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Abstract 

 

A network of two synthetic replicators exhibits a critical unidirectional crosscatalytic relationship that 

directs competing replication processes. In this network, nitrone N bearing a 6-methylamidopyridine 

recognition site can participate in two 1,3-dipolar cycloaddition reactions with two maleimides that 

differ in the relative position of their carboxylic acid recognition site — either para (Mp) or meta (Mm) 

relative to the maleimide ring. These two cycloaddition reactions create replicators trans-Tp and trans-

T
m. In isolation, trans-Tp templates its own formation with an efficiency that is markedly greater than 

that of trans-Tm. Kinetic fitting and simulations reveal that this efficiency arises from a higher 

template-mediated rate constant for the cycloaddition and lower stability of the trans-Tp
 template 

duplex, compared to trans-Tm. By contrast, in a situation where M
p and M

m compete for a limited 

quantity of N, the normally less efficient trans-Tm outcompetes trans-Tp. Through a series of 

comprehensive kinetic 19F{1H} NMR spectroscopy experiments, this system-level outcome is traced to 

a critical crosscatalytic pathway, whereby the presence of trans-Tp templates the formation of trans-

T
m, but not vice versa. Replicator trans-Tm also reduces the efficiency of its competitor trans-Tp by 

sequestering trans-Tp in a heteroduplex that is more stable than homoduplex [Tp
•T

p]. The addition of 

different templates as instructions reveals that, while the outcome of competition between replicators 

can be altered selectively, it is limited by the reaction environment employed. These results represent a 

conceptual and practical framework for the examination of selectivity in replication networks operating 

outside well-stirred batch reactor conditions. 
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Introduction 

Networks are the building blocks of the world around us, and their inherent interconnectedness1 often 

exerts an influence over our everyday lives that can be challenging to predict. The all-pervasive 

presence of networks in nature2 is reflected in the number of disciplines currently engaged1c,3 in the 

study of complex systems3a,4 and the properties that emerge through the interactions of their 

components. Chemistry experienced a paradigm shift around twenty years ago as it moved away from 

the study of molecular matter in isolation and, instead, began to embrace the notion of complexity and 

networks. By embracing the nascent field5 of systems chemistry, bottom-up approaches for the design, 

development, and investigation of synthetic chemical models for complex systems have started to 

appear. A phenomenon of particular interest within the field of systems chemistry is replication. In the 

context of complex systems, synthetic replicators present a unique opportunity to study these processes 

using networks constructed from molecules with well-defined structures and with catalytic and 

recognition properties that can be probed and characterized in detail experimentally. The developments 

in the field of systems chemistry to date have produced a remarkable variety of replicating systems 

based on oligonucleotides,6 peptides,7 and small synthetic molecules,8 highlighting and demonstrating 

that the ability to replicate is not exclusive to biological systems based on nucleic acids and equipped 

with extensive enzymatic machinery. In addition to self-replication, these systems were shown to 

express a number of system-level properties such as error-correction,9 stereo-specific replication,10 and 

Boolean logic.11 Peptide-based replicating systems have, in particular, achieved a significant level of 

sophistication, examining networks9,10,11c,12 comprising more than a single replicator—a feature 

significantly less well explored in replicating systems based on oligonucleotides13 and small-organic 

molecules.14 Although the requirements for the operation of minimal self-replicating systems in 

isolation have been established15 firmly, the processes in complex networks in the real world do not 

operate in isolation. For this reason, in this work, we build on our experience in developing self-

replicating systems based on small organic molecules8a,8c,8d,8f,8g,14a–c to design and analyze a network of 

two replicators, connected directly through a shared building block. This network presents a model 

system that allows us to study how reaction and recognition-mediated processes impact and govern the 

preference, i.e., the selectivity, of the network for one replicator over another.  
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 4

Design and methodology 

In order to create a minimal self-replicating system, two components, bearing complementary 

recognition sites, must be connected together by one or more covalent bonds to afford a template that 

can act as a specific autocatalyst for its own formation. Once formed, this autocatalytic template can 

pre-organize the building blocks required for its formation in a ternary complex co-conformation that 

renders their reaction pseudointramolecular. The bond-forming step produces a template dimer, or 

duplex, which exist in equilibrium with the catalytically active monomeric template.  

