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I Integral Equations 
and Operator Theory 

BOUNDARY-VALUE PROBLEMS FOR TWO-DIMENSIONAL 
C A N O N I C A L  S Y S T E M S  

SEPPO HASSI, HENK DE $NO0, HENRIK WINKLER 

The two-dimensional canonical system Jy' = -gHy where the nonnegative Hamil- 
tonian matrix function H(x) is trace-normed on (0, c~) has been studied in a 
function-theoretic way by L. de Branges in [5]-[8]. We show that the Hamiltonian 
system induces a closed symmetric relation which can be reduced to a, not neces- 
sarily densely defined, symmetric operator by means of Kac' indivisible intervals; 
cf. [33], [34]. The "formal" defect numbers related to the system are the de- 
fect numbers of this reduced minimal symmetric operator. By using de Branges' 
one-to-one correspondence between the class of Nevanlinna functions and such 
canonical systems we extend our canonical system from (0, c~) to a trace-normed 
system on R, which is in the limit-point case at =t=ce. This allows us to study all 
possible selfadjoint realizations of the original system by means of a boundary- 
value problem for the extended canonical system involving an interface condition 
atO. 

1. INTRODUCTION 

Consider on II~ a two-dimensional canonical system of homogeneous differential equa- 
tions of the form 

(1.1) Jy'= -~H(x)y, on IR. 

It is assumed that H(x) is a real, nonnegative measurable 2 • 2 matrix function which is 
trace-normed, i.e. t rH(x)  = 1, x E ~,  and that J is a 2 • 2 signature matrix: 

o1) 
The equation (1.1) gives rise to a selfadjoint realization in the Hilbert space Le(H, II~) pro- 
vided with the inner product If, g] = fR g(x)*H(x)f(x)dz, since the endpoints ce and - c o  
are in the limit-point case. Let Q+(t) and Q-(e) be the Titchmarsh-Weyl coefficients asso- 
ciated to (1.1) on each of the halflines R + = (0, oo) and l~- = ( - ~ ,  0). These coefficients 
are uniquely determined by the following property: if the 2 • 2 matrix function W(-, D* is 
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the matr ix  solution of (1.1) on the halflines R + and IR- with initial values W(0+,,~)* = 1, 
then 

-Q+(e)  ' o n e + ,  w(. ,g)" Q-(e) ' o n R - ,  

are square integrable solutions with respect to H(x) near co and - 0 %  respectively. Now 
consider the homogeneous system of differential equations (1.1) restricted to the halfline 
N +. The selfadjoint realization defined in L:(H, IR) generates on the halfline R + a boundary 
condition at 0+ of the form 

/f~(O+)~ 
(1.3) (S(g) - 1 )  t f 2 ( 0 + ) ;  = 0, 

where S(g) = O-(g).  Conversely, consider the canonical system (1.1) on R + with the g- 
depending boundary condition (1.3), where S(/)  is any Nevanlinna function (see Section 2). 
It  is well known (see e.g. [42], [43]) that  such a boundary value problem gives rise to a 
generalized resolvent in an exit space determined by S(s Abstract constructions of such 
exit spaces have been discussed in the literature. However, according to L. de Branges the 
function S(g) is the Titchmarsh-Weyl coefficient Q-(g) of a unique trace-normed canonical 
system on R- ;  see [39], [47]. This means that  as a concrete exit space for a selfadjoint 
realization of the boundary-value problem associated with (1.3) on R + one may take the 
Hilbert space corresponding to the trace-norrned canonical system on IR-. Via an orthogonal 
sum (cf. [19]) this gives rise to a trace-normed canonical system defined on the whole real 
line [~ with an interface condition at 0. Hence, all generalized resolvents associated to the 
system on the halfline IR + (equivalently all gdepending boundary value problems of the form 
(1.3) on N +) can be described simply by means of a trace-normed canonical system on R. 
The usual boundary-value problem associated with the canonical system (1.1) on the halfiine 
IR + is given by 

{ f l (0+)~  (1.4) (sin - cos 0, 

where - r r / 2  < ~, _< rr/2. In fact, (1.4) gives rise to all (canonical) selfadjoint realizations 
of the boundary-value problem on R +. A similar situation holds for the restriction of the 
canonical system to the interval IR-. A combination of the two boundary-value problems 
on R -  and on IR + yields a boundary-value problem on IR alluded to above with interface 
conditions at 0 involving the boundary-values 

( / , ( 0+)~  / f 2 ( 0 §  '~ 
f~(O-))' \-f2(O-)) 

The interface conditions are described via Nevanlinna pairs of 2 x 2 matrices (see Section 
6). When the corresponding selfadjoint realizations defined in L~(H, IR) are compressed to 
L2(H, N +) they generate on the halfline R + boundary conditions at 0+ of the form (1.3), 
where the function S(g) involves the function Q-(g) and the data of the interface conditions. 
In fact, the interface conditions fall into two categories: one class is parametrized with 2 • 2 
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symmetric matrices (ti~), in which case 

It12[ 2 
(~ '5)  ~(~) : i l l  Q-(O + ~22 ~ 

and the other class is parametrized with r C II~ and [rl[ 2 + It212 = 1, rl -~ 0, in which case 

(1.6) s(e) : ~(1 + I~/~[ 2) + k~/r,12Q-(e). 
For [r2/rl[ = 1 and T = 0 in (1.6) the interface conditions provide continuity at 0 and 
produce the boundary condition (1.3) with S(g) = Q-(s for the canonical system on II{ +. 

The system (1.1) on the halfline R + has been studied by L. de Branges in connection 
with Hilbert spaces of entire functions [5]-[8]; see also [3], [17]. An operator-theoretic point 
of view was taken up by B.C. Orcutt [40], by I.S. Kac [33], [34], and later by M.G. KrGn 
and H. Langer [37]. Further results in this direction were obtained by H. Winkler [46]-[49]; 
see also [39]. The theory of strings as given by I.S. Kac and M.G. I~:rGn [35] is included in 
the theory of canonical systems. For strings there is an application oriented approach due to 
H. Dym and H.P. McKean [15], where the theory of de Branges is connected with operator- 
theoretic methods. Our aim is to give a full operator-theoretic treatment of the system (1.1) 
on R +, completing the work of I.S. Kac. We will introduce a closed symmetric relation 
with the equation on the halfline I~ +. In the degenerate case, when ll~ + is an H-indivisible 
interval (see Section 3), this symmetric relation is a selfadjoint purely multivalued relation. 
In the non-degenerate case, the closed symmetric relation has defect numbers (1, 1), but in 
general it is multivalued. Reducing the Hilbert space L2(H, ll~ +) by means of this multi- 
valued part we obtain a closed symmetric operator which is completely nonselfadjoint. Its 
defect numbers coincide with the "formal" defect numbers of (1.1) and its selfadjoint ex- 
tensions correspond to the boundary-value problem (1.4). The Titchmarsh-Weyl coefficient 
is a Nevanlinna function; in fact it is the so-called Weyl function in the sense of [10] or a 
Q-function of the completely nonselfadjoint symmetric operator and a selfadjoint extension 
determined by the boundary condition fl(0+) = 0. The symmetric operator is nondensely 
defined precisely when the interval R + begins with an H-indivisible interval; in this case 
the generalized Friedrichs extension, which is the only selfadjoint extension which is not an 
operator, will be characterized. The boundary conditions (1.4) lead to selfadjoint extensions 
in L2(H, R+), while boundary conditions of the form (1.3) lead to selfadjoint extensions in 
L2(H,R), so that L2(H,I~ -) acts as an exit space. The corresponding abstract theory is 
due to A.V. Strauss; see [42], [43]. In particular, the Nevanlinna pairs alluded to above, 
induce symmetric extensions of the orthogonal sum of the symmetric relations in L2(H, R +) 
and L2(H,]~-) (see [19], [20], [21]), which lead to the classification in (1.5) and (1.6). The 
Titchmarsh-Weyl coefficients were originally introduced in the context of Sturm-Liouville 
problems [44], [45]; an important contribution to the theory can be found in [36]. For the 
inclusion of these problems in the theory of canonical systems, see [4]. Boundary conditions 
involving the eigenvalue parameter have been studied by many authors; for further refer- 
ences see [12], [13], [14], [26], [271, [28], [29]. Spectral properties of canonical systems, or 
equivalently of Nevanlinna functions, can be described in terms of subordinate solutions. An 
extension of the results of D. J. Gilbert and D. B. Pearson originally stated for Schr6dinger 
operators can be found for canonical systems in [24]. 
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We outline the contents of this paper. Some necessary preliminaries are collected in 
Section 2. Maximal and minimal relations are introduced in Section 3, see also [13], [14], [40], 
and the multivalued part of the symmetric minimal relation and the reduction are described 
by means of Kac'  indivisible intervals. The selfadjoint extensions of the minimal relation 
are given in Section 4; here is also a connection with Q-functions and a description of what 
happens in the nondensely defined case. In Section 5 the subdivision of the NevanIinna 
class as in [25] is characterized in terms of the canonical system. In Section 6 the canonical 
system is extended from the halfline to a system defined on the whole real line; all selfadjoint 
realizations and the resulting interface conditions will be determined. To make the paper self- 
contained proofs of the fundamental results concerning (1.1) are presented in the last section; 
our considerations lead to a direct elementary proof of the fact that the trace-normalization 
gives rise to the limit-point case at oo. 

2. PRELIMINARIES 

In this section some facts concerning the canonical system of the form 

(2.1) J y ' =  -gg (x )y ,  on R +, 

will be reviewed. In (2.1) H(x) is a real, nonnegative measurable 2 • 2 matrix function and 
J is the signature matrix (1.2). With a solution of (2.1) one means a vector function 

{'fl(x)'~ 
f (x)  = \ f2(x)J  ' 

whose entries are locally absolutely continuous on R +, such that 

J f ' (x )  = -gH(x) f ( x ) ,  for a.a. x > 0. 

The entries of H are assumed to be locally integrable functions such that 

(2.2) trH(x)=l, x e N +. 

This condition is essentially equivalent to the condition ./0 ~~ tr H(x)dz = +co,  and it gives 
rise to Weyl's limit-point case at oo; cf. [6]. Two matrix functions//1 and/ /2  are considered 
to be equivalent if Hi(x) = H2(x) a.e. with respect to the Lebesgue measm'e. Let L2(H, R +) 
be the Hilbert space of all (equivalence classes of) measurable, almost everywhere finite 
vector functions f ( z )  = (f~(z) f2(z)) v on R + such that 

f o f ( z ) * H ( x ) f ( x )  dx < oo, 

provided with the corresponding inner product. Clearly, f C L~(H, If{ +) is equivalent to the 
null-element if and only if H f  = 0 almost everywhere on R +. With the usual corresponding 
inner product L2(H, N +) is a Hilbert space. The construction of the space L2(H, If{ +) and 
the proof of the completeness of this space in a more general situation was originally given 
by Kac in [30]. Let the 2 x 2 matrix function W(.,g) be the solution of the initial value 
problem 

(2.3) d W ( x ' O  dx J = gW(x, f )H(x) ,  for a.a. x > O, W(O+,g) = I, 
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so that the 2 x 2 matrix function W(.,[)* is the solution of the initial value problem 

(2.4) jdW(x ,~)"  _ gH(x)W(x,~) ' ,  for a.a. x > 0, W(0+,g)" = I. 
dx 

It follows that for g, A E C 

(2.5) W(x ,g )JW(x ,  ~)* - J = (e - A) foW(t ,e)H(t )W(t ,  A)" dr, z > 0, 

and in particular, for g E C 

(2.6) W(x,e)JW(x,g)* = J, W(x,{)*JW(x,e)  = J, x > O. 

