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The core structure of the macrolactone cruentaren A (1) was prepared via a ring-closing alkyne metathesis reaction. The corresponding ester
33 was constructed from the benzoic acid derivative 14 and the diol 30. As a key step in the synthesis of acid 14, an aldol reaction resulted
in the required anti-OH/Me pattern. The anti-configuration in the stereotetrad of diol 30 was established by a Marshall reaction.

The macrolide cruentaren ALY is a highly cytotoxic and
antifungal natural product which was isolated by thélelo
group from the myxobacteriuf@yssa@orax cruenta(Figure

1).! With an 1G value of 1.2 ng mt? against the L929

enamides, such as apicularef @d salicylihalamide &:#
Initially, cruentaren A was patented as a pestiCidbet in
the meantime it turned out that it is an inhibitor of
mitochondrial F-ATPase from yedstnterestingly, it does
not inhibit V-ATPase, which is the molecular target of the
benzolactone enamidésOne might speculate that the

allylamine rearranges to an enamide, thus generating a
precursor for an electrophilic acyliminium ion. One should
mention that the allyl amide function is found in other natural
products such as leucascandrolideok ajudazol A?
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Figure 1. Structure of cruentaren Alf and key disconnections.
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Because of its novel structure and interesting mode of

action, we initiated a program aimed at the synthesis of gcheme 1. Synthesis of the Functionalized Benzoic Adid

cruentaren A and analogues thereof. The synthetic scheme
must address the formation of the stereotetrad that extends
into the side chaif? In addition, connection of the aryl part
with the aliphatic sector poses a certain challenge. Most
importantly, the propensity of cruentaren A to rearrange to
a less active six-membered lactone (cruentaren B) under
acidic or basic conditions has to be considered. A retrosyn-
thetic analysis is shown in Figure 1. Thus, theonfigured
allylamine could be fashioned by a Wittig reaction or
reduction of a triple bond. As a key step for macrolactone
formation, a ring-closing alkyne metathesis (RCAM) fol-
lowed by Lindlar reduction was deemed appropriat®f
course, classical macrolactonization strategies (Yamaguchi,
Mitsunobu) might also be consider&dThe stereocenters
at C9 and C10 could be derived from the product of an aldol
reaction. As a key step in the synthesis of a fragment of
type 3 containing the stereotetrad, a Marshall reaction was
envisioned to fashion thanti-configuration at C17/C18. In
this paper, we illustrate the synthesis of the core structure
of cruentaren A based on these key bond-forming reactions.
The synthesis of a benzoic acid building block corre-
sponding to structurg was started with 2,4-dimethoxyben-
zoic acid @), which was allylatetf via the dianion followed
by esterification (Scheme 1). Degradation of the terminal
double bond to an aldehyde function was achieved by a
dihydroxylation/periodate cleavage sequence in good overall
yield.** Aldehyde6 was combined with pentynyloxazolidi-
none7 via an Evans aldol reaction using the standard boron
enolatet® Protection of the secondary hydroxyl function of
aldol produci as a triisopropylsilyl ether using TIPS triflate
and proton sponge as b&&fllowed by reductive cleavage
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of the chiral auxiliary produced the primary alcohbd.
Conversion of the primary alcohol to the corresponding
methyl group was achieved by tosylation of the alcohol and
treatment of the intermediate tosyldlt#& with zinc/sodium
iodidel’” After saponification of the methyl estelr2, the
obtained alkynoic acid3was converted to the dianion which
was alkylated at the acetylide using Mel. This way, the acid
14 containing an internal alkyne required for the alkyne
metathesis could be obtained in a concise manner.

As a key step for creation of the stereotetrad of fragment
3, a Marshall reactiof¥*° of the known aldehyd® 16 with
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propargylic mesylateS)-17 came to use. This transformation
to alkyne 18 proceeded with excellent diastereoselectivity
(22:1) and good chemical yield (Scheme 2). After silyl
protection of the hydroxyl function, the triple bond ©®
was hydroborated with GBH. The vinylborane intermediate
was in situ oxidized to aldehyd20.?* Reduction of the
aldehyde gave primary alcoh®l, which was protected using
3,4-dimethoxybenzyltrichloroacetimidate leading to etfer
in excellent yielc?? Cleavage of the acetonide moiety under
mild conditions (CuGl2H,0, acetonitrile,—5 °C) afforded
diol 2322 Other attempts to cleave the acetal2@ (AcOH
in THF at 50°C, TFA in CHCl,, FeC}/SiO; in CHCls) were
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Scheme 2. Synthesis of the Epoxide Building Blo&&*
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aDMB = 3,4-dimethoxybenzyl, PPTS pyridinium p-toluene-
sulfonate, Cy= cyclohexyl, TBS= tert-butyldimethylsilyl.

unsuccessful. To prepare for the introduction of the alkyne

function, diol 23 was converted to the epoxid®5 using a
one-pot procedur#.

Opening of epoxid@5 with lithium trimethylsilylacetylide
resulted in formation of alcohd6 (Scheme 3). Cleavage

Scheme 3. Synthesis of Diol30 from Epoxide25
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of the carbon-silicon bond and protection of the hydroxyl
function with TBSOTf afforded alkyn28, which then could
be methylated to give propyne deriviativ29. A final
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treatment of the bis-silyl eth&@9 with TBAF furnished diol
30in excellent yield.

Formation of an ester bond between ati#land diol 30
or a monoprotected derivative thereof turned out to be rather
difficult. Using standard Mitsunobt?, Yamaguch?® or
Trost” esterification, no trace of product was observed. Also,
attempts to make the desired ester using peptide coupling
reagents like DCC/DMAP or BOP were not successful.
Another option for esterification of sterically hindered acids
and alcohols relies on the reaction of an acid chloride with
a sodium alcoholate. However, attempted conversion of acid
14 to the coresponding acid chloride was not possible.
Instead, formation of the six-membered lactone was ob-
served. Eventually, we found that the desired e38xrould
be obtained by reaction of the imidazolidine derivati?é
of acid 14 with the putative disodium alcoholate of di80,
prepared by stirring the diol with 2.5 equiv of NaH in DMF
(Scheme 4). This reaction resulted in formation of only one

Scheme 4. Formation of EsteB3 and Its Ring-Closing
Alkyne Metathesis Reaction To Give Macrolactd3ié
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regioisomer. The obtained hydroxy es8# was protected
as the TBS ether to giv83 in 65% overall yield. At this
stage, the regiochemistry of the ester formation could be
inferred from the COSY spectrum of es&3 Most revealing
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in this context were cross-peaks of the ester methine reaction to fashion thanti-OH/Me pattern at C9/C10 and a
hydrogen to the vicinal methylene hydrogen atoms. The Marshall reaction of aldehydk6 with the allenyl zinc reagent
crucial RCAM reaction of este33 proceeded smoothly and  derived from mesylat&7, which established the stereotetrad
resulted in the formation of macrolactoB8 in 91% yield. at C15-C18. As a further key reaction a RCAM reaction of
Thus, addition of the tungsten carbine compg?e34 to a ester33 was used. The presented strategy should allow for
solution of the diyne33 (0.009 M in toluene) and stirring  the synthesis of the natural products as well as analogues
the mixture fo 2 h induced an efficient cyclizatioh:3! for SAR studies.
Creation of theZ-double bond was achieved using Lindlar
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