Here, a network of two replicators is constructed from two maleimides, M
p and M

m, and a 

single nitrone N
[Ref.

 
14c]

 (Figure 1a, Building blocks). The main distinguishing feature of these two 

maleimides and the replicators16 T
p[Ref. 14c] and T

m (Figure 1a, Replicators) arising from their 1,3-

dipolar cycloaddition reactions with N, is in the location of the carboxylic acid recognition site on the 

maleimide component (Figure 1). In particular, Mp integrates8a,8c,14a–c a phenylacetic acid in position 

para relative to the maleimide ring, while M
m incorporates a benzoic acid functionality, in position 

meta with respect to the maleimide ring. For this reason, we use superscript labels p and m to represent 

the para and meta positions of the carboxylic acid recognition site in maleimides (M) and templates 

(T) throughout this work. Initially, these two templates are formed via slow, template-independent 

bimolecular pathways (Figure 1c), typically furnishing two diastereoisomeric products, labeled16 trans 

and cis, in a 3:1 ratio in the absence effects originating from molecular recognition. Once the quantity 

of template formed is sufficient to allow its association with the unreacted components in a 

catalytically active ternary complex, [N•Mp•Tp] or [N•Mm•Tm] (Figure 1b), the template formation 

proceeds with significant acceleration via the autocatalytic cycle. The ability of a template to initiate an 

autocatalytic cycle depends on the strength of the non-covalent recognition-mediated processes (Figure 

1d) that govern the recognition between the network components. For example, a replicator with a 

stronger17 recognition process would typically require a lower template concentration to enable self-

replication to proceed. 

Replicators T
p and T

m possess a recognition unit complementary to the carboxylic acid, 

namely, a 6-methyl-2-amidopyridine ring that is originally associated with nitrone N (Figure 1a). The 

relative positions and identities of recognition sites are conserved in the replicator templates. We 

envisaged that the slight differences in the type and location of the carboxylic acid recognition 

elements in each system would produce a reaction network of two replicators, referred to as the Tp
–T

m 

network, with the potential for crosscatalytic behavior. Hence, reaction of the three individual 

components together allows the formation of a network where both templates can form simultaneously 

(Figure 1b) through two auto- and two crosscatalytic pathways. The ability of the templates Tp and Tm 
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 5

to act as either auto- or crosscatalytic templates allows the network to be instructed to form one 

replicator over another by the addition of preformed Tp or Tm. Ultimately, the ability of our replicators 

to compete for the shared nitrone building block will depend on their ability to take part in these auto- 

and crosscatalytic cycles and for this reason, we wished to undertake a comprehensive kinetic analysis 

of this small network constructed from two self-replicators to develop an understanding of how 

structural changes alter the selectivity for one replicator over another and their role in driving system-

level behavior. 

 
 

Figure 1. (a) A network of two replicators, T
p and T

m, can be constructed using the 1,3-dipolar cycloaddition 
reactions of two maleimides, Mp and Mm, and nitrone N. Superscript labels p and m represent the para and meta location of 
the carboxylic acid recognition site. (b) Maleimides Mp and Mm can react with nitrone N to form two replicators, Tp and Tm 
(central square). Each of these templates can theoretically take part in auto- and crosscatalytic pathways. (c) Maleimides Mp 
and Mm can react with nitrone N also via template-independent pathways, resulting in the formation of catalytically active 
trans diastereoisomers and catalytically inert cis diastereoisomers of Tp and Tm. (d) The recognition between the network 
components is governed by specific association constants. 
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 6

 

