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ABSTRACT: The defined structure of molecules bearing multiple stereogenic axes is of increasing relevance to materials science, pharmaceuticals, and
catalysis. However, catalytic enantioselective approaches to control multiple stereogenic axes remain synthetically challenging. We report the catalytic
synthesis of two-axis terphenyl atropisomers, with complementary strategies to both chlorinated and brominated variants, formed with high diastereo-
and enantioselectivity. The chemistry proceeds through a sequence of two distinct dynamic kinetic resolutions: first, an atroposelective ring-opening
of Bringmann-type lactones produces a product with one established axis of chirality; second, a stereoselective arene halogenation delivers the product
with the second axis of chirality established. In order to achieve these results, a class of Bronsted basic guanidinylated peptides, which catalyze an effi-
cient atroposelective chlorination, is reported for the first time. In addition, a complementary bromination is reported, which also establishes the second
stereogenic axis. These bromo-terphenyls are accessible following the discovery that chiral anion phase transfer catalysis by Cz-symmetric phosphoric
acids allows catalyst control in the second stereochemistry-determining event. Accordingly, we established the fully catalyst-controlled stereodivergent
synthesis of all possible chlorinated stereoisomers, while also demonstrating diastereodivergence in the brominated variants, with significant levels of

enantioselectivity in both cases.

INTRODUCTION

Arising from hindered bond rotation, atropisomerism has become rec-
ognized as an important structural element within numerous chiral lig-
ands, organocatalysts, and biologically active molecules. Tremendous
strides have been made towards efficient and modular catalytic synthe-
ses of single-axis atropisomers, especially in recent years.! Common
strategies include stereoselective cross-coupling of two aryl units,? ki-
netic resolution of a pre-existing stereochemically undefined axis,** and
atroposelective de novo construction of an arene ring.* However, appli-
cation of these methods to multi-axis systems has only been recently ex-
plored." These reports have often featured some of the established
methods, including atroposelective cross-coupling,** [2+2+2]-cy-
cloaddition,'* or central-to-axial chirality transfer'S~'%* to install two
stereogenic axes at different sites of a substrate in a single step. This ap-
proach, which has many advantages, may also limit the modularity and
scope of accessible multi-axis structures, especially in cases where differ-
ent classes of reactions are required to allow differential functionaliza-
tion in the vicinity of each stereogenic axis; moreover, a singular chemi-
cal reaction to set two axes with a common reaction may not be amena-
ble to the development of diastereodivergent outcomes.

On the other hand, decoupling the individual steps and controlling
the configuration of each chiral axis independently can offer a path to
stereodivergency,'*® potentially through different chemical events at
each axis. Achieving catalyst-control over all possible stereoisomers is
challenging however, and can require extensive assessment of reaction
conditions and multiple synthetic steps. Additionally, substrate-con-
trolled stereoselectivity preferences must be addressed and overcome in

molecules containing one or more stereochemical elements. Pioneering

work in this area has come from the Sparr laboratory, which trium-
phantly demonstrated atroposelective aldol condensations to obtain
products with high levels of atroposelectivity in systems possessing up

to four fully controlled chiral axes in the oligonaphthalene template.5*'5

The approach we detail below describes a strategy to two-axis ter-
phenyls based on catalytic dynamic kinetic resolution (DKR)?* of start-
ing materials that contain two configurationally labile axes. Rapid inter-
conversion between two atropisomers at each axis through bond rota-
tion defines the challenge as a four-stereoisomer problem, and requires
that each atroposelective reaction yield a configurationally stable axis
(Fig 1a). The exploitation of this dynamic behavior was pioneered by
Bringmann with biaryl lactones like 1;* selective ring-opening of the lac-
tone yields configurationally stable enantioenriched biaryls like 2, as was
elegantly demonstrated with a cinchona alkaloid-based catalyst by Wang
(Fig 1b) 2% Our group?* and others>* have also previously utilized the
concepts of catalytic atroposelective DKR, most relevantly in the bro-
mination of phenol-containing biaryls promoted by a Bronsted basic di-
methylaminoalanine (Dmaa) peptide (Fig 1c)?* Building on these
precedents, we envisioned a two-event sequence by combining the two
strategies that could access products with multiple configurationally sta-
ble axes. The key to this strategy is that atroposelective biaryl lactone
ring-opening unveils a phenol, which is required for the next reaction,
atroposelective electrophilic aromatic substitution. In order to test this
hypothesis, we designed terphenyl lactone 3 (Fig 1d). In this proposed
scenario, selective base-catalyzed alcoholysis of 3 yields enantioenriched
int-I, which is then “turned on” for further functionalization, as the now
revealed phenol enhances the reactivity of the para- position of the
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Figure 1. (a) General scheme for the catalytic dynamic kinetic resolution of configurationally unstable biaryls. (b) Previous approaches to the DKR of

biaryl lactones. (c) Peptide-catalyzed atroposelective bromination of phenol-containing biaryls. (d) Our catalytic DKR strategy to two-axis terphenyls