The matrix function W(.,e) is entire in g E C and real, i.e. W(-,{) = W(.,e). Moreover, 
det W(.,e) = 1 which follows from (2.6) and the normalization in (2.3). In the following 
theorem the class of Nevanlinna functions is denoted by N. This class consists of all functions 
t(e), holomorphic on C \ R, which satisfy t(e)* = t({), and Imt(e) / Ime >_ 0 for e E C \ R. 

Theorem 2.1. Let W(.,e) be the solution of (2.3). Then for each t(g) E N U {co} the limit 

wH(x, e)t(e) + w~2(x, e) e E C \ R, 
(2.7) Q+(e) = }im w2l(x, e)t(e) + ~ ( x ,  e)' 

exists, is independent oft(e), and belongs to N U {ec}. Moreover, for each g E C \ R 

(2.8) X+(g) = X+(.,e) = W(-,g)* -Q+(g) E L2(H,R+). 

If  Q+(g) is a real constant or 0% the only solution of (2.1) which belongs to L2(H, R +) is 
equivalent to the trivial solution. If  Q+(e) is not a real constant, the function in (2.S) is the 
only nontrivial solution of(2.1) which belongs to L2( H, R+). 

The function Q+(e) is called the Titchmarsh-Weyl coefficient corresponding to the 
canonical system (2.1). A proof of this theorem is given in the last section. 

Example  2.2. Let the Hamiltonian H(x) be given by 

(2.9) H ( x ) = ~ , C ,  x E R  +, 

where ~ denotes 

(2.10) ~' \ s in  , 0 _< ~o < ~r. 

Then H(x) is trace-normed and has rank 1 on R +. The solution W(., g) of the corresponding 
equation (2.3) is given by 

W ( x , e ) =  ( 1 - [ x c o s c p s i n ~  excos2p ) 
-ex  sin 2 r 1 + ex cos ~ sin c 2 " 

Hence the Titchmarsh-Weyl coefficient Q+(e) is given by 

Q + ( e )  = c o t  ~. 

The only solution of (2.1) which belongs to L2(H, R +) is given by 

( 1 ) ( 1 )  
x + ( e )  = x + ( . ,  e)  = w ( . , ~ ) "  _ c o t  ~, = - ~ o t  ~ " 

Clearly, H(x)x+(e) = 0, i.e. the solution X+(e) is equivalent to the trivial one. 
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Define the 2 x 2 matrix N, by 

(sin -- cos.  
(2.11) N, = \cos~, s i n ,  ] ' -7r/2 < u _< 7r/2, 

which is both unitary and J-unitary, and define the function Q+'~(~) by 

tanuQ+(e)  - 1 g E C \ R. 
(2.12) Q+' '(g) = Q+(g) + tan ~/ ' 

For z, = zr/2 it coincides with Q+(g). The 2 x 2 matrix function W~(.,g) = h~W(.,g)  is the 
unique solution of the initial value problem 

(2.13) dI/V"(x'~)J = gW~(z,g)g(x), for a.a. x > 0, W~(0+,g) = N,,. 
dx 

C o r o l l a r y  2.3. The function Q+'"(Z) is a Nevanlinna function. For any Nevanlinna func- 
tion t(g) 

wrl (x, e)t(e) + wry(x, e) 
(2.14) Q+'"(g) = lim ~(x , e ) t ( e )  + ~ ( ~ , e )  

X --)-OO lJ ' 

Moreover, for each f 6 C \ R 

(2.15) 

~ec\R. 

(1 )  
x+,"(e) = ~+,"(.,e) = w~(.,~) * -Q+,"(e) 

1 
= X+(g) C L2(H, R+). 

cos uQ(g) + s i n .  

Proof. Rewrite the right side of (2.14) as 

w11(x, e)t(~) + w12(z, ~) . 
sln U -- cos/.I 

%(x,e)t(~) +%(x ,e )  w~x(x,~)t(~)+w~2(x,e) 

~1(~,  e)t(~) + ~ ( x ,  e) ~11(~, ~)t(e) + ~ ( ~ ,  ~) cos,. + s;n.  
~ ( ~ ,  e)t(e) + ~ ( ~ ,  e) 

Let x --+ oo and apply Theorem 2.1, then (2.14) follows. The definition of W~(x,~) and (2.8) 
imply (2.15). [] 

Hence, the function Q+' '(e) is obtained in a similar manner as the function Q+(g), 
but now relative to the initial condition W~(0+,~) = N~. From (2.12) it follows that 
the Titchmarsh-Weyl coefficients Q+,'(g) and Q+,,(~) are related by the linear fractional 
transformation 

q+,~(~) + tan( .  - ~) 
(2.16) q*,'(e) = f -  t--i-i~n(----~0~'7)' 

see also [9]. The Titchmarsh-Weyl coefficient Q+'~(~) can be interpreted in terms of an initial 
value problem of the form (2.3), when the Hamiltonian H(x) is replaced by N.H(x)NT. ; cf. 
[41]. The following observation is sometimes useful; see [37], [46, Lemma 1.16], [47, Lemma 
2.2]. 
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L e m m a  2.4. Let two canonical systems have the Hamiltonians H(x) and [-I(x), and assume 
that i t (x)  = H(x + 1), x > O. If  W(.,g) is the solution of the equation (2.3) corresponding 
to H(x), then the Titchmarsh-Weyl eoeJ eients and CO+(e) are related by 

(2.17) Q+(g) = wn(l'g)Q+(g) + w~2(l,g) g �9 C \ R. 
(l, (e) + e)' 

3. MAXIMAL AND MINIMAL RELATIONS 

In order to associate with the canonical system (2.1) maximal  and minimal  linear 
relations in the Hilbert  space L2(H, R +) a closer look at the behaviour of the matr ix  function 
H(x) on I~ + is needed. An open subinterval I of I~ + is said to be of positive type,  see [40, 
p.811, if 

f•  e) dx = 0, e �9 C ~ ~ e = 0, 

and it is called H-indivisible of type ~, 0 _< ~ < % if 

H(x) = ~ T  for almost all x �9 I ,  

where ~ is given by (2.10). The equation (2.1) is called definite if the whole interval R + is 
of positive type,  or equivalently if 

(3.1) H(x)e=O,  fora .a ,  x � 9  +, e � 9  2 = > e = 0 .  

The normalizat ion (2.2) implies that  either rank H(x) = 2 or rank H(x) = 1, in which case 
g ( x )  is a n  orthogonal projection of the form H(x) 1- = ~(xf~(~ ) with 

~(x) = \ s i n ~ ( z ) J  ' 0 _< 9(x)  < rr. 

The definition (3.1) gives rise to an alternative for the equation (2.1). To prove this alter- 
nat ive the following local result from [37] will be used. 

L e m m a  3.1. Let I be an open subinterval o fR  +. Then either I is of positive type or I is 
H-indivisible of type ~ for some 0 <_ ~ < 7r. 

Proof. Assume that  I is not of positive type. Then there exists a nontrivial  e �9 C 2 for which 
f~(H(~)e, e) dz = 0 and hence H(x)e = 0 almost everywhere on I. This means that  ker H(x) 
and ran H(x) and thus also H(x) as a projection onto ran g(x )  are constant a.e. on I ,  i.e., 
I is H-indivisible  of type ~, ~ %  = 0. [] 

P r o p o s i t i o n  3.2. The equation (2.1) is either definite or it is of the form (2.9) for some 
0_<~p < 7r. 

Proof. If the equation (2.1) is not definite, then clearly no open subinterval I of R + can 
be of positive type. By Lemma 3.1 this means that  each open subinterval I of R + must  
be H-indivisible  of type ~t. However, if two open H-indivisible intervals have a nonempty  
intersection, their  types must coincide. [] 

The linear relation T+~  in the Hilbert  space L2(H, N +) is defined by 

T+,~ = { { f ,g}  �9 (L2(H,R+))~ : f �9 AC, J f '  = - H g } .  
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This linear relation is made up of pairs of equivalence classes {f ,g},  such that  there exist a 
locally absolutely continuous representative of f ,  again denoted by f ,  and a representative 
of g, again denoted by 9, such that Jr'  = - H g  a.e. on N +. Note that  ,+(g)  as defined in 
(2.8) belongs to ker (T+,x - g), i.e. {x+(e),ex+(g)) E T+,,. Define the linear relation T+in 
as the adjoint of the linear relation T+~x in the graph sense, T+i, = (T+x)  *, i.e., 

T+i, = { {f ,g}  E (L2(H,R+))~ : ({ f ,g} ,{h ,k})  = 0  for all {h,k} E T+~}, 

where ({f,  g}, {h, k}} denotes Ig, h] - [f, k]. The relation between T+i,~ and T+,~ depends on 
the alternative in Proposition 3.2. To show this the following lemma is needed, cf. [33]. 

L e m m a  3.3. Let I C R + be an H-indivisible interval of type 9~. Assume that f is absolutely 
continuous and Jr '  = - H g  a.e. on I. Then ~T f is constant on [. 

Pro@ The identity J f '  = - H 9  is equivalent to f '  = JHg. Hence, if the interval [ is of type 
c 2 it follows from T (~, J ~  = 0, that 

~ r f ' ( x )  T T = G z ~ G g ( ~ ) = o ,  a.e ~ C I  

Therefore ~ f  is constant on I. [] 

P r o p o s i t i o n  3.4. Let the equation (2.1) be of the form (2.9). Then 

T+{~ = T+~, = {0} (9 L2(H, R+), 

i.e. T+in and T+~ are selfadjoint purely multivalued relations. 

Proof. Let {f ,g}  E T+~. Then Lemma 3.3 shows that  ~ J f  is constant on /t~ +. Now f E 
L2(H,R +) implies ~ J f  = 0, so that IIIIIL~(H,R§ = 0. Hence, T ~  + C {0} | L;(H,R+). For 
the reverse inclusion assume that g E L2(H, R+), and define 

I' f(t) = JH(s)g(s) ds, t E R +. 

Then f is locally absolutely continuous, ~ f ( t )  = 0, and {f ,g}  E T+~. Hence the reverse 
i~clusion is proved. Clearly, T~+o, = {0] �9 L~(H,n{ +) is a selfadjoint relation, so that 
T+,~ = (T+~) * : T+~x. [3 

In the rest of this section it is assumed that the equation (2.I) is definite. The 
following lemma goes back to [40]. 

L e m m a  3.5. Let I C R + be an interval of positive type. Assume that f is locally absolutely 
continuous on R + and that J f '  = - H g  a.e. on N +. Then the equation (2.1) is definite, 
and with g fixed, the equivalence class f contains a unique, locally absolutely continuous 
representative, again denoted by f .  

Pro@ The first s tatement is clear. Suppose that J f '  = -Hg,  Jh' = - H k ,  and that  f and 
h, and g and k, respectively, belong to the same equivalence classes. Then 

J ( f ' -  h') : -H(9  - k) : 0, a.e. on ll{ +, 

so that  f -  h is constant on R +, while H ( f -  h) = 0. Hence, it follows fl'om (3.1) that  f = h 
on N +. [] 
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This observation shows that it is possible to associate boundary-values with definite 
equations. The basic result concerning trace-normed definite equations is stated in the next 
theorem; a proof is given in the last section. 