Results and discussion 

The first step in the analysis of the T
p
–T

m network is the examination of individual bimolecular 

recognition-independent pathways leading to T
p
 and T

m. Accordingly, we examined (Figure 2) the 

reaction of nitrone N with two control, recognition-disabled maleimides, MpC and MmC. Details of the 

synthetic procedures utilized in the syntheses of all reaction components are provided in the Supporting 

Information. The kinetic analyses of all reaction pathways, facilitated by the presence of the aryl 

fluorine atom present in nitrone N, and all N-derived cycloadducts, were performed using 470.3 MHz 
19F{1H} NMR spectroscopy. In all kinetic experiments reported in this study, one or both of the 

maleimides and the nitrone ([M] = [N] = 5 mM) were allowed to react in CDCl3 at 5 °C, and the 

reaction progress was monitored by recording 470.3 MHz 19F{1H} NMR spectra every 30 minutes over 

a period of 16 h. The concentrations of the reaction components were determined at each time point 

relative to 1-bromo-2-fluoro-4-nitrobenzene, which was present as an internal standard. 

 

Figure 2. Kinetic experiments examining the reaction of N with recognition-disabled maleimides (a) MpC, and (b) 
M

mC, and recognition-enabled maleimides (c) Mp, and (d) Mm, as determined by 470.3 MHz 19F{1H} NMR spectroscopy 
relative to 1-bromo-2-fluoro-4-nitrobenzene as an internal standard. Formation of recognition-disabled cycloadducts trans-
T

pC (empty red diamonds), trans-TmC (empty blue diamonds) and the corresponding cis cycloadducts (filled black 
diamonds) in (a) and (b) proceeds slowly and unselectively. (c) Formation of replicator trans-Tp (no cis product was 
detected) was examined in the absence of template (empty red circles), and in the presence of trans-Tp (filled red circles) 
and trans-Tm (filled blue circles). (d) Formation of replicator trans-Tm (cis-Tm formed <0.5 mM in each case, data omitted 
for clarity) was examined in the absence of template (empty blue circles) and in the presence of trans-Tm (filled blue 
circles) and trans-Tp (filled red circles). Graphs in (e) and (f) show the percentage enhancement factors (%EFs) determined 
in template-instructed ([T]i) experiments (filled symbols in (c) and (d)) relative to the corresponding uninstructed 
experiments ([T]u) (empty symbols in (c) and (d)). Reaction conditions: [all reactants] = 5 mM, 5 °C, CDCl3, 16 h. In each 
case, instructing template was added at 20 mol% (1 mM). Note that the vertical scale in (a) to (d) is identical in order to 
facilitate direct comparison of reaction conversions.  
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 7

 

The control maleimides do not possess the carboxylic acid recognition site required for successful 

recognition of the amidopyridine unit on nitrone component N and the absence of recognition-mediated 

reactivity is clearly evident in the reaction profiles determined for the reaction of MpC with N (Figure 

2a), and M
mC with N (Figure 2b). The formation of both recognition-disabled trans and cis 

diastereoisomers of T
pC and T

mC proceeded very slowly. After 4 h, trans-TpC reached 0.03 mM 

(Figure 3a), while cis-TpC was below the limit of detection at this time. After 16 h, the concentration 

of these two diastereoisomers increased to 0.14 mM and 0.04 mM for trans and cis, respectively 

([trans]/[cis] = 3.8). By contrast, the formation of T
mC proceeded slightly more efficiently, and the 

trans and cis cycloadducts reached concentrations of 0.07 mM and 0.02 mM, respectively, after 4 h. At 

t = 16 h, their concentration increased further to 0.24 mM and 0.10 mM ([trans]/[cis] = 2.5)—almost 

twice as high as those determined for TpC. These results demonstrated that (i) in the absence of the 

carboxylic acid recognition site, the formation of templates can proceed only via the slow template-

independent pathways, and (ii) formation of TmC proceeds noticeably faster than TpC, suggesting that 

replicator T
m might be able to exploit the template-mediated cycle at an earlier time point in the 

reaction that Tp. 

