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ABSTRACT: An organic photoredox-catalyzed dehydroxylative trifluoromethylation of allylic alcohols was developed in an
environmentally benign manner. In this reaction, the readily available CF3SO2Na was selected as the trifluoromethylation reagent.
The in situ generated byproduct SO2 was reutilized to activate C−OH bond, which enabled this dehydroxylative trifluoromethylation
to be performed conveniently. A variety of multifunctionalized CF3-allylic compounds were obtained in high yields and excellent
stereoselectivity.

The incorporation of a CF3 group into organic molecules
has a profound impact on their physical and biological

properties and thus has gained increasing attention from
pharmaceutical, agrochemical,1 and materials industries.2 In
particular, CF3-containing allyl compounds are versatile
precursors.3 However, in the few carefully tailored C(allyl)−
CF3 bond construction methods, harsh reaction conditions,
superstoichiometric quantities of transition metals, and addi-
tional toxic or expensive reagents4 were usually required.
Recently, copper-catalyzed allylic trifluoromethylations of
terminal alkenes were reported by Buchwald,5a Liu,5b

Wang,5c and Qing5d independently for preparing monosub-
stituted allyl-CF3 compounds5 in high efficiency. Allylsilanes6

or allylic acetates7 were also identified as suitable feedstocks to
afford CF3-containing di- or tri-substituted olefins by Sodeoka
and Singh, respectively.
Targeting minimal waste and high sustainability, the direct

dehydroxylative trifluoromethylation of commercially available
allylic alcohols is highly sought-after and represents a much
greener, atom- and step-economical approach for C(allyl)−
CF3 bond construction. Despite the inherently strong C−OH
bonds8 and versatile reactivity of allylic alcohols,9,10 some
impressive transformations, such as oxytrifluoromethylation9

or neophyl rearrangement,10 were developed. For instance, an
amazing intramolecular oxytrifluoromethylation of allylic
alcohols was realized by Buchwald9a (Scheme 1a). With 1,1-
diaryl allylic alcohols, Li and Wu10a and Tu10b independently
reported powerful trifluoromethylation-initiated radical 1,2-aryl
migration10 (Scheme 1b). In contrast, deoxy-trifluoromethyla-
tion of allylic alcohols was still a challenging task and typically
required multistep transformations and suffered from a variety
of limitations.11 With extensive efforts, a promising one-pot
sequential trifluoromethylation of allylic alcohol via an in situ
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Scheme 1. Trifluoromethylation of Allylic Alcohols
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decarboxylative procedure12 was pioneered by Altman12a−c

with excellent regioselectivity in the presence of copper
catalysts (Scheme 1c). Consequently, the exploration of
metal-free and inexpensive photocatalytic procedures13 for
the dehydroxylative trifluoromethylation of allylic alcohols was
enthusiastically pursued. With our continuous interest in C−
OH bond cleavage and related green transformation,14 we
developed an organic photoredox-catalyzed dehydroxylative
trifluoromethylation of electron-withdrawing group activated
allylic alcohols (Scheme 1d), which would be complementary
work to previous investigations. The desired product equipped
with ester groups provided facile access to distinct molecules
that previous methods could not generate. In this reaction,
readily available CF3SO2Na

15 was selected as the trifluor-
omethylation reagent. Under organic photoredox catalysis, in
situ generated byproduct SO2 was reutilized to activate the C−
OH bond, which enabled the reaction to occur through an
SN2′ process under mild conditions.
In an attempt to access the desired allyl-CF3 compounds

(3a), allylic alcohol (1a) and CF3SO2Na (2a) were selected as
the model substrates. At room temperature, a variety of
photoredox catalysts were screened in CH3CN solvent (Table
1). After 24 h, only a trace amount of 3a or even no 3a was

detected when Ru(bpy3)Cl2, Ru(bpy3)(PF6)2, and Eosin Y
were selected as the catalysts (Table 1, entries 1−3). To our
delight, acridinium ion photoredox catalysts16 PC-1 (Table 1,
entry 4) and PC-2 (Table 1, entry 5) delivered 3a in
moderated yields with high E/Z ratios. Mes-Acr+Ph(BF4