T h e o r e m  3.6. Let the equation (2.1) be definite. If  { f , g} , {h ,k}  E + T ~ ,  then 

(3.2) lira h(x)*J f (x)  = O. 
X--4"OO 

The relation + T ~ ,  is symmetric with defect numbers (1,1). The mapping {f,g} ~ f(O+) 
from the graph of T+ax onto C is a boundary mapping: 

({f, g}, {h, k}} = h(O+)*Jf(O+), (3.3) 

and 

(3.4) T+i~ = { {f, g} E T+a~: f(0+) = 0 }. 

Under the assumption that the equation (2.1) be definite, the linear relation T+i~ 
may still be multivalued. A reduction of T+i~ by means of its multivalued part mul T+i~ 
involves the H-indivisible intervals. Define the linear space L2~(H, R+) of all (equivalence 
classes of) functions f E L2(H, R +) such that H(t) f ( t )  is constant on H-indivisible intervals, 
cf. [33]. More precisely, if I is an H-indivisible interval of type ~, then f E L2(H, IR +) if and 
only if (~ f ( t )  = cv,s, in which case H(t) f ( t )  = cv,]~v almost everywhere on I. It follows 
from Lemma 3.3 that 

(3.5) 
and in particular 

domT +o  C L](H,g+), 

(1) 
(3.6) X+(.,g) = W(.,{)* _Q+(g) E L](H,R+). 

The completeness of L~(H, R +) was proved in [33]. It follows also fi'om the next result. 

L e m m a  3.7. L~(H,R +) is a closed linear subspace of L2(H,R+). 

Proof. Clearly, L~(H,R +) is a linear subspace of L2(H, II~+). To see that it is closed, let 
f ,  E L~(H,R+), f E L2(H,R+), and assume that 

Io n ( f  (t) - f~(t))*H(t)(f(t)  - f~(t)) -+ dt O. 

Then for each H-indivisible interval I of type 

j s ( , ) -  so(,)i s o ( , ) ) ' - ( , ) ( s ( , ) -  + 0 

Now ~ f ~ ( t )  = c~, c~ E C, implies that (cn) is a Cauchy sequence. Hence 

--+ c, c E C, and ~ I ~ f ( t )  - el: dt = O. an  
I 

This shows that f E L~(H, II~+), and the lemma is proved. [] 

To describe the (orthogonal) operator part of T+i~, further results are necessary. 
Some of the technical results below have been greatly influenced by the work [33] of Kac. 
The next lemma concerns the appearance of H-indivisible intervals. 
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L e m m a  3.8. Let f E domT+~x and assume that H f  = 0 almost everywhere on R +. If 
f(xo) ~ 0 for some xo > 0 or if f(O+ ) # O, then there exists ~ > 0 such that 

( 3 , 7 )  ( x o  - xo  + o r  

respectively, is H-indivisible. 

Proof. Since f E domT+~x is continuous there exists r > 0 such that .f(t) ~ 0 if t E 
(Xo - e, xo + r The assumption H(t)f(t)  = 0 (a.e.) implies 

( 3 . s )  n ( t )  = fo r  a .e .  t e (:c0 - :c0 + 

where 0 _< 99(t) < % so that H(t)f(t)  = 0 (a.e.) is equivalent to 

(3.9) cos99(t)fl(t) + sin99(t)f2(t) = 0 for a.a. t E (:c0 - e,:co + e). 

It follows from Jr '  = - H 9  that f , T j f  = 9THf  = 0, so that 

(3.10) f ;(x)f l(x)  -,f~(x).h(x) = 0 a.e. on 1~ +. 

If, for instance, f l(t)  7 L 0 then (3.10) implies that 

(3.11) f2(t) _ constant for t E (:c0 - ~, x0 + e). 
f (t) 

Combining (3.9) and (3.11) gives 

f2(t) 
f l( t)  = - c ~  constant for t E  ( : c 0 - r  

so that 99(t) is constant, say 99, for t E (x0 - ~, :co + e). Hence, (3.8) shows that the interval 
(Xo - r xo + e) is H-indivisible of type 99. Similarly, one proves that if f (0+)  --fi 0, then there 
exists r > 0 such that the interval (0, e) is H-indivisible. [] 

Introduce the nonnegative number n > 0 by 

(3.12) n = sup{ :c > 0 :  (0,:c) is H-indivisible} U {0}. 

Then, either I~ + starts with an H-indivisible interval, in which case n > 0 is the length of 
the maximal H-indivisible interval in which it is contained, or R + does not start with an 
H-indivisible interval in which case n = 0. Moreover, n < oo if and only if the equation 
(2.1) is definite. Note that if ~ = eo then L~(H, R +) = {0}. 

C o r o l l a r y  3.9. Let f E d o m T + ~  and assume that H f  = 0 almost everywhere on R +. 
Then with ~ (~ < co) defined in (3.12), 

( 3 . 1 3 )  = 0 

Proof. Suppose that f (n)  # 0. Then by Lemma 3.8 there exists r > 0 such that the interval 
(n - r ~ + e) when ~ > 0 and the interval (0, c) when ~ = 0 is H-indivisible; a contradiction 
with the definition of ~. [] 

It follows from (3.5) that L2(H,N +) 0 L~(H,R +) C mulT+~.  To show the reverse 
inclusion a description of (mulT+~) Cl L~(H, R +) is needed. 

P r o p o s i t i o n  3.10. The multivalued part of T+,x satisfies 

(3.14) (mulT+:x) nL2,(H,R+)={gEL:~(H,R+): Hg=O a.e. on(a, eo)). 
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Proof. Let g E (mulT+~)  M L~(H,R+), then there exists an element f E L2(H,I~ +) such 
that  { f ,g}  E T+~ and H f  = 0 almost everywhere on R +. The assumption g E L~(H, R +) 
implies that  

(3.15) f(t)  = O, H(t)g(t) = 0, a.e. on (~, oo). 

Since J f '  = -Hg ,  the statement (3.15) follows by showing that  f ( t)  = 0 for all t > n. 
Assume the converse that f(x0) # 0 for some Xo > ~. Let ( m # )  be the maximal H- 
indivisible interval with xo E (a,/3); cf. Lemma 3.8. Since g E L~(H,R +) there exists 
a constant %,g E C such that  [~g(t) = c~,,g almost everywhere on (a, fl). Furthermore, 
f ( a )  = 0 and if/3 < ~ then also f(/3) = 0, otherwise (4,/3) is not maximal.  If/3 < oo, then 

# 0 - -  J ( f ( # )  - f ( ~ ) )  = - H ( t ) g ( t )  e t  = - ~ , , ~ , ( #  - ~), 

and hence c~,,g = 0. I f #  = eo, t h e n g  E L~(H,R +) forces c~o,g = 0. Hence Hg = 0 for 
almost all t E (a,/3) and J f '  = - H g  implies that  f '  = 0 for almost all, and f ( t )  = 0 
for all, t E (a,/3), contradicting f(xo) r 0. Hence (3.15) is proved, and this shows that  
( m u l T + ~ )  N L~(H, lI{ +) is contained in the right side of (3.14). 

To prove the reverse inclusion, let g E L~(H, 1R +) be such that  H(t)g(t) = 0 almost 
everywhere on (n, e~). Assume that  the H-indivisible interval (0, n) is of type ~, so that  
H = ~,(T on (0, n). Define 

f ( t)  = JH(s)g(s) ds, t E R +. 

Then f is absolutely continuous, J f '  = -Hg,  and f(t)  = f(n) = 0 for t E [n, oo). For 
t E (0, n) it follows from the definition that  

Z' ~Jf(t) T T = ~ J~g(s) d~ = O, 

so that H/ = 0 on (0,~). Thus f is equivalent to the null element in L~(H,~+). Since 

{f ,g}  E T + ~ ,  this shows that  g E m u l T + ~  and completes the proof. [] 

C o r o l l a r y  3.11. L2(H, I{ +) = L~(H, ll{ +) �9 (mulT+i~). 

Proof. The statement  is equivalent to 

(3.16) d o m T + ~  is dense in L~(H,I~+). 

To prove this assume that  g E L~(H,[~ +) and that  g E ( d o m T + ~ )  • mul + = T ~ .  Then 
J f '  = - H g  for some f E domT+i~ such that  H f  = 0 almost everywhere on IR +. Since 
T+~ C T + ~  and in particular mu lT+~  C m u l T + ~ ,  Proposition 3.10 implies that  

Hg = 0 a.e. on (n, oo). 

If n > 0, then (0, n) is H-indivisible and it follows from f ( 0 + )  = 0 and (3.13) that  

0 = J(f(n)  - f (0+) )  = -c~,,9~,~. 

This gives c~,.~ = 0 so that  Hg = 0 almost everywhere on (0, n). Therefore Hg = 0 almost 
everywhere on ~+,  and (3.16) is proved. [] 
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The multivalued part of T+i,~ reduces T+i,~ and T+~. The corresponding parts in 
the Hilbert space L~(H, R +) are defined by 

r+min,s : T+min A (L~(H, R+)) 2, T + .... = T+~ N (L~(H, R+)) 2. 

The following result is now obtained as a consequence of the above considerations. 

T h e o r e m  3.12. Let the equation (2.1) be definite. Then the relation T+~,~ is the (ortho 9- 
onal) operator part of T+i~. It is a closed symmetric operator in L~(H,R +) with defect 
numbers (1, 1) whose adjoint is T+~::,s: 

(3.17) (T+m~,~) * = T+m . . . .  . 

It is densely defined if and only if g = O. If ~ > 0 and the interval (0, a) is of type ~, then 
mulT  + is one-dimensional and spanned by w E L~( H, R +) of the form m a x , s  

(3.18) w(t) = ~, a.e. on (0,~), w(t) = 0 a.e. on [~,er 

Proof. The first part of the theorem is obvious by the above considerations. The statements 
concerning the domain of T+~,~ and mulT  + .... can be seen as follows. The identity (3.17) 
shows that  T+~,~ is densely defined in L~(H,R +) if and only if mulT+~,~ = {0}. Now the 
definition of T+~,~ shows that 

mulT  + . . . .  = (mulT+~)  r-I L~(H,R+). 

Hence it remains to use the description (3.14) given in Proposition 3.10. [] 

If T+i~,~ is densely defined, then all selfadjoint extensions are densely defined, and 
hence they are operators. If T+i~,~ is not densely defined, or equivalently, if ~ > 0, then 
there is precisely one selfadjoint extension of T+~ .... which is not an operator; cf. [18], [231, 

[251. 