4 by a two-step dynamic kinetic resolution sequence.

middle arene ring. An additional catalytic DKR through electrophilic
halogenation of int-I installs the second stereogenic axis, yielding multi-
axis atropisomers 4. In addition to the fundamental interests presented
by the terphenyl scaffold, these types of structures have proven to be of
great interest to a number of applications, including as o.-helix mimetics
in medicinal chemistry”® and as subunits in studies of oligoarene-based
materials.”®

RESULTS AND DISCUSSION

To establish a relevant catalytic atroposelective biaryl lactone ring-
opening, we developed a new class of Bronsted basic guanidinylated
peptides as catalysts for ring-opening of Bringmann-type lactones (Ta-
ble 1). Notably, we were also mindful that Lewis basic catalysts of this
type might also catalyze an asymmetric arene halogenation,”*?’ there-
fore possibly establishing the second chiral axis. Initially, we had hoped
that Dmaa-based peptides, effective for enantioselective ring-openings
of oxazolones through DKR,* and for arene halogenation,** would be
effective in the selective conversion of 3 to 4. However, these experi-
ments were unsuccessful in attempted conversions of 1a to 2a (with P1;
Table 1, entry 1), and in fact EtsN was also ineffective as a catalyst (Table
1, entry 2). Anticipating that a more basic amine was required, we dis-
covered that N,N,N’,N’-tetramethylguanidine (TMG) was in fact a
competent catalyst for the ring-opening (70% conv.; Table 1, entry 3),
thus grounding our interest in TMG-based peptides as Bronsted basic
catalysts.* ! Accordingly, we prepared a small set of tetramethylguani-
dinylalanine (Tmga)-containing peptides for evaluation in the enanti-
oselective ring-opening of lactone 1a. For this new family of guanidinyl-
ated peptide catalysts, we were motivated to focus on f-turn biased se-
quences,* as this type of secondary structure has proven successful in

the past for mechanistically similar chemistry.****

Thus, through examination of such Bronsted basic guanidinylated se-
quences, we were pleased to find that the Tmga peptides could induce
atroposelectivity via ring-opening with appreciable enantioselectivity,
albeit at moderate conversion (P2, 74:26 er, 48% conv.; Table 1, entry
4). An evaluation of solvent effects included observations of enhanced
conversion and selectivity in polar, aprotic solvents (with P2, up to
87:13 er and up to 98% conv.; Table 1, entries 5-7, see Supporting In-
formation for full details of the solvent effect studies). We attribute these

Table 1: Optimization of Atroposelective Ring-Opening

i+1
MezN l+2
o
ifo cqmgs oy i % ”“i
Solvent (0.1 M)
4°c, ,2,0, h,

a R =t Bu >2~ i+3

entry "-R" catalyst solvent  Conv. (%)? er®

1 1a Boc-Dmaa-D-Pro-Acpc-Leu-NMe; (P1) CH,Cl, 0 N/A

2 1a Triethylamine CH,Cl, <5 N/A
3 1a NNNN-tetametyiguandine TMG)  CH,Cl, 70 5050

4 1a Boc-Tmga-D-Pro-Aib-Leu-NMe; (P2) CH,Cl, 48 74:26
5 1a BooTmgaDPoAbLeuNMe,P2)  PhMe 62 6535

6 1a Boc-Tmga-D-Pro-Aib-Leu-NMe; (P2) MeCN 98 83:17

7 1a Boc-Tmga-D-Pro-Aib-Leu-NMe, (P2) THF 85 87:13
8 1a  BocTmgaDProAbPheNMe(P3)  THF 82 919

9 1a Boc-Tmga-D-Pro-Aib-2Nal-NMe, (P4) THF 95 90:10

10° 1a Boc-Tmga-D-Pro-Aib-Phe-NMe; (P3)  THF (0.25 M) 91 93:7

11¢ 1b Boc-Tmga-D-Pro-Aib-Phe-NMe, (P3)  THF (0.25 M) 70 88:12

12°  1c  Boc-Tmga-D-Pro-Aib-Phe-NMe, (P3) THF (0.25M) 85 62:38

*Conversion determined by 'HNMR integration ratios of product to
substrate. *Enantiomeric ratios determined by HPLC equipped with a
chiral stationary phase. ‘Reaction performed at —-10 °C, 2 equiv BnOH.
(Abbreviations: Dmaa = dimethylaminoalanine; Tmga = tetramethyl-
guanidinylalanine; Aib = 2-aminoisobutyric acid; 2Nal = 3-(2-naph-
thyl)-alanine).