Next, we examined the formation of replicators T
p (Figure 2c, empty red symbols) and T

m 

(Figure 2d, empty blue symbols), from their constituent components. Both reaction profiles are 

sigmoidal, demonstrating the striking effect of recognition-mediated replication processes on product 

formation. At t = 4 h, replicator T
p was formed at a concentration of 0.53 mM, with complete 

diastereoselectivity for the trans cycloadduct (i.e., cis < limit of detection by 19F{1H} NMR 

spectroscopy). This concentration increased further to 3.34 mM after 16 h. The reaction that forms Tm 

was shown to be less diastereoselective, affording trans-Tm and cis-Tm at 0.30 mM and 0.13 mM after 

4 h, respectively. After 16 h, the concentration of these cycloadducts increased to 2.10 mM and 0.40 

mM. The ratio of the two diastereoisomer products ([trans]/[cis]) increased from 2.3 at 4 h to 5.2 after 

16 h. 

 In the next stage of our analysis of this system, the formation of each replicator was examined 

in the presence of 20 mol% (1 mM) of the respective trans template (e.g., Tp added to Mp and N) in 

order to test whether T
p and T

m possess the capacity to template their own formation. The reaction 

profile for the formation of T
p in the presence of T

p (Figure 2c, filled red symbols) and T
m in the 

presence of Tm (Figure 2d, filled blue symbols) revealed disappearance of the lag period in each case, 

thereby confirming the abilities of T
p and T

m to self-replicate. In the presence of the autocatalytic 

template T
p, formation of T

p proceeded with significantly increased efficiency, reaching a 
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 8

concentration of 1.26 mM after 4 h, and 3.69 mM after 16 h. As expected, the addition of preformed 

template induces the most striking enhancement in the concentration of replicator at early reaction 

times. The enhancement in the rate of formation of trans-Tm was, in contrast, less pronounced. The 

concentration of trans-Tm reached 0.86 mM and 2.82 mM after 4 and 16 h, respectively. Catalytically-

inert cis-Tm reached a concentration of 0.09 mM and 0.32 mM after 4 and 16 h, giving [trans]/[cis] 

ratios of 10.1 and 8.1, respectively.  

 Thus far, the kinetic analyses confirmed that both T
p
 and T

m are capable of self-replication. 

Next, we examined the two crosscatalytic pathways—T
m

 acting as a template for the formation of Tp 

(Figure 2c, filled blue symbols) and vice versa (Figure 2d, filled red symbols). To this end, each set of 

reactants was instructed with 20 mol% of the corresponding crosscatalytic template. Interestingly, the 

addition of Tm to the reactants required for the formation of Tp resulted in no observable enhancement 

in the concentration of Tp. In fact, no change in the lag period for Tp formation was observed and the 

reaction profile determined in the presence of T
m was essentially identical to that obtained in the 

absence of instruction. In terms of concentration, cycloadduct trans-Tp reached 0.43 mM after 4 h—

similar to that (0.53 mM) reached in the absence of any instructing template. After 16 h, this 

concentration increased to 3.15 mM. Strikingly, however, instructing the building blocks required for 

the formation of T
m with template T

p resulted in the unambiguous disappearance of the lag period, 

demonstrating that Tp can template the formation of trans-Tm. After 4 h, trans-Tm and cis-Tm were 

formed at concentrations of 0.87 mM and 0.08 mM, respectively. These concentrations increased 

further after 16 h, reaching 2.52 mM and 0.22 mM, respectively ([trans]/[cis] ratios of 10.3 and 11.4). 

The slight increase in diastereoselectivity for the trans product in the presence of preformed T
p 

compared to Tm suggests that template Tp, which locates the two recognition sites at a slightly different 

separation and geometry with respect to each other than Tm, can promote the formation of the trans 

diastereoisomer more effectively than Tm. 