−)
gave a more positive result in terms of higher yield and ratio of
isomers E/Z (Table 1, entry 6). Increasing the catalyst loading
(Table 1, entries 7 and 8) enabled the transformation to be
finished in 4 h with 3a isolated in 73% yield (Table 1, entry 8).
In the presence of catalyst 4-CzIPN,13a,b,17 3a was obtained in

higher yield, while the isomer ratio was as low as 90/10 (E/Z).
Further investigation revealed that the reaction was sensitive to
the solvent. Only diminished desired products were obtained
when CH3CN was replaced by other solvents such as DMF,
THF, toluene, etc. (for details, see Supporting Information
(SI), Table S1).
Subsequently, the generalizability of this reaction was

evaluated using a variety of allylic alcohols (Scheme 2). Allylic
alcohols with a wide variety of substituents on phenyl ring were
found compatible with this transformation, delivering corre-
sponding allylic CF3 in good to high yields. Functional groups
such as halide, CF3, CN, NO2, and CHO were well tolerated.
Both electron-withdrawing (3b−3h) and electron-donating
(3i−3k) aryl substituted allylic alcohols were amenable to this
protocol. The positions of the substituents (at the para or meta
positions) on the phenyl ring have limited effects on the overall
transformation (3b−3s). In addition to monosubstituted
versions, allylic alcohols with multiple substituents on the
aromatic ring were compatible with the reaction (3t, 3u).
Fused-aromatic allylic alcohols could be utilized in this
reaction, generating 3v in a high yield. Moreover, allylic
alcohols bearing heteroaryl substituents, such as pyridien-2-yl
(3w) and thiophen-2-yl (3x) were also well tolerated well. In
addition, methyl (2E,4E)-5-phenyl-2-(2,2,2-trifluoroethyl)-
penta-2,4-dienoate (3aa) can be obtained by selecting
cinnamenyl α-substituted allylic alcohols, albeit the yield was
slightly lower. Besides aryl substituted allylic alcohols, alkyl
substituted versions also worked well under identity conditions
(3ab, 3ac). Double trifluoromethylation was performed well by
using ethyl 3-(4-(2-(ethoxycarbonyl)-1-hydroxyallyl)phenyl)-
2-hydroxybut-3-enoate (3ad). The structure of 3ad was
determined by X-ray analysis (3ad, CCDC 2071921).
Remarkably, γ-blocked allylic alcohols also could also
participate into this transformation, albeit affording 3ae with
a lower yield. Further investigation indicated that the electron-
withdrawing group on the β-position of allylic alcohol was
crucial to this transformation (3af−3ah). For instance, no
reaction occurred when 2-methyl-1-phenylprop-2-en-1-ol was
selected as the substance (3ag). Moreover, an alkynyl group on
the phenyl ring was compatible with the reaction conditions,
affording 3ai in 57% yield. This observation allowed for further
functionalization with a Cu-catalyzed click reaction. Moreover,
the reaction could also be performed at gram scale, with 3a
(72%, 1.76 g) and 3ai (44%, 1.01 g) isolated in comparable
yield. Without other notice (3s, 3x, and 3af), the final product
was detected with excellent E-selectivity. Unfortunately, this
catalytic system was found inefficient to primary allylic
alcohols, such as methyl (E)-2-(hydroxymethyl)-3-phenyl
acrylate or (E)-2-nitro-3-phenylprop-2-en-1-ol (for details,
see SI).
The reproducibility of this protocol was also evaluated by

using the methodologies reported by Glorius et al.18 Factors
such as concentration, oxygen level, scales, water level,
temperature, and light intensity was screened and compared
with the standard condition (for details, see SI, Sensitivity
assessment). Among these parameters, except for the higher
temperature having limited effect on this transformation, all the
other variations caused only negligible changes. Therefore, this
investigation indicated this reaction has good reproducibility.
The synthetic utility of this transformation was then

preliminarily studied. We initially examined late-stage trifluor-
omethylation toward several allylic alcohols bearing bio-
logically active skeletons. As is shown in Scheme 3, L-

Table 1. Screening Reaction Conditionsa

entry cat.e (mol %) t (h) 3a (%)b E/Zc

1 eosin Y (1) 24 0
2 Ru(bpy3)Cl2 (1) 24 f
3 Ru(bpy3)(PF6)2 (1) 24 f
4 PC-1 (1) 24 32 95/5
5 PC-2 (1) 24 26 >99/1
6 Mes-Acr+Ph(BF4

−) (1) 24 68 >99/1
7 Mes-Acr+Ph(BF4

−) (2) 10 67 >99/1
8 Mes-Acr+Ph(BF4

‑) (4) 4 73 >99/1
9 4-CzIPN (1) 1.5 77 90/10
10d Mes-Acr+Ph(BF4

−) (4) 4 0
aExperimental conditions: 1 (0.3 mmol), 2a (0.45 mmol), and cat
were mixed in CH3CN (4.5 mL) under blue-LED (18w*3). bIsolated
yield. cDetermined by crude 1H NMR. dWithout light sources. e

fTrace.
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(−)-menthol (3aj) and α-D-galactopyranose (3ak) could be
conveniently incorporated into the desired allylic CF3
skeletons. The corresponding products 3aj and 3ak were
generated in high to excellent yields. These results further
highlighted the utility of this protocol in pharmaceutical-
related investigations. Subsequently, the ligation of pharma-

ceutical molecules was investigated. As for 3ai, the TMS
moiety could be removed conveniently, and then the allylic
compound 4 was successfully ligated with an antiviral drug
(zidovudine) through Cu-catalyzed azide−alkyne cycloaddi-
tion, producing a new compound, 5, in 95% yield.
To get more insight into the reaction mechanism, we

conducted Stern−Volmer fluorescence quenching experiments
(for details, see SI). A 505 nm fluorescence initiated by Mes-
Acr+Ph(BF4