enhancements to the modulation of the guanidinium pK, as reflected in
the acid-base equilibria between the peptide catalyst and the liberated
phenol of 2 following ring-opening in the different solvents.* For exam-
ple, in THF and MeCN, the phenolate is more basic, resulting in the ma-
jor species at equilibrium to be the protonated phenol and guanidine
free-base; this is the desired state of affairs to facilitate catalytic turnover.
Further variation of the peptide sequence provided minor changes

2
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Table 2: Optimization of Atroposelective Chlorination

@ @ 0P
o .
Me' 1) P3 ring-opening Me COO0Bn O ‘/< ™ 2
Me o) then silica plug Me OH g NMN o
—_—
O 2) Catalyst (10 mol%) O i \\(\Qo HN R'
Me NCS (1.1 equiv) Cl Me N
Me smvemz(g.? M) Me MezN\/< o +3
O 3a rt, 2. O NMe, NMe,
4a
™G
entry? catalyst solvent dr° er (maj-4a)®
1 No catalyst CH,Cl, N.R. N.R.
2 Boc-Tmga-D-Pro-Aib-Phe-NMe, (P3) CH,Cl, 4.6:1 88:12
3 Boc-Dmaa-D-Pro-Acpc-Leu-NMe; (P1) CH,Cl, N.R. N.R.
4 Triazabicyclodecene (TBD) CH,Cl, 3.9:1 88:12
5 TMG-Phe-D-Pro-Acpc-Phe-NMe; (P5) CH,Cl, 13:1 92:8
6  TMG-D-Phe-D-Pro-Acpc-Phe-NMe, (P6)  CH,Cl, 7:1 88:12
7 TMG-Phe-Pro-Acpc-Phe-NMe, (P7) CH,Cl, 5.7:1 83:17
8 TMG-Phe-D-Pro-Aib-Phe-NMe; (P8) CH,Cl, 9:1 88:12
9  TMG-Phe-D-Pro-Acpc-Phe-NMe; (P5) CH,Cl, 9:1 94:6
10  TMG-Phe-D-Pro-Acpc-Phe-NMe; (P5) CH,Cl,/PhMe 14:1 97:3

*All reactions run to complete conversion of 3a. "Diastereomeric and
enantiomeric ratios determined by HPLC equipped with a chiral sta-
tionary phase. S mol% catalyst loading (Abbreviations: Tmga = tetra-
methylguanidinylalanine; TMG = N,N,N’,N’-tetramethylguanidine;
Aib = 2-aminoisobutyric acid; Acpc = 1-aminocyclopropane carboxylic
acid; Dmaa = dimethylaminoalanine).

to er (see Supporting Information for details); however, improvements
could be observed with an aryl group at the i+3 position (P3,91:9 er, P4,
90:10 er; Table 1, entries 8-9). Thus, we selected the sequence Boc-
Tmga-D-Pro-Aib-Phe-NMe; (P3) for further optimization of reaction
parameters. Increasing the reaction concentration, while lowering the
temperature and equivalents of nucleophile improved enantioselectivity
(93:7 er; Table 1, entry 10).

Also of note, we investigated the effect of substituents on the “lower”
ring of biaryl lactone 1a. In analogy to the observations of Wang,**" the
highest enantioselectivity is observed when the position ortho- to the
phenolic oxygen is substituted. In the present system, with catalyst P3,
this appears to primarily be a steric effect; for example, permuting the
tert-butyl group to a methyl substituent results in a small decrease of en-
antioselectivity (1b, 88:12 er; Table 1, entry 11). Removal of this group
altogether (R = H) significantly lowers er (1c, 62:38 er, Table 1, entry
12). We believe that lactone ring-opening can be reversible under the
basic conditions, leading to thermodynamic equilibration and racemiza-
tion, which we observe when we resubmit 2¢ to basic reaction condi-
tions. Lactone 1a is also vulnerable to these erosions, but more forcing
conditions are required for complete racemization of 2a (see Supporting
Information for details).

With desirable ring-opening conditions in hand, we turned our atten-
tion to developing the targeted atroposelective halogenation to set the
second axis. For this event, we were initially motivated to develop a
novel atroposelective chlorination, despite the fact that atroposelective
brominations were better precedented,** because the new Tmga cata-
lysts provide enhanced Lewis basicity than the previously studied Dmaa-
based catalysts. Atroposelective arene chlorinations have been histori-
cally slower to emerge, perhaps due to the lower reactivity of many con-
ventional electrophilic chlorination reagents relative to the brominated

Journal of the American Chemical Society

counterparts [e.g. N-chlorosuccinimide (NCS) vs. N-bromosuccin-
imide (NBS)],**3S although enantioselective alkene chlorinations are
well-known.* Introduction of aryl chlorides is also highly desirable due
to their oft-noted pharmacological properties.’” These issues, taken to-
gether, stimulated our pursuit of an atroposelective chlorination to es-
tablish the second axis, given our newfound access to the more active
guanidinylated peptides.