 In order to quantify the changes in replication efficiency observed in the template-instructed 

experiments relative to those lacking any instruction, we calculated the percentage enhancement 

factor18 (%EF) for each trans product determined after both 4 h and 16 h (Figure 2). Examination of 

these results for Tp (Figure 2e) and Tm (Figure 2f) reveals a number of trends. Firstly, the %EFs are 

significantly higher after 4 h than after 16 h, reflecting the fact that the presence of preformed template 

exerts a stronger effect at earlier reaction times when the overall concentration of catalytically active 

template within the uninstructed reaction mixture is typically low. Further, Figure 2e shows that the 

addition of T
p to the building blocks required for its own formation enhanced its formation 

significantly: 138 ± 7% at 4 h, and 10 ± 1% at 16 h. In contrast, the addition of Tm to the same mixture 
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 9

of building blocks resulted in a suppression of Tp formation (4 h = −19 ± 5%, 16 h = −6 ± 1%) relative 

to the uninstructed reaction. This observation suggests that Tp might be sequestered within the [Tp•Tm] 

heteroduplex, which reduces the quantity of free template available for reaction. The same analysis of 

the enhancements determined for Tm reveals that the addition of autocatalytic template Tm (4 h = 185 ± 

15%, 16 h = 36 ± 2%) affords a marginally higher enhancement than the addition of crosscatalytic 

template Tp (4 h = 187 ± 16%, 16 h = 22 ± 1%). Overall, a comparison of the EFs showed that the 

addition of preformed template produces a more significant change in the formation of Tm than in the 

formation of T
p. Most likely, this difference can be attributed to the fact that replicator T

m is less 

efficient at making itself than T
p in the absence of template and is therefore affected less by the 

decreasing availability of the reagents required for its formation at longer reaction times. In summary, 

the comprehensive evaluation of all auto- and crosscatalytic pathways available to Tp and 
T

m confirmed 

that only three catalytic channels out of the four possible operate efficiently.  

 

Kinetic fitting and simulations 

In order to develop a better understanding of the differences in the kinetic behaviors of Tp and 
T

m in 

terms of the key kinetic and thermodynamic parameters that characterize the auto- and crosscatalytic 

cycles, we fitted the reaction time courses shown in Figure 3 to appropriate kinetic models (see 

Supporting Information). These kinetic models describe the interactions and reactions leading to the 

formation of T
p or 

T
m and using established protocols,8a,13b,14a we were able to determine the 

bimolecular reaction rate constants (kbi) for the formation of both trans and cis cycloadducts, the 

unimolecular rate constants (kauto, kcross), and duplex association constants (Ka
Duplex) pertaining to all 

auto- and crosscatalytic pathways (Table 1). 

Table 1.  Overview of rate and duplex association constants determined using SimFit13b for the bimolecular and 
recognition-mediated auto- and crosscatalytic pathways of replicators trans-Tp and 

trans-T
m. The rate constants for the 

formation of catalytically inactive cis diastereoisomers of T
p and 

T
m through the corresponding bimolecular template-

independent pathways were determined to be 0.431 and 0.704 10–4 M–1 s–1, respectively. 
 

Reactions k EMkinetic / M 

Bimolecular 

kbi / 10−4 M−1 s−1 

N + Mp → trans-Tp 1.12 — 

N + Mm → trans-Tm 1.79 — 

Autocatalytic 

kauto / 10−4 s−1 

   [N•Mp•trans-Tp] → [trans-Tp•trans-Tp] 71.6 64.0 

       [N•Mm•trans-Tm] → [trans-Tm•trans-Tm] 17.0 9.47 

Crosscatalytic 

kcross / 10−4 s−1 

   [N•Mp•trans-Tm] → [trans-Tp•trans-Tm] 4.67 4.21 

   [N•Mm•trans-Tp] → [trans-Tp•trans-Tm] 20.3 18.3 
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 10