4. SELFADJOINT REALIZATIONS ON THE HALFLINE 

Assume that the equation (2.1) is definite so that T+i~.~ is a closed symmetric 
operator with defect numbers (1, 1) in L~(H, R+). The canonical selfadjoint extensions of 

+ T~,~,~ will now be characterized. For ~, C (-~r/2, rr/2] define the solution w+(x,g) of (2.i) 
by 

+ 

It follows from (2.8) that 

(4.1) + w~ (x,e) - w~+(x, e) = ~+(x,e)  

Moreover, 

(4.2) 

cos L,Q+(g) + sin ~, \ s in  L,] " 

sin(~, - #) 
(cos .Q+ (e) + s in.)(cos , Q +  (e) + sin ~)'  

x +(x, e)w~(t, ~)* - w~ (x, e)x+( t ,  ~)" = w ( x ,  ~ ) ' J w ( t ,  e). 
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T h e o r e m  4.1. There is a one-to-one correspondence between the selfadjoint extensions 
A+(u) + ofT*~in, s in L~(H,I~ +) andu E (-Tr/2, zr/2] via 

(4.3) dora A+(u) = { f E dora T + .... : sin u f l (0+)  = cos u f2(0+)}.  

The corresponding resolvent operator (A+(,) - g)-I of A+(u) is given by 

(4.4) (A+(,) - g)-lh(x) 

X+(x, g)fo w+ (t, D*H(t)h(t) dt + = + w. (x,g)f~x+(t,D*H(t)h(t) dr, 

where h E L~(H, •+). 

Proof. The parametrization follows from Theorem 3.6; see [2]. To prove the last part denote 
the right side of (4.4) by y(x,g). Clearly y(., g) solves the inhomogenous equation 

(4.5) Jy'(x,g) = -gH(x)y(x,g) - H(x)h(x), for a.a. z > 0, 

see (4.2), (2.4), and (2.6). Moreover, 

(cos 
y(O+,g) = cosuQ+(g) +sinu \ s i n u /  

Denote the left side of (4.4) by z(x,g), then {z(.,g),gz(.,g) + h} E A + C T+a~. Hence, 
z(.,g) also satisfies the inhomogeneous equation (4.5). As z(.,g) E domA +, it satisfies the 
boundary condition in (4.3) and therefore 

z(0+,g) = (cos u) c(g), 
\s in  u /  

for some scalar c(g), whose form follows fiom 

[h, x+ff)] = ({z, ez + h}, 

= X+(0+, [)*Jz(O+, e) = - (cos  u Q+(g) + sin u)c(g), 

see Theorem 3.6. This shows that y(0+, g) = z(0+, g). By the uniqueness of the initial value 
problem for (4.5) it follows that z(., g) = y(., g). [] 

The boundary condition (4.3) for the selfadjoint extension A+(u) is usually written 
as f2(0+) = t anu f~ (0+)  when - ~ / 2  < u < 7r/2, and as f~(0+) = 0 when u = ~/2. For the 
proof of the following result a device in [16], cf. [13], will be used. 

C o r o l l a r y  4.2. The operator + T~i~,~ is completely nonsdfadjoint in L](H, R+). 

Proof. Assume that h E L~(H, I~ +) is orthogonal to all X+(g), g E C \ R. Then it follows 
from (4.4) and (4.2), that 

(A+(.) -" - = W(x,g) J foW(t ,g)g( t )h( t )dt .  

For each x the function on the right side is entire in g. If E,(t) is the spectral family of 
A+(u) then it follows from the Stieltjes inversion formula that [E,(t)h, h] = 0 for all t E ll~. 
Therefore, 

(4.6) s-limt_.~E~(t)h = O. 
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If + + Tm*i~,s is densely defined then (4.6) implies h = O. not If T~+i~,~ is densely defined, select 
u such that  A+(v) is an operator extension of + T~*i~,~ and reach the same conclusion. By 
Krdn ' s  criterion (see [22]) this means that  + T~i~, s is completely nonselfadjoint. [] 

The notion of the Q-function of a (completely nonselfadjoint) symmetric  operator 
and a selfadjoint extension goes back to M.a .  KreYn (cf. e.g. [221). In [10], [11] this notion 
is connected with abstract boundary value spaces and called a Wey] function. 

T h e o r e m  4.3. The Titchmarsh-Weyl coefficient Q+(E) of (2.1) is the Q-function (Weyl 
function) of AQr/2) and T +. 

m * n , s  " 

Proof. Clearly X+(~) E ker (T  + ....  - ~) for all g E C \ l~, so that  
+ 

{ x + ( e )  - ~ + ( ~ ) , t x + ( e )  - ~ x + ( ~ ) )  e r~* . . . .  . 

It follows from (3.6) and (4.3) that  X+(~) -X+(A)  E domA+(:r /2) .  Hence 

( 4 . 7 )  x + ( ~ )  - ~ + ( ~ )  - (d+(~/2)  - ~)-~ x+(~). 

Using (2.5) and (3.6) we observe that  

(~ - ~)[x+(~), x+ (,~)] (1). ( , )  
= J i m  -Q+(A)  (g- ~)foW(t,~)H(t)W(t,g)*dt _Q+(Q 

= - lim _Q~ (W(x,A)JW(x,8*- J) 

= Q+(O - Q+(~)" - l i ~  ~+(x, ~)*Jx+(~, ~). 

According to Theorem 3.6 the last limit is zero, so that  

(4.8) Q+(.e) - Q+(s _ ~ = [x+(O,x+(~)]. 

Together (4.7) and (4.8) show that  Q+(g) is the Q-function of + T~,,,~ and d(~/2) ,  cf. [22].  [ ]  

Since T+min,~ is completely nonselfadjoint, by Corollary 4.2, the Titchmarsh-Weyt co- 
efficient Q+(Z), as Q-function determines T+i,,~ and its selfadjoint extension A(Tr/2) uniquely, 
up to isometric isomorphisms. The canonical system (2.1) on R + provides the unique model 
after the reduction described in the previous section. The selfadjoint extensions of T +. 
can be paxametrized by means of Kre~'n's formula. In the following result the parameters  in 
KreYn's formula are related to the boundary conditions in Theorem 4.1. 

P r o p o s i t i o n  4.4. The resolvents of A+(u) and A+(Tr/2) are connected by 

1 [., x+(~) ]  ' (4.9) (A+(u) - g) - '  = (A+(Tr/2) - g) - '  - X+(g) Q+(g) + tan u 

when g �9 C\  ~. 

Proof. Consider (4.4) for u, -7r /2  < u < 7r/2, ~nd for u = 7r/2. According to (4.1) 

1 
~ - Q + ( t )  + t ~ n  ~, 
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This yields (4.9). [] 

It is a consequence of Theorem 4.3 that  the function Q+'~(g) given in (2.12) is the 
Q-function of the selfadjoint extension A+(u) in Theorem 4.1 and the minimal operator 
T+i .... for each u e (-7r/2,  ~r/2]. To see this, note that it follows from (4.7) and (4.9) that  
X+'~(g) in (2.15) satisfies 

X + ' " ( ~ )  - X + ' " ( A )  = (A+(v) _ ,~)-1 X+,v(A), 
g - A  

while (4.8) implies 
Q+,~(g) _ Q+,.(~)- 

e -  ~ = [x+ ' " (e ) '~+ ' " (~) ]  
+ 

If T~i~, ~ is not densely defined, there is precisely one selfadjoint extension of T+i .... 
which is not an operator. This extension will now be characterized in terms of its Titchmarsh- 
Weyl coefficient. 

T h e o r e m  4.5. Assume that ~ > 0 and that the type of the H-indivisible interval (0, ~) is 
(y. Then for v r ~ + 7v /2 

aim Q+,~(iy) _ O, 
v ~  iy 

(4.10) 

while for  u = ~2 + 7r /2 

(4.11) lira Q+'"(iy_____~) _ n. 
y - ~  iy 

The only selfadjoint extension A+(u) of + T~i .... which is not an operator corresponds to 
v = ~ + 7r/2. 

Proof. Let { f ,g}  E A+(u) so that  s inuf l (0+)  = cosuf2(0+).  Assume that  H f  = 0. Then 
+ eos~f~(0+)  + s i n v s  = 0. I f .  r ~ + 3/2  then f (0+)  = 0, so that { f , g }  E T~, .... by 

Theorem 3.6. Since + T~n, s is an operator, H 9 = 0. This shows that  A+(u) is an operator 
for u r ~ + 7r/2 and hence (4.10) holds. ]t remains to prove (4.11). The Titchmarsh-Weyl 
coefficient Q+,'(g) in (2.16) corresponding to u = ~2 + 7r/2 is given by 

Q+(g) + t a n ~  
Q+,~+~/2(e) = 1 - tan  ~ Q+(~)" 

According to Lemma 2.4 and Example 2.2, Q+(g) can be written as 

(4.12) Q+(g) = (1 - ggcos ~sin~)Q+(Z) + agcos 2 

--ggsin 2 ~ Q+(g) + 1 + ggcos ~sin  ~ '  

where (j+(g) corresponds to the Hamiltonian restricted to [~, e~). A straightforward calcu- 
lation shows that  

Q+(g) + t a n ~  = Q+,~+=/2(e). 
(4.13) Q+,v+,I2 (g) = ag + 1 - tan ~ O + (g) ag + 

The system defined on the interval In, ~ )  is either given by Example 2.2 or it is definite. In 
the first case Q+(g) = cot a with a ~ ~, since the interval (0, g) is maximal  of type 9, and 
then O+'~+'/2(g) is a real constant. In the second case the corresponding minimal operator 
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is nondensely defined if and only if the system on [•, oc) starts with an indivisible interval of 
type a # ~. The corresponding exceptional value is a + r / 2  =fi c 2 + 7r/2. Hence, ~)+,~+./2(f) 
correspond to an operator extension. Therefore, in both cases 

(4.14) lim O+'~+~/~(iY) - O, 
y - ~  iy 

cf. [23], and thus (4.11) follows from (4.13). [] 

E x a m p l e  4.6. A simple example of a trace-normed canonical system shows Mready the 
existence of a nontrivial multivalued part  for its minimal relation, cf. [40]. Assume that  
a # ~ and let H(x) in (2.1) be given by 

H ( x ) = ~ , ~ ,  x � 9  a n d g ( x ) = ~ ,  z �9 (s, oo). 

Then g ( z )  is trace-normed and has rank 1 on (0, co). ;From Example 2.2 and Lemma 2.4 
it follows that  the Titchmarsh-Weyl coefficient is given by 

cos ct + f~ cos qo sin(a - c2) 
Q+(e) = 

sin a + ~ sin ~ sin(a - ~o) " 

By Proposition 3.2 the equation (2.1) is definite. Let { f ,g}  �9 T+~,, + then f , g  �9 L2(H,R +) 
and J f '  = - H g .  Since d o m T + ~  C L~(H,R+),  constant for 0 < z _< ~ and ~J.f(x) 
is constant for x > a. In fact, 5Jf(x) = 0 for z > ~, since f �9 L2(H, N+). Write 

(4.15) f (x )  - f (0+ )  = foJH(t )g( t )  dt, x > O, 

and let 

(4.16) ~J f (0+)  = cj. 

With x > ~ (4.15) implies 

~J( f (x )  f (0+) )  T ~ = ~) fo~ ,g( t )d t ,  - = ~ foJH( t )g ( t )d t  s i n ( ~ -  ~ T 

and hence 

( 4 . 1 7 )  ~ T ~ f ( O + )  - s i n ( ~  = - ~ ) f o ~ g ( t )  dt. 

Conversely, for any constant c and any g �9 L2(H, R +) there is an element f �9 L~(H, R+), 
such that  (4.15), (4.16) with c = cf, and (4.17) are satisfied. In particular, { f ,g}  �9 + T~,~ and 
since the elements f �9 L~(H, R +) are in one-to-one correspondence with constants c I �9 C 
via (4.16), we conclude that  

+ L~(H,R+), g T ~  = {{ f , g}  : f �9 �9 L2(H,R+) }. 