We thus prepared terphenyl 3a, and following lactone ring-opening,
we investigated the catalytic viability of arene chlorination. Treatment
of the resulting phenol with NCS in the absence of a catalyst resulted in
only recovered starting material, establishing a minimal background rate
(Table 2, entry 1). However, in the presence of Tmga peptide P3 the
desired product 4a was observed with full conversion, and with a 4.6:1
dr (Table 2, entry 2), confirming suitable catalytic activity. Parentheti-
cally, a Dmaa-containing sequence that was previously optimized for
bromination>* failed to catalyze the arene chlorination reaction (P1;
Table 2, entry 3). That said, guanidinylated catalyst P3 provided only a
minor enhancement of the intrinsic, substrate-controlled diastereose-
lectivity, since a similar result was obtained with an achiral guanidine
base, triazabicyclodecene (TBD) (3.9:1 dr; Table 2, entry 4). A survey
of a small set of Tmga-containing catalysts did not significantly perturb
the diastereoselectivity beyond that observed with catalyst P3 (See Sup-
porting Information for details). However, we were pleased to observe
that a related set of guanidinylated peptides, possessing the TMG moi-
ety at the N-Terminus of the peptide sequence, was not only an excellent
catalyst for chlorination, but also able to significantly influence the dr.
Accordingly, after minimal optimization, we found that catalyst PS
(TMG-Phe-D-Pro-Acpc-Phe-NMe,) furnished 4a cleanly in 13:1 drand
with 92:8 er for the major diastereomer (Table 2, entry S). A brief inves-
tigation of the peptide structure showed that the TMG-L-Phe-D-Pro ste-
reochemistry was important for stereoselectivity (lower dr observed
with P6 and P7; Table 2, entries 6-7). The cyclopropyl ring of Acpc also
at the i+2 position also conferred advantages, as its replacement with Aib
led to aless selective catalyst (P8, Table 2, entry 8). Finally, lowering the
catalystloading of PS to S mol% (Table 2, entry 9) and addition of PhMe
as a co-solvent provided improvements to 14:1 dr and 97:3 er for the
major diastereomer (Table 2, entry 10).

Intriguingly, the er of 4a is significantly enhanced relative to the sim-
ple ring-opened 2b (97:3 er versus 88:12 er, respectively; compare Ta-
ble 2 entry 10 to Table 1 entry 11). We ascribe this to a kinetic resolution
of the intermediate chiral phenol (int-I, Fig. 1d). For the chlorination
step, PS is well-matched with the major phenol (aS)-enantiomer and the
reaction proceeds with excellent diastereoselectivity, favoring (aSaR)-
4ain over 50:1 dr (Scheme 1). Furthermore, the halogenation reaction
of the minor phenol (aR) enantiomer with PS slightly favors the oppo-
site diastereomer, (aR,aR)-4a, in 2:1 dr. This differential reactivity and
distribution of products accounts for the overall enrichment of er — i.e,,
the increased ratio of (aS,aR)-4a to (aR,aS)-4a from the initial 88:12 er
of 2b attained after ring-opening.

We do wish to note parenthetically, it was not lost on us that since
each DKR is promoted by a basic guanidine catalyst, a one-catalyst one-
pot procedure might be possible, wherein a singular guanidine-based
catalyst might affect both atroposelective reactions, notably by a differ-
ent reaction and distinct mechanism in each step. Accordingly, we sub-
jected lactone 3a to the optimized ring-opening and chlorination se-
quence in a single pot with P3, which cleanly furnished 4a, albeit with
modest diastereoselectivity (3.5:1 dr, 88:12 er; Scheme 2a). This was
not surprising, as P3 alone was not particularly efficient in the

3
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Scheme 1: Reaction process and effects of kinetic resolution on

stereoselectivity
Lactone 3a
P3 (Tmga)
‘ 1st DKR ‘
Me I COOBn BnOOC I Me
e A2 o Ho AR m
1st axis e
~88:12 er
Me (crude) Me
Me l Me l
(aS)-int-1 (aR)-int-1
matched 2nd DKR® mismatched

Me COOBn Me s COO0Bn BnOOC R Me BnOOC R Me
Me l oH Me la OH HO ]a Me HO ]a Me
Cl R Me Cl s Me Me R Cl Me s Cl
Me la la Me Me la 2° Me
91% 1.5% 5% 2.5%
A
minor diastereomer '

