, Y.; Takehara, M.; Nonaka, G.; Nishioka, I. *Phytochemistry* **1985**, *24*, 2245. (b) Hsu, F.-L.; Nonaka, G.-I.; Nishioka, I. *Chem. Pharm. Bull.* **1985**, *33*, 3142. (c) Iinuma, M.; Tanaka, T.; Mizuno, M.; Katsuzaki, T.; Ogawa, H. *Chem. Pharm. Bull.* **1989**, *37*, 1813.
 (d) Jurd, L. *J. Heterocycl. Chem.* **1996**, *33*, 1227. (e) Jurd, L. J. Heterocycl. Chem. **1988**, 25, 89. (f) Jurd, L. J. Heterocycl. Chem. **1997**, 34, 601. (g) Tillekeratne, L. M. V.; Sherette, A.; Grossman, P.; Hupe, L.; Hupe, D.; Hudson, R. A. Bioorg. Med. Chem. Lett. **2001**, 11, 2763.

- (2) (a) Shaabani, A.; Soleimani, E.; Rezayan, A. H.; Sarvary, A. Org. Lett. 2008, 10, 2581. (b) Alden-Danforth, E.; Scerba, M. T.; Lectka, T. Org. Lett. 2008, 10, 4951. (c) Shaabani, A.; Sarvary, A.; Soleimani, E.; Rezayan, A. H.; Heidary, M. Mol. Diversity 2008, 12, 197.
- (3) For reviews on the Baylis–Hillman reaction, see:
 (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. *Chem. Rev.* **2003**, *103*, 811. (b) Singh, V.; Batra, S. *Tetrahedron* **2008**, *64*, 4511. (c) Basavaiah, D.; Rao, P. D.; Hyma, R. S.

Synlett 2011, No. 20, 3026-3030 © Thieme Stuttgart · New York

Tetrahedron **1996**, *52*, 8001. (d) Drewes, S. E.; Roos, G. H. P. *Tetrahedron* **1988**, *44*, 4653. (e) Kim, J. N.; Lee, K. Y. *Curr. Org. Chem.* **2002**, *6*, 627. (f) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. *Bull. Korean Chem. Soc.* **2005**, *26*, 1481. (g) Langer, P. *Angew. Chem. Int. Ed.* **2000**, *39*, 3049. (h) Krishna, P. R.; Sachwani, R.; Reddy, P. S. *Synlett* **2008**, 2897. (i) Kim, S. H.; Kim, J. N. *Bull. Korean Chem. Soc.* **2008**, *29*, 2039. (j) Declerck, V.; Martinez, J.; Lamaty, F. *Chem. Rev.* **2009**, *109*, 1.

- (4) (a) Gowrisankar, S.; Lee, H. S.; Kim, J. M.; Kim, J. N. *Tetrahedron Lett.* 2008, 49, 1670. (b) Kim, J. M.; Kim, K. H.; Kim, T. H.; Kim, J. N. *Tetrahedron Lett.* 2008, 49, 3248.
 (c) Gowrisankar, S.; Lee, H. S.; Lee, K. Y.; Lee, J.-E.; Kim, J. N. *Tetrahedron Lett.* 2007, 48, 8619. (d) Lee, H. S.; Kim, S. H.; Kim, T. H.; Kim, J. N. *Tetrahedron Lett.* 2008, 49, 1773. (e) Lee, H. S.; Kim, S. H.; Gowrisankar, S.; Kim, J. N. *Tetrahedron* 2008, 64, 7183. (f) Kim, H. S.; Gowrisankar, S.; Kim, S. H.; Kim, J. N. *Tetrahedron Lett.* 2008, 49, 3858.
 (g) Kim, H. S.; Lee, H. S.; Kim, S. H.; Kim, J. N. *Tetrahedron Lett.* 2009, 50, 3154. (h) Liu, Y.; Xu, X.; Zhang, H.; Xu, D.; Xu, Z.; Zhang, Y. *Synlett* 2006, 571.
- (5) Liu, Y.; Qian, J.; Luo, S.; Xu, Z. Synlett 2009, 2971.
- (6) For selected examples related to [3,3]-sigmatropic rearrangement catalyzed by Lewis acid, see: (a) Majumdar,

K. C.; Chattopadhyay, B. *Tetrahedron Lett.* **2008**, *49*, 4405. (b) Ito, F.; Fusegi, K.; Kumamoto, T.; Ishikawa, T. *Synthesis* **2007**, 1785. (c) Sarkar, D.; Venkateswaran, R. V. *Synlett* **2008**, 653. (d) Grant, V. H.; Liu, B. *Tetrahedron Lett.* **2005**, *46*, 1237. (e) Ollevier, T.; Mwene-Mjeba, T. M. *Tetrahedron Lett.* **2006**, *47*, 4051.

(7) General Experimental Procedure and Spectroscopic Data

Compound **1a** (268.3 mg, 1.0 mmol), Pd(OAc)₂ (11.2 mg, 0.05 mmol), Cu(OTf)₂ (18.1 mg, 0.05 mmol), and DCE (2 mL) were added to a 10 mL sealed vessel protected under Ar. Then the reaction mixture was stirred under reflux conditions for 15 h. Upon completion of the reaction, the resulting mixture was diluted with CH₂Cl₂ (10 mL) and filtered through Celite. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel (200–300 mesh) using cyclohexane–EtOAc (12:1) as eluent to give pure **2a** (153.7 mg, 65%) as a white solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 4.09$ (d, J = 2.0 Hz, 2 H), 7.01–7.18 (m, 3 H), 7.35–7.57 (m, 6 H), 7.99 (t, J = 2.0 Hz, 1 H).

(8) (a) Trost, B. M. J. Am. Chem. Soc. 1984, 106, 6837.
(b) Liao, Y. Heteroat. Chem. 1991, 2, 297. (c) Tsuji, J. J. Organomet. Chem. 1986, 300, 281.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.