 
Equilibria Ka EMthermo / M 

Binary 

Ka
Ind / M−1 

N + Mp ↔ [N•Mp] 830 — 

N + Mm ↔ [N•Mm] 3320 — 

Template 

Ka
Duplex / 106 M−1 

trans-Tp + trans-Tp ↔ [trans-Tp•trans-Tp] 17.9 26.0 

trans-Tm + trans-Tm ↔ [trans-Tm•trans-Tm] 68.6 6.22 

trans-Tp + trans-Tm ↔ [trans-Tp•trans-Tm] 35.0 12.7 

    

 
 

These parameters, together with association values for the formation of [M•N] complexes (Ka
Ind) were 

subsequently used to calculate the kinetic effective molarity19 (EMkientic) and thermodynamic effective 

molarity20 (EMthermo) for each replication pathway. Examination of the parameters shown in Table 1 

reveals that both trans and cis diastereoisomeric products of Tm are formed with a higher bimolecular 

rate constant their Tp counterparts. The initial advantage provided to Tm replicator as a result of the 

higher bimolecular rate (Tm should reach the concentration required for initiating autocatalysis earlier 

than Tp) is countered by the lower kauto for the formation of Tm. Comparison of the kinetic profiles and 

values of EMkinetic determined for T
p and T

m confirmed that, in isolation, T
p is significantly more 

efficient at directing its own formation than Tm. The fitting procedure allowed the determination of the 

association constants21 for replicator homoduplexes for trans-Tp (17.9 × 106 M−1) and trans-Tm (68.6 

× 106 M−1), respectively. The higher stability of the [Tm•Tm] duplex relative to the [Tp•Tp] duplex 

indicates that Tm is hindered more significantly by product inhibition than Tp. Interestingly, while Tm 

is associated with a higher duplex stability, it possesses lower EMthermo than T
p. This observation 

suggests a lower degree of complementarity and, hence, cooperativity within the Tm duplex.  

The fitting procedure employed in the determination of kinetic parameters pertaining to the two 

crosscatalytic pathways required the introduction of an additional parameter—i.e., the association 

constant for the formation of heteroduplex [Tp•Tm]. This heteroduplex contains one more rotatable 

bond than [Tm•Tm] and one rotatable bond less than [Tp•Tp] and therefore, its stability should be 

bracketed by the stabilities of the two homoduplexes. Applying rotor increments, as described18a by 

Page and Jencks, the stability of [Tp•Tm] was estimated as 35.0 × 106 M−1, and this value was 

employed in the determination of kcross for the formation of each trans product on the corresponding 

crosscatalytic template (Table 1).  

The parameters obtained through the kinetic fitting of crosscatalytic kinetic data allowed us to 

assess the differences observed in the corresponding time course profiles of both replicators. 

Specifically, Tm was found to be significantly worse at catalyzing the formation of Tp than Tp was at 

catalyzing its own formation. In fact, the EMkinetic for this crosscatalytic pathway was ca. 15 × smaller 

than that determined for the autocatalytic pathway leading to T
p. By contrast, the EMkinetic for the 
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crosscatalytic pathway that involves Tm being made on Tp was actually somewhat higher (18.3 M) than 

the corresponding autocatalytic process (9.47 M). These differences in the relative efficiencies of the 

auto- and crosscatalytic pathways directed by Tp and Tm can explain the absence of a template effect 

for Tp being synthesized on a Tm template. 