Now Theorem 3.6 together with (4.16) and (4.17) shows that  
+ T~i~ { {O,g} : g �9 L2(H,N+), ~ r = fo ~,g( t )dt  = 0}. 

It is clear from these representations that  mu lT+~  @ L~(H,R +) = L~(H,N +) and that  
dim (T+~JT+,~) dim (T + / T  + ~ 2. In fact, + = = T~i~, ~ = {0, 0} and T + = C @ C. To \ m a x , s l  m i n ~ s /  r n a x , s  

describe the selfadjoint extensions A+(v) + of T~i~, . observe that  f �9 dom A+(v) is equivalent 
to f ( 0 + )  = c(,. It follows from (4.16) and (4.17) that  

A+(v) = { { f ,  g} �9 (L~(H, R+))2 : cos(v - a)cf  = - cos(~, - ~) sin(a - ?)~% }. 
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In particular, this shows that A+(, )  with , = ~ + ~r/2 is a proper relation. In fact, 
= cot(  - + 

5. T~AC' INDIVISIBLE INTERVALS AND SMOOTH PERTURBATIONS 

If the interval R + begins with an H-indivisible interval then all but one of the 
selfadjoint extensions are operators, and the exceptional selfadjoint extension has a nontrivial 
multivalued part. This feature can be read off from the corresponding Titchmarsh-Weyl 
coefficients. Recall that the class N of Nevanlinna functions has a subdivision which can 
be formulated in terms of the functions themselves; cf. [25]. Here the subdivision is given 
in an equivalent form in terms of the corresponding integral representation. If Q(t) E N, 
then there exist a E R, /3 > 0, and a monotone nondecrea.sing function c~(t) for which 

+ 1) < such that  

~ (  1 t ) 
Q(g) = a + fil + t - g  t 2 + 1  da(t). 

The function Q(g) belongs to the Kac class N1 if/3 = 0 and fR da(t)/(it[ + 1) < oc, so that 
for 7 E [r 

Q(g) = 7 + fR t -~g  da(t). 

The function Q(g) belongs to No if it belongs to N~ and fR da(t) < c~. Moreover, Q(g) 
belongs to N-k for some k E N if it belongs to No and f~ It] k da(t) < oc. 

Now assume that n > 0 and that the H-indivisible interval (0, n) is of type ~. 
Then the Titchmarsh-Weyl coefficient Q+(t), T ~ 0, belongs to the subclass No. The 
only selfadjoint extension A+(u) of T+i,,s which is not an operator corresponds to , = 

+ ~r/2. Hence, if ~2 ~ 0, then in particular the selfadjoint extension A+(Tr/2) is an operator. 
Moreover, all selfadjoint operator extensions of T+i~,s are rank one perturbations of A + (7r/2); 
cf. [18], [25]. 

P r o p o s i t i o n  5.1. Assume that ~ > 0 and that the H-indivisible interval (0, ~) is of type 
~ O. Let the element w be as in (3.18). Then 

1 
(5.1) A+(u) = A+Qr/2) + t anu  + cot~o [''w]w' u :~ ~ + 7r/2, 

and 

(5.2) A+(u) = T+,n.s4({0} �9 span {w}), u = ~ + r /2 .  

Proof. Since tr > 0, T ~ , ~  is nondensely defined. The Q-functions Q+,~(g) and Q+,~+~/2(g) 
are related via (2.16), and hence (4.11) implies 

lira Q+'~'(iy) = lira Q+'~+'q2(iy)/iY + t an ( .  -- ~ -- 7r/2)/iy 
y ~  y--*~ l i l y  - tan(. - -  ~ o  - -  7r/2)Q+,v+,/2(iy)/(iy) 

= t a n ( . -  W -  ~/2)a  = - c ~  V -  7r/2), 
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for u 7t c 2 + rr/2. In particular, with u = 7r/2 this gives 

lim Q+(iy) = c o t p .  
y--+oo 

Now the formulas (5.1) and (5.2) follow from [18, Theorem 131 with 1 / r  = tan~2 and 
7 = cot r [] 

Clearly, the symmetric operator T+i,~,~ is a domain restriction of A+(u): 

T + , ~ , , = { { f , g } e A + ( u ) :  [ f ,w]=O},  u # ? + T r / 2 .  

This can also be seen directly. Let {f ,g}  C T + ..... then 

If, ~] = ~ ( t ) ' H ( t ) / ( t )  dt = ,~e~,, i~Jf(O+).  

Note that {~f (0+)  = 0 if and only if f E domA+(~o + 7r/2). Hence, if u r p + 7r/2 and 
f ~ domA+(.) then [f,w] = 0 implies f (0+)  = 0. 

If ~ = 0 so that A+Qr/2) is the only selfadjoint extension of T~+~,~,~ which is not an 
operator, then there is a similar interpretation of the selfadjoint operator extensions as rank 
one perturbations of one of them. 

Now assume that  w e domA+(u) = d o m T  + ..... w 7t ~ + ~ r / 2 .  Let tq = ~ and 
~1 = ~. Then for some 9 C L~(H,R+), JYJ = - H 9 ,  where c) denotes the absolutely 
continuous representative of w in (3.18). By continuity of ~5 

(5.3) ~(~1) # 0, 

while H(x)&(z)  = 0 for a.e. x > ~1. Applying Lemma 3.8 on the interval ( ~ ,  oo) shows that 
(xl, oo) starts with an H-indivisible interval of type ~ = ~2 r ~~ If ~2 = ~ the system has 
the form considered in Example 4.6 and the space L2~(H, R +) is one-dimensional. If ~2 < oo 
then Corollary 3.9 shows that 

(5.4) ~( ,~ ) - -  o. 

Since 

&a(a2) - ga(gl) = JH(s)g(s)  ds = (~2 - ~1)c~2,gG2 , 
1 

it follows from (5.3) and (5.4) that e~2,g r 0, i.e. Hg r 0 on (al, ~2). Applying Proposition 
3.10 on the interval (tq,oo) shows that ~(x) = 0 and g(x )g (x )  = 0 (a.e.) on (a2,oo), 
cf. (3.15). Hence, if ~ ~ domA+(u)  2, v r ~ + rr/2, then 9 = g+(v)w e domA+(v)  = 
dom T+~,~ and the above arguments when applied to g instead of w show that (~::, eo) starts 
with an H-indivisible interval. The case w C domA+(u) ~ can be considered by repeating 
this process. This leads to the following proposition in which also the more general case 
w E dom IA+(u)[ k/2 for some k E N is considered. The corresponding rank one perturbations 
are called smooth. The smoothness of the perturbation element co provides certain stability 
properties of the domains of the operators in (5.1), see [25]. Note that co in (3.18) cannot 
belong to the domain of the extension (5.2). 
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T h e o r e m  5.2. Let k E 51. Assume that tr > 0 and that the interval (0,~) is of type ~. 
Then w E L~(H,R +) given by (3.18) satisfies 

(5.5) ~ ~ dora IA+(~)I k/:, v # ~ + ~ /2 ,  

if and only if either the interval (O, co) starts with k/2 + 1 H-indivisible intervals of finite 
total length K when k is even and with [k/2] + 1 H-indivisible intervals of finite total length K 
and the canonical system restricted to the interval (K, co) has a Q-function which belongs to 
the Kac class N1 when k is odd, or the interval (0, co) consists of l <_ [k/2] + 1 H-indivisible 
intervals, in which case L~(H, N +) is ( l -  1)-dimensional. 

Proof. For the proof we will use the function-theoretic results in [25] concerning the behaviour 
of @functions under fractional linear transforms and the connection to (5.5). 

The statement  is obvious for k = 0. Assume that  k > 0. Let al = n, ~1 = ~, and 
let Q+,vl+,/2(g) be the Titchmarsh-Weyl coefficient corresponding to u = ~ + ~r/2, i.e. the 
Q-function of A+(~ + 7r/2) in (5.2). If k = 1 the statement follows e.g. fl'om [23]. Assume 
that  k > 1. Let ~)+,v1+~/2(~) be the Titchmarsh-Weyl coefficient of the system restricted to 
the interval (al ,  co) and corresponding to the same value v = C~l + rr/2. Then 

Q+,~'+'/~(e) = ~,e  + ~+,~'+~/~(e),  

cf. (4.13), and (~+,v~+,/2(~) satisfies the counterpart of (4.14). According to [25, Theorem 
5.1], (5.5) is equivalent to Q+' '(*) E N-k .  Moreover, Theorem 4.2 and Theorem 4.4 in [25] 
show that  

(5.6) Q+,-(e) E N_a, v # w, + zr/2, if and only if ~)+,~,+,#2(g) E N-k+2. 

This means that  (gl,  co) starts with an H-indivisible interval (~1, n2), say of type ~2 # ?~. 
If a2 = oo, L~(H, Ii~ +) is one-dimensional, and if ~2 < co the minimal operator corresponding 
to the interval (al ,  co) is nondensely defined. Applying the same reasoning now to the system 
defined on the interval (n~, oo), and starting with the H-indivisible interval (nl, n2), produces 
a function O,+'~"+'~/2(t) E N-k+4 (here N2 denotes N),  and decreases the dimension of the 
space L2~(H, R +) by one. Repeating this process [k/2] - 1 times yields the desired result. [] 

If the interval (0, ec) is H-indivisible of type ~, and ~)+(~) corresponds to the Hamil- 
tonian H(x) restricted to (a, co), then it follows from (4.12), that  Q+(g) can be writ ten as 
a continued fraction: 

1 
(5.7) Q+(g) = c o t v +  , 9a # 0. 

1 
- ~ g  sin2 ~2 + - 

Q+(~) - cot ~, 

Here 

which implies 

1 
lim = 0, 
v-~oo iy( ~+ ( iy ) _ cot ~) 

1 
lira iy(Q+(iy) - cot ~) -- 

v-+oo ~; sin 2 ~" 
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This means that the zero order moment of Q+(g) is m0(Tr/2) = ' ~ .  Note that the function 

w is normalized by Hc~I[ 2 = K. This is different from [25] due to the present normalization of 
the Q-function and the linear fractional transforms. 

This process can be repeated for ~)+(e) if w E domA+(v),  v # c2 + ~r/2, i.e. if 
(~+,~,+~/2(f) E No. Then either ~)+(f) has an expression as above with l i m v ~  (~+(iv) = 
cot c22 , ~2 # 0, where c22 # ~1 is the type of the second H-indivisible interval (~1, ~2) or it 
has an expression of the form (4.13) if ~2 = 0. For connections to moments, see [1], [25]. 

6. SELFADJOINT REALIZATIONS ON THE REAL LINE WITH 
INTERFACE CONDITIONS AT ZERO 

In the present section the trace-normed canonical system (1.1) is studied on R, with 
an interface condition at 0. This requires first a treatment of the system on the halfline R- :  

(6.1) Jy'= -eH(x)y, on R- .  

Let L2(H, N-) be the Hilbert space associated with H(x) on R -  with inner product 

f o g(x)*H(x)f(x) dx. 