A v

?ratio of diastereomers are normalized to 100%

chlorination event (as in Table 2, entry 1). We thus expected that an im-
proved result could be obtained when the two guanidine-based catalysts
P3 and PS5 are present in one pot, as each peptide is optimized for each
mechanistically distinct reaction. However, the situation is nuanced.
When adding all catalysts and reagents immediately, we were surprised
to see that reactivity was completely shut down (Scheme 2b). This may
point to a guanidinium NCS complex rapidly forming in solution, which
would diminish the basicity of the catalyst and thereby inhibit the ring-
opening. Nonetheless, we found that addition of NCS only after for-
mation of the ring-opened intermediate yielded 4a in desirable levels of
stereoselectivity (5.5:1 dr and 92:8 er for the major diastereomer;
Scheme 2¢). It is thus notable that good stereoselectivity in chlorination
is retained even with two catalyst sequences competing at differing effi-
ciencies (compare Table 2, entry 1 vs. entry 10).

Returning to the optimized, sequential reaction conditions for estab-
lishing the synthesis of two-axis terphenyl products, we were interested
in exploring the reaction scope. Therefore, we examined substituent ef-
fects on the efficiency and selectivity of the two-step sequence. Since an
efficient DKR requires rapid isomerization of the second axis,*® we
tested the steric and electronic nature of the substituents on the bottom
arene ring, which would directly influence the rate of bond rotation (Fig.
2). Lactone 3b bearing an ortho- methoxy substituent, yielded the two-
axis terphenyl 4b in 72% yield, in 12:1 dr, and 97:3 er for the major dia-
stereomer. Notably, no appreciable over-chlorination was detected in
the electron-rich bottom arene ring. Chloro- (3c) and phenyl (3d) sub-
stituents are also well tolerated at the ortho- position, providing 4c (9:1
dr, 95:S er) and 4d (7.7:1 dr, 99:1 er), respectively. However, sterically
bulkier® substituents that may slow down aryl-aryl bond rotation

Scheme 2. Initial results towards a one-pot protocol to 4b*

(a) One catalyst for both reactions

Me I °
Me i 0}

Me
Me i

P3 (10 mol%)
BnOH (2 equiv)
THF (0.25 M)
-10°C,20h
then CH,Cl,/PhMe
NCS (1.1 equiv)
rt,2h
3a

(b) All catalysts and reagents added at once

O P3+P5 (5 mol% each)

Me .
BnOH (2 equiv)
Me

Me rt,20 h

3a

(c) NCS added after completion of ring-opening

O P3+P5 (5 mol% each)
BnOH (2 equiv)
THF (0.25 M)
-10°C. 24 h
Me then CH,Cl,/PhMe

Me I

Me i 0}

Me NCS (1.1 equiv)
O 3a rt,2h

O o NCS (1.1 equiv)
L S SN
Me THF (0.1 M)

Me I COOBn
Me i OH
Cl Me
Me 4a
O 3.5:1dr
Me I COOBn
Me i OH
Cl Me
Me 4a
No Reaction

Me I
Me i OH
Cl

Me 4a

5.5:1dr
92:8 er

*One-pot conditions: 3a (0.1 mmol, 1.0 equiv), P3 (5 mol%), PS (S
mol%) BnOH (2.0 equiv), THF (0.4 mL), -10 °C, 20 h, then
CHaCl/PhMe (1:1,9.6 mL) and NCS (1.1 equiv), rt, 2 h. Reactions are
run to complete conversion of 3a. HPLC equipped with a chiral station-

ary phase was used to determine dr and er.

eroded dr, as demonstrated by naphthyl-substituted 4e (2.6:1 dr) and
trifluoromethylated 4f (1.5:1 dr). The er for both of these substrates was
also lower (4e, 90:10 er; 4f, 76:24 er). While we do not have a rock-solid
explanation for the lower overall er for substrate 4f; it is possible that in-

ductive effects make this compound more acidic at the phenol, render-

ing racemization through reversible lactone and/or tetrahedral interme-

diate formation a vulnerability. Finally, the optimized conditions can be
scaled successfully, albeit with slightly diminished yield. Performing the
two-reaction sequence on 0.75 mmol (258 mg) of lactone 3b furnished
terphenyl 4b in 53% overall yield (194 mg) in 14:1 dr and 97:3 er for the
major diastereomer. We note that portion-wise addition of NCS was key

to minimize the formation of overchlorinated byproducts (see Support-

ing Information for experimental details).

We now turn to the goal of fully stereodivergent conditions to achieve

selective syntheses of all possible chlorinated terphenyl diastereomers.