−) was observed when the sample excited was 464
nm. The fluorescence intensity dramatically decreased when
CF3SO2Na (2a) was introduced. The linear relationship
between I0/I and the concentration of 2a indicated that 2a
was an efficient quencher of excited Mes-Acr+Ph(BF4

−). In
sharp contrast, the addition of allylic alcohol 1a has little effect
on fluorescence intensity. These results revealed that excited
Mes-Acr+Ph(BF4

−) oxidized 2a rather than allylic alcohol 1a.
Then, we speculated that a single electron transfer (SET)
process was involved between 2a and Mes-Acr+Ph(BF4

−) in
this transformation.
Next, more control experiments were carried out. Under

standard reaction conditions, 2a was reacted with radical
scavenger 2,2,6,6-tertmethylpiperidin-1-yl-oxidanyl (TEMPO).
As detected by 19F NMR and HRMS, the related radical
generated from 2a was trapped by TEMPO delivering adducts
6 and 7 (Scheme 4a, top). To gain insight into the role of SO2,
a control experiment was also conducted. As expected, 6 and 7
were still observed when DABCO was introduced to absorb
the in situ generated SO2.

19 This result proved DABCO has
limited effect on the generation of CF3 containing radicals
(Scheme 4a, bottom). However, the model reaction of 1a with
2a was completely inhibited when DABCO was added
(Scheme 4b, top). All these results guided us to the conclusion
that SO2 was crucial for the C−OH bond activation. Moreover,
TEMPO can totally shut down the model dehydroxylative
trifluoromethylation process with 6, 7, and 8 detected by
HRMS. Furthermore, the radical mechanism of this protocol
was also proven by the electron paramagnetic resonance
(EPR) investigation (Scheme 4c). The parameters observed
here for the spin adduct are gfactor = 2.0072, a(N,NO) = 13.69
G, and a(H,−(CF3)CH) = 15.45 G. The spin Hamiltonian
parameters observed for this spin adduct are in good
agreement with the literature values for a CF3 radical.

20

Scheme 2. Dehydroxylative Trifluoromethylation of Allylic
Alcoholsa

aExperimental conditions: 1 (0.3 mmol), 2a (0.45 mmol), and Mes-
Acr+Ph(BF4

−) (4.0 mol %) in CH3CN (4.5 mL) under blue-LED
(18w*3) at room temperature. Isolated yield. Unless noted, only one
isomer was detected. bThe ratio of E/Z = 98/2. cThe ratio of E/Z =
97/3. dThe ratio of Z/E = 82/18.

Scheme 3. Late-Stage Functionalization and Ligation of
Pharmaceutical Molecules
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Based upon the investigations, we proposed the plausible
reaction mechanism shown in Scheme 4d. The reaction
initiated with the SET of sodium trifluoromethanesulfinate
(2a) by photoexcited Mes-Acr+Ph(BF4

−) (PC*) to give
CF3SO2 radical21 and reduced Mes-Acr+Ph(BF4

−) (PC•−).
The decomposition of radical CF3SO2 afforded key CF3 radical
and SO2. Subsequently, the radical addition of CF3 to the
double bond5,21 of allylic alcohols delivered intermediate A, in
which the C−OH bond was activated with the in situ
generated SO2. The process was also supported by our control
experiments (Scheme 4a,b). Then, the intermediate A reacted
with PC•− via a SET process7 to form intermediate B with the
regeneration of catalyst Mes-Acr+Ph(BF4

−) (PC).
In summary, we developed a Mes-Acr+Ph(BF4

−)-catalyzed
dehydroxylative trifluoromethylation of allylic alcohols in an
environmentally benign manner. In this reaction, the readily
available CF3SO2Na was selected as the trifluoromethylation
reagent. The in situ generated byproduct SO2 can be reutilized
for C−OH bond activation and served as a key factor for
dehydroxylative trifluoromethylation to occur under mild
conditions. A variety of multifunctionalized allylic compounds
could be obtained in excellent stereoselectivities and good to

excellent yields with wide-spectrum functional group tolerance.
This investigation also sheds light on dehydroxylative
trifluoromethylation with respect to a variety of alcohols,
although at this stage, only the MBH alcohols could be used.
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