Define the 2 x 2 matrix function W(-, g) as the solution of the initial value problem 

(6.2) dW(x , f ) j  = gW(x,g)H(x), for a.a. x < 0, l/l/'(0-,g) = I,  
dz 

so that the 2 x 2 matrix function W(.,g)* is the solution of the initial value problem 

(6.3) sdW(x,  D* - .  dx - -gH(x)W(x,g) , for a.a. x < 0, W(0- ,g)*  = [. 

It follows that for g, ,k E C 

(6.4) W(~,e)Jw(~,~)* - J = (e-) , )  W(t,t.)H(t)W(t,),)*dt, x < 0, 

and that the counterpart of (2.6) holds. For any - t (g)  E N (J {c~} the limit 

(6.5) Q - ( e ) = -  lim wH(x,g)t(~.)-[-Wl~(X,e) e E C \ ~ . ,  

exists, is independent of t(e), and belongs to N U {co}. Moreover, for each e E C \ R 

(1) 
(6.6) X-(g) = X-(.,g) = W(.,D* Q_(g) E L2(H, II{-). 

In the Hilbert space L2(H, N-) define the linear relation T ~  by 

T , ~  = { {.f,g} E (L2(H,R-))e  : f E AC, J f ' =  -Hg} ,  

and the linear relation T~i~ by T~i ~ = (T,~)* ,  i.e. 

T,~i~ = { {f ,g}  E (L2(H,R-))2 : [9, h] -  If, k] = 0 for all {h,k} E T(~:}. 

Clearly, X-(g) E ker ( T , ~ -  e), i.e. {x-(e) ,ex-(e)}  e T~o~. The equation (6.1) is called 
definite if the whole interval ( - e %  0) is of positive type, i.e. if the implication (3.1) holds 



Hassi, De Snoo, Winkler 465 

when x E R- .  If the equation (6.1) is not definite, then T , ~  = T ~  is a purely multival- 
ued selfadjoint relation. If the equation (6.1) is definite, then the relation T~i,~ is closed, 
symmetric, and has defect numbers (1, 1). It is given by 

T~in = { {f,  g} E T(~,~: : f (O-) = 0 }. 

As on the halfline l~- there is an orthogonal decomposition 

n2(H, R-) = (mulT~,~) @ n2,(g, R-). 

Define in the Hilbert space L~(H, R-) the corresponding parts of Ts and T,7,~: 

T~,,~,, = Tj~in ~ (L](H, R-)) 2, r~ .... = T ~  N (L](H, R-))  2. 

Then T~i~, , is a closed symmetric operator with defect numbers (1, 1) and its adjoint is given 
by 

(T7~,~,,)" = T7~ . . . .  . 

Define 

1 W(z , / ) .  ( cosy ~ 
w;-(z,~)= cosvQ-(e)+sinv ,,-sinv/" 

Then w~-(x, e) satisfies the counterparts of (4.1) and (4.2). The selfadjoint extensions A-(v) 
of T~i~,, in L~(H,R-) are in one-to-one correspondence with v e (-7r/2,7r/2] via 

domA-(v)  = { f  E domT,~=~ : - s invf~(0-)  = cosy f2(0-)  }. 

The corresponding resolvent operator ( A - ( v ) -  g)-i of A-(v) i s  given by 

(6.7) (A-(v) - e)-lh(x) 

= w 2  (x ,  e ) f f _ ~ o x - ( t  , ~)'H(t)h(t) dt + X-(X, e)f~ dt, 
where h e L2,(H,R-). It is connected to the resolvent operator (A-(7r/2) - /?)-1 of the 
selfadjoint extension A-(7r/2) by Kre~n's formula 

1 
(6.8) (A-(v)  - e) -1 = (A-(7r/2) - s _ X-(e) Q-(e) + tan v ['' x-(g)], 

when s C C \ R. 

Now the equation (1.1) will be considered on I~ with an interface condition at 0. It 
is assumed that the restrictions of (1.1) to lt~ + and N- are definite. Define the orthogonal 
s u m s  

T+i,~,~ @ T(~ i .... A(7r/2) = A+(rr/2) @ A-(7r/2). 

Interpret X+(.,/) and X-(',Z) as functions on N, by a trivial extension to R-  and to R +, 
respectively, and form X(', ~) = (X+( ", g), X-(', g))- Then ):(., 2) is a basis for the eigenspaces 
of (T+{~,,)* e (T~{~,,)*, and the function Q(t?) = diag(Q+(g) ,Q-(( ) ) is  the corresponding 
Q-function for the above orthogonal sums. For h E L2(H, R) = L2(H, N +) E3 L2(H, N-) the 
inner product [h, X(', g)] is defined by 

([h, x+(., 
[h,x(.,~)] = \ [ h , x - ( . , e ) ] )  
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A pair of 2 x 2 matrices (P, T) is called a Nevanlinna pair, when P is an orthogonal projection, 
T is selfadjoint, and 

P T = T P ,  T ( I - P ) = I - P .  

Note that  for any pair of 2 x 2 matrices (U, V) which satisfies 

rank ( U ) = 2 ,  U'V=V*U, 

there exists an invertible 2 x 2 matrix X and a unique Nevanlinna pair (P,T) such that  
U = PX, V = TX; see [22]. 

T h e o r e m  6.1. There is a one-to-one correspondence between the se!fadjoint extensions H 
of T+i~,~ (~T(~i~,~ in L~(H, R +) �9 L~(H, R-)  and the Nevanlinna pairs (P, T) o.f2 x 2 matrices 
via 

(H - Z) -1 = (A0r/2) - e) -~ - x(e)P(Q(e)P + T)-~[ ., x(~)]. (6.9) 

Moreover, 

(6.10) d~ fEd~ P(f2(O+>~=T/f1(O+>~ ' \-f2(0-)] ~f1(0-).] " 
Proof. The present form (6.9) of KreYn's formula can be found in [22]. It is straightforward 
to check that  for any Nevanlinna pair (P, T), the right side of (6.10) defines a selfadjoint 
extension. Now let H be a selfadjoint extension corresponding to the Nevanlinna pair (P, T) 
as in (6.9). Let h E L2(H,R)  and let y(.,g) = (H-e) - lh .  Evaluate the right and left limits 
of y(x,g) at x = 0 via formula (6.9) with the above interpretation of X(',g). It follows from 
(4.4) and v = ~r/2, that  

which gives 

(6.11) y(0+,g)= {(O 1 00) P+ (O 1 00) T}(Q(g)P+T)-I[h,x'(')]. 
Similarly, it follows from (6.7) and v = 7r/2, that 

.0_. , :  .,,_ (00 
and this gives 

,o.., .,o_,,,:{(Oo o 

1 )  Q-(g) P(Q(Z)P + T)-~[h,)/([)], 

~) T}  (Q(g)P + T)-~[h,x([)]. 

The equations (6.11) and (6.12) can be rewritten as 

y~(o-, e)) = -P(Q(e)P + T) -~ [h, x([)], 

and 

( y,(o+,0 
-y~(O-, OJ = -T(Q(~)P + T)- l [h ,  x(Z)]. 
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Now PT = TP yields the desired boundary condition in (6.10). [] 

The Nevanlinna pairs of 2 x 2 matrices (P,T) can be classified according to the 
rank of P, cf. [19], [20], [21]. This leads to a classification of the corresponding selfadjoint 
extensions H, relative to the selfadjoint extension A(Tr/2). If rank P = 2, then (P, T) is 
given by 

(6.13) ( P , T ) =  ((10 01) r tll t12~ "~ 
' t,t~, t ~U  ) " 

The selfadjoint extensions H which correspond to the Nevanlinna pairs of the form (6.13) 
are characterized by the property 

(6.14) H n A(,,12) = T~in, , �9 T:,~,,. 

If rankP = 1, then there exist r l , r  2 E C, Irll 2 + it212 = 1, and r E R, such that (P,T) is 
given by 

(6.15) ( P ' T ) =  ( ( r l )  (~1 r2  ~ 2 ) , T P + ( I - - P ) ) .  

In this case Kreln's formula (6.9) takes the form 

(6.16) ( H  - e) -1 = (A( , r /2 )  - e) -1 
1 

X.,,.~ ( )], 
-x, , . , : (e)  Ir, pQ+(e) + Ir2pQ-(e) + ~[" ' 

where X,l,,2(.,e) = rlx+(-,g)+ r2X-(.,e). Define the symmetric extension S,.I,,.2 of T+i~,~ �9 
T(~in,~ by 

(6.17) s,,,,2 = { { / , g )  e A(H2)  : [ g - e f ,  x,,,,2(~)] = 0}. 

The selfadjoint extensions H which correspond to the Nevanlinna pairs of the form (6.15) 
are characterized by the property 

(6.18) H n A(Tr/2) = S,,,,~. 

Clearly, the cases rl = 0 and r2 = 0 correspond to selfadjoint extensions of A+(rr/2)@ T,7 i .... 
and of T+~,~,:@A - (7r/2), essentially taking place in L~(H, lI{-) and in L2(H, R+), respectively. 
If rank P = 0, then (P, T) = (0, I) and g in (6.9) corresponds to d(Tr/2). 

Now consider the selfadjoint extension H of T+i,~,,@T(~in,, in L~(H, R+)| R-) 
as an extension of T+~n,, by means of the exit space L2,(H, R-). For each e E C \ R there is 
a corresponding ~trauss extension of T+I~,, given by 

T(e) = { {R + (H - e)-~h, (I  + eR + (H - e) -1)h}:  h �9 L~(H, a +) }, 

where R + is the orthogonal projection from L2,(H, N) onto L~(H, R+). In terms of boundary 
conditions, the Strauss extension T(e) of TL~,, is given by 

(6 .19)  T(e) = { { f ,g }  �9 T ~  + . . . .  : f ~ ( 0 + )  = S(e)f~(O+)}. 

An equivalent form in terms of KreYn's formula for compressed resolvents is 

(6.20) . ~+ (H  - e) -1 IL~,(,,,~+)= (A+(: ' r /2) - e) -1 - x+(Z) (Q+(e)  + S ( t ) ) - ' [ . ,  x+(~) ] .  
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In (6.19) and (6.20) S(e) is a Nevanlinna function, depending on Q-(e) and the Nevanlhma 
pair (P, T). 

Corol lary 6.2. The selfadjoint extensions H of T+i~,~ @ T~i~, ~ with the property (6.14) are 
in one-to-one correspondence with the 2 x 2 selfadjoint matrices T = (tiN) via 

dom H = { f C dom T+=~,, (~ dora T,~ .... : 

f2(O+) = t , l f , (O+)  + t l 2 f l (O- ) ,  f2(O-)  = - t 2 l f l ( O + )  - t22f , (O-)  }. 

The boundary condition in (6.19) is given by the Nevanlinna function S(t) in (t.5). 

The symmetric extension S~,~: of T+in,~ �9 Ts defined in (6.17) can be expressed 
in terms of boundary conditions involving rl and r2: 

S,,,,~ = { { f , g }  ~ T % ~ : , , O T ~ ,  . . . .  : 

~1f2(0+) = ~2f2(0-), fl(0+) = f , (0 - )  = 0}. 

Corol lary 6.3. The selfadjoint eztensions H of T+i~,~ @ T~.~ with the property (6.18) are 
in one-to-one correspondence with -c E R via 

dom H = { f E dom T + .... | dom T,~ .... : 

~ , f2(0+)-  f2 .h(0- )=  ~-(~lf~(0+)+ f2f,(0-)),  r2f~(O§ r l f l (0 - )  = 0 ). 

l f  rl 7 ~ O, then the boundary condition in (6.19) is given by the Nevanlinna function S(g) in 
(1.6). 