When developing a reaction system with multiple stereogenic elements,

a catalyst might generally be optimized for one relative configuration of

products (i.e. only one diastereomeric pair). Extensive reaction optimi-

zation and synthetic workarounds can be necessary to access the other

diastereomers.* In the present case of setting two consecutive axes of

chirality, when each axis is set by a different reaction (and thus differing

reaction mechanisms), there exists a requirement for catalyst control,

and any substrate-controlled selectivity biases must be identified and

overcome.

Throughout our studies of the terphenyl system 3, we observed that

PS reacts primarily with the (aS)-enantiomer of the ring-opened inter-

mediate int-I in high efficiency (as in Scheme 1), and as such we
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o) 1) P3 (10 mol%),

BnOH (2 equiv)

o THF (0.25 M), -10 °C, 20 h Me i OH
Cl

2) P5 (5 mol%)
Me NCS (1.1 equiv)
CH,Cl,/PhMe (1:1 viv, 0.01 M)
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R O 3af 250 R O 4atf

Me COOBn Me I COOBn Me I COOBn
Me OH Me l OH Me ! OH
Cl Me Cl Me Cl Me
Me MeO ! Cl l
4a 4b? 4c
70% 2% 73%
14:1dr 12:1dr 9:1dr

97:3 er (major) 97:3 er (major) 95:5 er (major)

Me I COOBn Me I COOBn Me I COOBn
Me l OH Me ! OH Me . OH
Cl Me Cl Me Cl Me
e ¢ QO
ad® 4e 4f
58% 81% 64%
7.7:1dr 2.6:1dr 1.5:1dr

99:1 er (major) 90:10 er (major) 76:24 er (major)

Figure 2. Effect of bottom aryl ring substitution. Reactions are run at 0.1 mmol of lactone 3. A short silica plug is required to remove

P3 prior to chlorination. Isolated yields, dr, and er are based off the average of two trials. Yields are reported as a mixture of diastere-

omers. HPLC equipped with a chiral stationary phase was used to determine dr and er. *Scale-up conditions were performed on 0.75

mmol (258 mg) of 3b with the modification of portion-wise addition of NCS in the second step (see Supporting Information for
experimental details). 4b was isolated in $3% overall yield (194 mg), with 14:1 dr and 97:3 er (average of two trials). *2:1 THF/CH.CL

solvent for ring-opening due to the poor solubility of 3d.

expected ent-PS to be matched with the (aR)-enantiomer. Thus, we en-
visioned utilizing the enantiomers of P3 and PS5 in each possible combi-
nation, as these matched/mismatched effects of substrate and catalyst
might overturn the intrinsic diastereoselectivity and achieve stereodiver-
gency. We selected methoxy-substituted 3b to assess this hypothesis. As
abenchmark for the intrinsic diastereoselectivity, we determined that 3b
is converted to 4b in the TBD-catalyzed chlorination with a 6:1 dr (fa-
voring (aS,aR)-4b from (aS)-ring-opened product of type int-I; see Sup-
porting Information for details). In the substrate—catalyst matched sce-
narios, treatment of 3b with catalysts P3 and PS, yielded (aS,aR)-4b
(72%yield, 12:1 dr, 97:3 er; Scheme 3, top right). By analogy, treatment
of 3b with ent-P3 and ent-P5 delivered (aR,aS)-4b (Scheme 3, bottom
left), in 72% yield, 12:1 dr, and 97:3 er, reflecting a high level of repro-
ducibility. These results represent an overall enhancement of the intrin-
sic substrate-controlled diastereoselectivity. Furthermore, the sub-
strate—catalyst mismatched cases successfully overturn the substrate-
controlled diastereoselectivity observed with achiral base TBD. With
catalysts P3 and ent-PS, the intrinsically disfavored product (aS,aS)-4b
is now the major diastereomer formed, and it is observed with very high
enantioselectivity (2.5:1 dr, 99:1 er, in 60% yield; Scheme 3, top left).
Finally, with catalysts ent-P3 and PS, product (aR,aR)-4b is isolated in
55% yield, with a 2.7:1 dr and with 99:1 er (Scheme 3, bottom right; we
ascribe the small difference in dr for the two cases to variable levels of
conversion). The absolute and relative configurations for the series were
unambiguously determined by X-ray crystallography. To further high-
light the utility of this approach, each of the four diastereomers could be
purified chromatographically to stereochemical homogeneity.