The result in (6.20) can be rewritten as 

(6 .21 )  (T(e)  e ) - ' h ( = )  - .  oo - = W(x,  e) f l (e) f  o w ( t ,  OH(Oh(t)  dt 

+�89 f oW(t,g)H(t)h(t ) dt - �89 f~W( t , t )H( t )h ( t )  dr, 

when h C L2(H, 11~ +) has ~ compact support. Here the 2 x 2 matrix function f~(e) is given 
by 

, (Q (e )  
(6 .22 )  a ( e )  : - ~ \s ' (e)  

Clearly, ft(~) is a Nevanlinna function: 

11)--1(I --Q(g)~ 
s(e) ) 

(6.23) Ft(Z) - ~(A)* (Q(0eOQ(~)* 0 ) 
g -  ~ = s(e)_s(~ ). �9 

Boundary-value problems similar to (2.1), (1.3) have been studied by A.V. Strauss; see for 
instance [42], [43]. A corresponding exit space is constructed via the Nevanlinna kernel of 
S(g), or rather, via the characteristic function which results after the Cayley transform of 
s(g). The identity (6.23) reflects this construction again, cf. [12], [13], [14]. The work in 
this section has some connections to the investigations of Kac on the spectral multiplicity hi 
[31] (see ~lso [321); these connections will be further studied elsewhere. 
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7. AUXILIARY RESULTS 

This section provides complete proofs for the fundamental Theorems 2.1 and 3.6. 
If the equation (2.1) is not definite, then H(x) is of the form (2.9). In this case Example 2.2 
takes care of Theorem 2.1, and Proposition 3.4 gives a full description of the situation. So 
it suffices to consider the case where (2.1) is definite. The following corollary of Proposition 
3.2 characterizes definite equations, cf. [13], [38]. 

L e m m a  7.1. The equation (2.1) is definite if and only if there exists a compact subinterval 
I o f (O ,~)  such that I is of positive type. 

Proof. The sufficiency is obvious. To prove the necessity, assume that each compact subin- 
terval of (0, oo) is H-indivisible, cf. Lemma 3.1. Hence for each n E N, n > 1, the interval 
[1/n,n] is, say, of type ~ ,  i.e. H(x)  = ~ . ~ T  almost everywhere on [1/n,n]. The type ~n 
of [1/n, n] does not depend on n, i.e. ~ = qo, since the intersection of two intervals is the 
smaller one. Since (0, oo) is a countable union of intervals [1/n, n], n E N, n > 1, it follows 
that g ( x )  = ~ , ~  almost everywhere on (0, oo), so that the equation (2.1) is not definite. 
This completes the proof. [] 

In the rest of this section it is assumed that the equation (2.1) is definite. The 
results in Section 3 up till Theorem 3.6 will be used. In particular, by Lemma 3.5 each 
element in dom T+~ has a unique representative which is locally absolutely continuous on 
(0, oo). In order to show that T+~ is symmetric, introduce the relation T + in L2(H, N+) by 

T + = { {f ,g}  e T+~,: supp f compact }. 

Clearly, the relation To + is linear. 

L e m m a  7.2. Let [a,/3] C (0, co) be a compact interval. / f{!~,r  E To + a n d s u p p p  C [a,~], 
then the function r satisfies 

f (7.1) supp H e  C [a,~], H(t)r  = O. 

Conversely, if the function r C L2(H,R +) satisfies (7.1), then there exists an element ~, 
such that {~, r  �9 T + and supp ~ C [a, ~]. 

Proof. If {~, r  �9 To +, then c2, r �9 L2(H, ll~ +) and r = JHr Hence supp H e  C [a,,/3] and 
since ~(a)  = 0, 

f ~(x) = JH(t)r  dt. 

Since 9@3) = 0, also the second fact in (7.1) has been shown. To see the converse, ]et 
r C L2(H,~ +) and define 

f ~(x) = JH(t )r  dt. 

Then supp~ C [c~,fl] and J ~ ' =  -H~b. Hence {c2,r �9 TO+ and supp~ C [a,/3]. [] 

L e m m a  7.3. The linear relation T + is symmetric and 

T + C (T+) * = T+~. 



470 Hassi, De Snoo, Winlder 

Pro@ Let {f, g} E T+~  and {~o, r E T +- Then 

[g, P ] -  If, ~b] = -~o*J~b I~= 0, 
which shows that T+~  C (T+) *. To show the reverse inclusion assume that {h, k} E (7"+) *. 
Then, by definition, h,k  E L2(H,R+). Let u be a solution of the differential equation 
Ju'  = - H k .  Let [a,/3] be a compact interval. For r E L2(H, IR +) satisfying (7.1), let ~9 be 
as in Lemma 7.2, so that {~, r E T +. Then [~b, hi - [~o, k] = 0 implies 

= k(t)*H(t)2(t)  dt 

= ;3 u'( t)*Jp(t)  dt = - u(t)%r~'(t) dt = u(t)*H(t)~b(t) dt, 

and hence 

• (h(t) - u( t ) )*H(t)r  = O. dt 

According to Lemma 7.2 the functions r  span the orthogonal complement of (the equiva- 
lence classes of) constants on In,/3]. Hence, h(t) - u( t ) i s  equivalent to a constant on [a,/3]. 
Therefore, h has a representative again denoted by h, which is absolutely continuous and 
satisfies dh' = Ju'  = -Hi s  a.e. on [a,/3]. Let I C (0, ec) be a compact subinterval of positive 
type, cf. Lemma 7.1. Lemma 3.5 (more precisely its local analog on [~,/3] D I) shows that 
the absolutely continuous representative h does not depend on the interval [a,/3] D I. Since 
[c~,/3] was arbitrary, it follows that {h, k} E T+~. Hence, (To+) * = T%~ D To + and To+ is 
symmetric. [] 

C o r o l l a r y  7.4. The linear relation T+i~ is closed and symmetric. 

Pro@ Since T+i~ = (T+~) *, the relation T+i~ is closed. Lemma 7.3 implies that T+i~ = 
closT + C T+=~ = (T+i~) * and hence T+in is symmetric. [] 

The following lemma is proved along the lines of [2, p. 39@ 

L e m m a  7.5. For each u E C 2 there exists {~, ~} E T+~ such that ~ has a compact support 
and ~(0+) = u. 

Proof. Choose [0, 7] so that it contains an open subinterval of positive type. Then the 2 x 2 
matrix f~  H(t)  dt is invertible. Hence, there is a vector c E C 2 such that 

Define ~b E L2(H, II~ +) by 

r 0<t<% r t>% 
and define 9~ by 

( / / )  ~(x) = u + JH( t )  dt r  

Then ~ belongs to L2(H,R+),  is absolutely continuous and supp~o C [0,7]. Moreover, 
cp(0+) = u and d~'  = - H e ,  so that {9~, r E T+ax. [] 
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L e m m a  7.6. Let {f ,9},  {h, k} e T+~. Then the following limit exists: 

(7.2) lim h(x)*Jf(z) = h(O+)*Jf(O+) - ({f ,g},  {h, k}). 
~'-"1"OO 

Pro@ Let {f,  g}, {h, k} E T+~x. Integration by parts gives 

(7.3) fo h(t)*H(t)g(t) dt - fo k(t)*H(t)f(t) dt 

= -f~o h(t)*Jf'(t) dt - fo h'(t)*Jf(t) dt 

= - f o  ~Th(t)*Jf(t) dt 

= h(O+)*Jf(O+) - h(x)*Jf(x). 

By definition the left side converges to [g, h ] -  [f, k] as x --+ oo. Hence the limit of h(z)*Jf(x) 
exists as x --+ oz and (7.2) is proved. [] 

The next lemma gives estimates for the defect elements + of T~i,. It makes it possible 
to study the boundary behaviour of any (locMty absolutely continuous) element {f,  g} E T+~x 
at 0 and e~. 

L e m m a 7 . 7 .  Let {f ,  gf} c T+m~, g E C \ R. Then f o r i =  l,2 

I f i ( x ) -  fi(y)[ <_ v~lgJ ]x/~-ylllfll, x ,y > o. 

In particular, for i = 1,2 

lf~(x)[ < x/~(lf~(0+)l + v~lgl Ilftt), x > 1. 

Proof. Since the 2 x 2 matrix H(x) is assumed to be nonnegative and trace-normed, it has 
the form 

H(x) = (~(x) ~(x) 
\/~(x) 1 - a(x)J'  

0 < ~(x) < 1, ~'(~)~ < ,~(x)(1 - o~(.)). The eigenvalues of H(~) are real, have the form a(x) 
and 1 - a (x ) ,  and satisfy 0 < 5(x) _< 1. Assume without loss ofgenerMity that 5(x) < 1 -5 (z ) .  
Clearly, 

0 < det H(x) : a(x)(1 - a(z))  - /3 (x )  2 = 5(x)(1 - 5(x)) < a(x), 

(7.4) 0 < x/~(~)(1 - ~(=)) -I~(=)1 < ~aT-~. 

Now introduce 

~/(x) = san (/3(x))v/a(x)(1 - c~(x)), 7](x) = ~(x) - 7(x). 

Then the first and the second inequality in (7.4) give 

(7.5) (/3(x) + r/(x)) 2 _< a(x)(1 - a(x)),  r/(x) 2 _< 5(x), 

respectively. Define the matrix functions H,(x) and He(x) by 

( L "(o x') H , ( z ) =  \-y(x) 1 - a ( x ) ] '  U=(z )=  77 ) ' 
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(7.7) 

(7.8) 

Observe that  

(7.9) 

so that  H(x)  = H~(z)+H2(x) .  The first inequality in (7.5) gives H~(x)+2H2(x)  >_ O, which 
leads to 

(7.6) +H2(x) <_ H(x)  and 0 _< H~(x) <_ 2H(x).  

Now let { f , U }  ~ T+~o~ so that  (2.1) holds. Then the components  of f '  can be rewrit ten as 

f i ( z )  = -e(X/1  - c~(x){~(x) + , ( x ) f l ( x ) ) ,  f ; (x)  = g ( V z ~ { e ( x )  + rl(x)f2(x)), 

where 

~ ( x )  = ~ 1  - a(x) f2(x)  + sgn (13 (x ) ) x / -~ f~ (x ) ,  

~2(x) = ~ - - ~ ) f l ( x )  + sgn (fl(x))~/1 -- a(x)f2(x) .  

[~x(X)[ 2 = f ( x ) * H l ( x ) f ( x )  = [~2(x)[ 2. 

Now assume that  e.g. x > y. Since f l (x )  - f1(y) = f ~ f ; ( t ) d t ,  it follows that  

Ifx(x) - fl(y)l 

f x ~(t)fl(t)] dt 2 = [e[ 2 Iv/1 - a(t)~l(t)  + 

_< 2]g]2]x - y] [(z(t)] 2 dt + 5(t)[f~(t)] 2 dt , 

where the last inequality follows from (7.5). Due to (7.6) and (7.9), 

(7.10) I~l(t)l ~ dt = f ( t )*Hl ( t ) f ( t )  dt < 2 f ( t )*H( t ) f ( t )  dt < c~. 

Moreover, since 5(x)I  <_ H(x) ,  

5(t)lf~(t)]2 dt <_ 5(t)lf(t)12 dt < f ( t ) * H ( t ) f ( t ) d t  < oz. 

This shows that  [fl(z) - fa(Y)l < 4 lel  - yl []fl[. The proof for the second component  
is similar. [] 

L e m m a  7.8. Let { f ,  g f } ,  {h, Ah) E T+~ for some ~, A E C \ IR. Then, 

(7.11) lira h(x)*J f ( x )  = O. 
x - + c o  

Proof. The s ta tement  (7.11) follows by means of the polarization formula as soon as it is 
shown that  

(7.12) lira u(x)*Ju(x)  = O, 
x - + o o  
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for u(x) = hi(x) + bh(x), a, b 6 C. Define the function ~ by 

~(~) = ~/1 - ~(x)u2(x)  + sgn ( ~ ( x ) ) 4 ~ u l ( x ) ,  

so that 

(7.13) 2 Im ~(x)u2(x) = lu(x).Ju(x)l = 2 Im u,(x)~(x) 

when a(x) ~ 0 and a(x) ~ 1, respectively. Since I~(x)] 2 = u(x)*Hl(x)u(x), the integral 
J o  ]((x)] 2dx converges; cf. (7.6). Hence, for each r > 0 there exists a set M. C ~+, whose 
Lebesque measure is infinite, such that 

C 
(7.14) ]~(x)] < ~ ,  z �9 M,. 

Define 

I;,,~ = lal(If(0+)l  + v ~ l g  I Ilflt) + Ibl(Ih(0+)l + v~I'Xl llhll) �9 
Then it follows from Lemma 7.7 that for i = 1,2, 

(7.15) I~;(~)1 _< I(~,~v~, �9 > 1. 

If a(x)  > �89 then it follows from the first equality in (7.13), (7.14), and (7.15) that for 
x E M~ and x >_ l 

Similarly, if a(x)  < �89 then it follows from the second equality in (7.13), (7.14), and (7.15) 
that f o r x � 9  

lu(z)*Ju(z)l <_ 2v~-]u~(x)ll~(x)l < 2v/2v/~IQ,~-~ = 2v/2eKe,~. 

Hence, for arbitrary r > 0 there exists a sequence {x~) C M~, x~ > 1, such that x~ --+ ce as 
n --+ oo and 

[u(x,~)*Ju(x,~)[ <_ 2x/2r 

Together with Lemma 7.6 this implies (7.12). [] 

Proof of Theorem 3.6. First (3.2) will be proved, i.e. that the limit in (7.2) is zero. Observe 
that if either {f ,g}  or {h,k} belongs to + T~i~, then 

(7.16) lim h(z)*J f(x)  = O. 
Z--+O0 

+ To see this assume that {f ,g}  6 T~i,. For each u e C 2, there exists {~ , r  �9 T+~  as in 
Lemma 7.5, so that 

0 = [g, ~21- If, ~b] = u*Jf(O+), 
+ which implies that f (0+)  = 0. Therefore, if {f ,9} �9 T~i,, then (7.2) implies (7.16). The 

statement (3.2) for arbitrary { f ,g ) ,  {h, k} �9 T+~  follows now from (7.16) and Lemma 7.8 
by means of yon Neumann's formula. 

The first part of the proof shows that + T~i . is contained in the right side of (3.4). 
Conversely, if { f ,g )  �9 + T ~  and f (0+)  = 0 then (3.2) shows that the right side of (7.3) is 
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+ zero for every {h, k} E T+~.  Thus, { f , g }  E T~i,. Finally, the identity (3.3) shows that  the 
mapping {f ,g}  -4 f (0+)  is a boundary mapping from T+~  onto C. This implies that the 
defect numbers of T~i ~+ are (1, 1). [] 

(7.19) 

Thus also 

L e m m a  7.9. The linear fractional transform re(z) = ~ ad - bc ~ O, maps the closed c z + d  
/ 

halfplane into itself if and only if the matrix W =  (~ d)  u p p e ?  ~ satisfies 

(7.17) I ( W * J W -  [det WIJ)  >_ O. 
Z 

Proof. Observe that 

1 (:) (;) (7.18) I re.z1.(() -,~(z~))(cz~ + d)(czl + d) = W * J W  
i 

For z = Zl = z2 = x + iy the right side can be rewritten as ax 2 + 2Im/3x + 7 +  aY z - 2Refly, 
where 

Moreover, [fl[2 _ a7  = I det WIL Now Imm(z)  _> 0 implies a _> 0, 7 -> 0, and 

2alcz + dl~Imm(z) >_ I~u - Re312 - [det W] 2 _> O, 

where the lower bound corresponds to x = - I m 3 / a ,  a > O. For y = 0 this shows that 
IRES[ _> [det W t and further for U > 0 that -Re /3  _> 0, i.e., - R e / ?  > I det W I. If c~ = 0 
then Imm(z)  _> 0 yields -Re /3  = ]det W I. On the other hand, (7.17) is equivalent to a > 0, 
3' _> 0, and 

I ~ + l d e t W I f - < ~ 7 ,  or 2 ( I d e t W f + R e b [ d e t W l ) < _ O .  

This shows that Imrn(z) > 0 for Imz _> 0 implies (7.17). In view of (7.18) the converse 
statement is obvious. [] 

Proof of Theorem 2.1. Recall that it suffices to assume that the equation (2.1) is definite. It 
follows from (2.5) that for Z E C \ R 

/0 w ( z , z ) J w ( ~ , e ) *  - J W(t ,e )H(t )W(t ,e )"  dt > o. ~ _ ~  = 

(7.20) W(x ,  e )*JW(z ,  g) - J ~ _ ~  ~_o. 

Let a > 0 be such that (0, a] contains an interval of positive type, see Lemnn_a 7.1. Their. for 
every x _> a the matrix in (7.19), and hence also the matrix in (7.20), is invertible. To see 
this assume that for some e 

(/o ) W ( t , e ) H ( t ) W ( t , e ) * d t  e = O. 

This implies H ( t ) W ( t ,  g)*e = 0 so that by (2.4) W(t ,  g)*e is constant almost everywhere on 
(0, x], and hence e = 0, since the interval (0, x] is of positive type. The invertibility of (7.19) 
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shows that  for each x k a and ~ E C \ Rt the diagonM elements of (7.19), and therefore all the 
elements of W(x,  g), are nonzero. It follows from (2.6) and (7.20) that  w12(z, g) /wn (x, ~) and 
w22(x,g)/w21(x,g) are Nevanlinua functions. Let x > a, g E C +, and consider the mappings 

f ( z )  = w2,(x,g)z +w22(x,g)' f (z)-= w11(x,e)z..4_w12(ag, e), 

z c c + to Rtto {oo}. Observe that  ] corresponds to W(x ,  s = J W ( x ,  ?.), for which the equality 

w(z ,  e) = w(x ,  g)*JW(x, f) 

holds, and recall that  det W(x,g)  = 1. By Lemma 7.9, f ( z )  and f (z )  map C + U R U { o o )  into 
the closed upper halfplane. It follows from (7.18) and (7.20) that  if f ( z )  = 0 (or f ( z )  = 0) 
then z r RtU{oo},  where the case z = oo is not possible i f x  > a. This means that  
z = -wl~(x,g)/wn(x,g.)  (or z = -w22(x,g)/w21(x,g)) as a function of g is a real constant. 
Thus, in (7.19) the first (respectively the second) diagonal element is zero, which is not 
possible if x > a, since for x > a (7.19) is a positive invertible matrix.  Hence, if x > a the 
mappings f ( z )  and f ( z )  do not have any zeros or poles in C + tO Rt U {co}. The standard 
properties of Mgbius transforms show that  f (z )  maps the closed upper halfplane onto a disk 
D(x) in the upper halfplane with the center at f(co), Co = -w==(x,e) /~=i(x ,e) ,  and the 
radius 

1 
r(x, g) = If (0)  - f (co) l  -- rwu=(z, g)~=,  (z ,  g) - we~(z ,  t ) ~ e e ( z ,  e ) l  

Moreover, D(x2) C D(Zl) for x= > xl. To see this, let s = H(x + xl), z > O, 
and let W(x ,e )  be the solution of (2.1) corresponding to ~r(x). Then W ( x  + xl,g.) and 
W(x~, g)W(z,  g.) satisfy the same initial .value problem, which implies that  

W(:c + Zl,g) = I,V(zl,g)W(z,e). 

Therefore, 

fx=,t(z) = W(x2,e) o z = W(x l ,g )W(x:  - x,,g) o z = W(xl ,g)  o ~ e D(xl) .  

Similarly f (z )  maps the closed upper halfplane onto a disk D(z)  in the upper halfplane with 
the center at f(d0), do = -~12(x ,g) /~n(x ,g) ,  and the radius 

1 
~(x, g) = If(O) - f(do)l = iWl2(X ' g)~ll (x, g) - Wll(X, g)~12 (X, g) l' 

such t h a t / ) ( z 2 )  C / ) ( x l )  for x2 > Xl. Observe that  f o r .  > a, r (z ,g)  < oo and § < oo. 
Now consider the following solutions of (2.1): 

\ ~ j ~ ( x , g ) ) '  j = 1,2. 

By Theorem 3.6 the defect numbers of T+i~, are (1, 1), so that  one of the solutions cannot 
belong to L2(H, Rt+). Hence, it follows from (2.5) and 

1 1 
r(x,e) = Iv=(x,e)*Jv=(z,e)t, § -[v~(x'g)*gvl(x 'g)l '  
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that  either limx~oo r(x, g) = 0 or lim~ooo § g) = 0. In fact, these properties are equivalent 
since f = - 1 / f  and f ,  f do not have any zeros or poles in C + U R U { o c } .  Thus, the 
limit Q+(g) in (2.7) exists and is independent of t(g). Cleazly, Q+(g) is finite and belongs to 
C + UlI(. That  Q+(e) depends holomorphically on g C C + follows easily from the fact that  the 
fraction in the right side of (2.7) is uniformly bounded on [1, oc) with g E K,  I (  a compact 
set in C +, cf. e.g. [1] and [28, Lemma 3.1]. 

To see (2.8) let c > a and define 

Q o ( e )  = = �9 

Observe that  Q~(g) -+ Q+(~) as c -~ oo and that  Q~(g) is a Nevanlinna function. In 
particular, (2.6) shows that  Q~([) = Q~(g) and hence l in~_~ Qr = Q+(g) = Q+([). 
Clearly, X~(c,s = 0 and X~(O,g)*Jx~(O,g) = Q~(g) - Qc(~), so that  (7.19) implies 

fo fo (7 .21)  0 _< < = , 

for b < c. Here xc(t,g) -+ x+(t,~) uniformly for t E [0,b] as c --+ ~ .  Therefore, letting 
c -+ r in (7.21) gives 

/o (7.22) 0 < x+(t,g)'H(t)x+(t, e) dt < Q+(g) - -~+(e) 
_ _ ~ _ ~  , 

for every b > 0, which implies (2.8). 
Finally, observe that  if Q+(g) E I~ then (7.22) implies H(t)x+(g) = 0 for almost 

every t C R +. Hence by (2.4) X+(.,g) is constant which means that  the equation (2.1) is not 
definite and H(x) is given by Example 2.2. [3 
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