In parallel to the above studies on atroposelective chlorination to set
the second stereogenic axis, we also wished to develop a complementary
bromination, in line with previous studies of atroposelective arene bro-
minations.* Initial evaluation of a few guanidine-based catalysts that are
the focus of the present study with common electrophilic brominating
reagents (namely N-bromosuccinimide and N-bromophthalimide) did
not deliver dramatic nor improved dr and er values for brominated ter-
phenyls of type Br-4 (generally under S:1 dr and no higher than 88:12
er). In contrast, an entirely different approach for the bromination step
led to significantly better results right away. Predicated on chiral anion

Scheme 3: Stereodivergent synthesis of all diastereomers of 4b*

COOBn Me COOBn
Me OH P3 Me OH
P3
(aS,aS)-4b O P5 O
o ent-P5 (aS,aR)-4b
26591/Ddr ci Me O cl Me ' 70,
091 er OMe Me O MeO 12:1dr
: 97:3 er
Me l o
g " g
BnOOC Me MeO BnOOC Me
HO. Me P3 3 HO. Me
ent- ent-
aR,aS)-4b O 3b O
‘ 72‘%), Me cl :ﬁ &» Me ¢ (@RaR-4b
. 55%
12:1dr OMe MeO. 2.7:1Ddr
O O 99:1 er

97:3 er
2Each product can be isolated in >20:1 dr by silica gel chromatography.

o 3L e :"/V\'\,
A - o P3 EAS o
LY am Y
. Me Iy N

F -v“f\. y
Ve A MeO Mi AY
- 3b v
(aR,aS)-4b (aS,aR)-4b

X-Ray structures determine absolute and relative configurations.

Standard conditions: ring-opening. 3b (0.1 mmol, 1.0 equiv), P3 (10
mol%), BnOH (2.0 equiv), THF (0.4 mL), -10 °C, 20 h; chlorination.
P5 (5mol%),NCS (1.1 equiv), CH,CL,/PhMe (1:1v/v, 10 mL) A short
silica plug is required to remove P3 prior to chlorination. Isolated yields,
dr, and er are based off the average of two trials. Yields are reported as a
mixture of diastereomers, which are separable by silica gel column chro-
matography. HPLC equipped with a chiral stationary phase was used to
determine dr and er.

phase-transfer (CAPT) and Cs-symmetric chiral phosphoric acid-de-
rived counter-ions, this strategy had been successfully applied to a vari-
ety of asymmetric halogenation reactions.* We posited this strategy
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Scheme 4. Diastereodivergent Chiral Anion Phase Transfer Catalysis to Brominated Two-Axis Terphenyls

(a) Bromination of rapidly-equilibrating "Me" terphenyl 3a

COOBn X i Me I CO0Bn
1) P3 ring-opening o) 1) P3 ring-opening Me OH
O then silica plug O then silica plug O
- _ >
2) (R)-TRIP (10 mol%) Me 2 (S-TRIP(10mol%) g, Me

[Br]* (2.0 equiv) [Brl* (2.0 equiv) M
K3POy (3.0 equiv) K3POy (3.0 equiv) € (R)-TRIP
PhMe (0.02 M) PhMe (0.02 M)
Br- 4a Br-4a
82% 60%
6.8:1dr 1:2.5dr
99:1 er (major) 98:2 er (major)
Ph
(b) Bromination of slowly-equilibrating "2-Nal" terphenyl 3e o o
BF, [Nj
COOBn Me COOBn o N [(DAB);Br(BF,)s]
OH 1) P3 ring-opening o 1) P3 ring-opening Me OH BF, Br —[Br]*
O then silica plug O then silica plug O ,\‘l
47 _— >
Me 2) (R)-TRIP (10 mol%) Me  2)(S)-TRIP (10 mol%) Me ° [ j
[Br]* (2.0 equiv) [Br]* (2.0 equiv) BF4 “N%
K3POy (3.0 equiv) K3POy, (3.0 equiv) )
PhMe (0.02 M) PhMe (0.02 M) Ph
Br-4e' Br-4e
83% 64%
3.7:1dr 1:1.4dr

98:2 er (major)

94:6 er (major)

Standard conditions: ring-opening. 3 (0.1 mmol, 1.0 equiv), P3 (10 mol%) BnOH (2.0 equiv), THF (0.4 mL), -10 °C, 20 h; bromination. TRIP (10
mol%), [(DAB).Br(BFs)s] (2.0 equiv), KsPO4 (3.0 equiv), PhMe (S mL), rt, 48 hours. A short silica plug is required to remove P3 prior to bromination.
Isolated yields are reported as a mixture of diastereomers. HPLC equipped with a chiral stationary phase was used to determine dr and er. We note that

the stereochemical assignments for Br-4a, Br-4a’, Br-4e and Br-4e’ are drawn in analogy to the X-ray based assignments of the chlorinated products,

but have not been directly determined themselves (see Supporting Information for details).

could be well-suited for the bromination step to deliver Br-4a with ste-
reodivergency. The approach also brings the advantage of low back-
ground reactivity in analogy to conventional chlorination chemistry —
the brominating reagent is an insoluble solid, effectively isolating it from
the substrate in solution. Thus, the brominating reagent only comes into
solution upon salt metathesis with the phosphate anion catalyst, result-
ing in a soluble chiral ion pair and initiating reactivity. Moreover, we
were stimulated by the success of Akiyama in applying C»-symmetric
chiral phosphoric acid catalysts to atroposelective biaryl desymmetriza-
tions with conventional electrophilic halogenating reagents.'

The CAPT strategy thus examined the efficacy of DABCOnium salts
as brominating reagents in terphenyl system 3. Building on the utility of
these reagents in the enantioselective bromocyclization of difluoroal-
kenes,*” we surmised that analogous conditions could be directly applied
to atroposelective electrophilic bromination of phenols. Notably, these
DABCOnium-based reagents provided an additional parameter to opti-
mize the stereoselectivity of the bromination event. A screen of several
distinct salts revealed that [ (DAB),Br(BF4)s] (Scheme 4, abbreviated as
[Br]*) was a judicious choice for catalyst-controlled modulation of dia-
stereoselectivity (see Supporting Information for details). Thus, follow-
ing the P3-catalyzed ring-opening of 3a, we treated the unpurified inter-
mediate with (S)-TRIP (10 mol%) as the phase transfer catalyst and
DABCOnium salt [ (DAB).Br(BF.);], which delivered the two axis ter-
phenyl product Br-4a in 60% yield, 2.5:1 dr, and with excellent enanti-
oenrichment (98:2 er; Scheme 4a, to the right). We again attribute this
overall enhancement in er to the differential functionalization rates of
the enantiomers of the ring-opened phenol, in analogy to the kinetic res-
olution process described in Scheme 1. Strikingly, and in line with our
goals, the diastereoselectivity can be overturned by swapping the chiral-
ity of the phase transfer catalyst. Employing (R)-TRIP in the bromina-
tion step affords Br-4a’ in 82% yield, 6.8:1 dr, and in excellent enanti-
opurity (99:1 er; Scheme 443, to the left). We also assessed the CAPT

strategy on substrates that performed less efficiently in chlorination. Im-
portantly, subjecting 2-naphthyl-substituted lactone 3e to the same ring-
opening and bromination sequence with (§)-TRIP as the phase transfer
catalyst yielded Br-4e in 64% yield, with 1.4:1 dr and improved enanti-
oselectivity of relative to the chlorinated variant (94:6 er; Scheme 4b, to
the right). As with Br-4a, diastereodivergence could be achieved by
swapping the stereochemistry of the catalyst to (R)-TRIP, furnishing
the opposite diastereomer Br-4¢’ in 83% yield, albeit with a modest 3.7:1
dr, but with excellent enantioenrichment (98:2 er; Scheme 4b, to the
left). Despite the clear mechanistic differences between the chlorination
and bromination reactions, they are complementary in allowing stereo-
divergent access to either chlorinated or brominated products, offering
access to all stereoisomers of linear terphenyls of type 4, and with excel-
lent enantiopurity throughout the series.

CONCLUSIONS

In summary, we report conditions to synthesize two-axis atropiso-
mers with access to all possible diastereomers with catalyst control. We
demonstrated complementary approaches to chlorinated and bromin-
ated terphenyls in excellent enantiopurity. In our studies, we developed
anew class of strongly Bronsted basic guanidine peptide catalysts, which
can be useful in targeting challenging transformations, such as the ring-
opening and chlorination described in this work. As these two distinct
reactions are both catalyzed by the guanidine moiety, we also estab-
lished the possibility that a unique catalyst can afford appreciable levels
of control for these two mechanistically distinct reactions in this se-
quence. Alongside these studies on chlorination, we established condi-
tions for an atroposelective phosphoric acid-catalyzed diastereodiver-
gent bromination through the CAPT strategy. In both the peptidyl
guanidine-catalyzed reactions, and in the Ci-symmetric phosphoric
acid-catalyzed reactions, not only were high levels of enantioselectivity
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achieved, but both catalytic approaches were found to be capable of

overcoming and reversing the intrinsic, substrate-controlled diastere-
oselectivity. Taken together, this combination of approaches accom-
plishes comprehensive and controlled stereodivergent access to all pos-
sible diastereomers of the targeted terphenyl scaffolds. The catalyst-con-
trolled, stereodivergent synthesis of multi-axis atropisomers remains a
challenging endeavor, but seems likely to increase in importance as ca-
pabilities grow, and as appreciation of their properties expands in inter-
disciplinary contexts.
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