An important consequence of the order of stabilities determined for the duplexes in the full 

network ([Tm•Tm] > [Tp•Tm] > [Tp•Tp]), is the preferential incorporation of Tp within the more stable 

heteroduplex [Tp•Tm] in situations where Tm is present at significant concentrations. The kinetic data 

derived from NMR spectroscopy reveals that the exchange between the various template species 

present in solution is fast on the NMR chemical shift timescale (i.e., only a single resonance arising 

from the trans isoxazolidine proton is observed for each replicator). For this reason, we exploited 

kinetic simulations and the relevant reaction parameters obtained through fitting to demonstrate how 

the presence of Tm serves to decrease the amount of catalytically active Tp in solution. Specifically, 

early in the reaction where Tp is being synthesized in the presence of preformed Tm (Figure 3a), the 

higher stability of the [Tp•Tm] heteroduplex relative to that of the [Tp•Tp] homoduplex leads to the 

template Tp formed within the system being sequestered into the more stable heteroduplex. The higher 

proportion of T
p in the [Tp•Tm] heteroduplex than in the [Tp•Tp] homoduplex reduces the catalytic 

availability of this template and, also, the overall rate of production of T
p
 because the [Tp•Tm] 

heteroduplex has a lower Kd. At a certain point in the reaction, however, the concentration of T
p 

reaches a critical threshold and the fraction of Tp bound in the [Tp•Tp] homoduplex becomes higher 

than the fraction present within the [Tp•Tm] heteroduplex.  

By contrast, this order of stabilities exerts the opposite effect on the crosscatalytic pathway 

where the formation of Tm is simulated in the presence of Tp (Figure 3b). In this situation, trans-Tp is 

the dominant product early in the reaction and therefore, the molecules of T
m formed through the 

crosscatalytic pathway are present predominantly in the form of the heteroduplex [Tp•Tm]. This 

heteroduplex is less stable than the [Tm•Tm] duplex that is present exclusively in the absence of Tp, 

resulting in higher concentrations of monomeric of Tm at early time points. Nevertheless, the affinity of 

T
p for Mm and N is lower than the affinity of Tm for these components, and as the concentration of Tm 

continues to increase, homoduplex [Tm•Tm] becomes the dominant species in solution, and the 

efficiency of the crosscatalytic pathway (Tp → Tm) decreases. 
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Figure 3. Simulations predict the distribution of templates T
m and T

p in homo- (full lines) and heteroduplexes 
(dashed lines) in experiments where the reagents required for the formation of (a) Tp are instructed with 20 mol% of trans-
T

m (1 mM), and (b) the reagents for the formation of Tm are instructed with 20 mol% of trans-Tp (1 mM). Templates Tp 
and T

m present within the various categories are represented in red and blue, respectively. Dotted lines represent the % 
content of Tp and Tm in their monomeric form or in other binary complexes. Red and blue arrows highlight the time point in 
the reaction at which the % content of the homoduplex of the template being formed is higher than its content in the 
corresponding heteroduplex. (c) Schematic overview of the catalytic relationship between replicators Tp and Tm. Dashed 
line signifies absence of effective catalysis.  
 

Kinetic analysis of competition between replicators 

Kinetic analyses of our two replicators in isolation established clearly that Tp
 possesses the capacity to 

template both its own formation and to crosscatalyze the formation of T
m, while T

m is capable of 

autocatalytic activity only. Building on these results, we examined these replicators under conditions 

where M
p and M

m compete for the nitrone N building block. In order to explore the possibility of 

directing the reaction network towards selective formation of either Tp or Tm, we employed a series of 

template-instructed experiments. In each of these experiments, an equimolar solution (5 mM) 

containing all three reaction components, N, Mp, and Mm, was prepared in CDCl3 and the formation of 

the replicators was monitored at 5 °C in the absence of any added template using 470.3 MHz 19F{1H} 
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NMR spectroscopy (see Supporting Information, Figure S8). The instructed experiments examined the 

formation of Tp and Tm in the presence of 20 mol% of one or both preformed replicators. A number of 

scenarios were examined — (i) only trans-Tp added, (ii) only trans-Tm added and (iii) both trans-Tp 

and trans-Tm added simultaneously (see Supporting Information, Figure S8). The results of these 

experiments are summarized in Figure 4. Interestingly, the uninstructed competition experiment 

revealed that, as a result of the interplay between the recognition and reaction processes taking place 

simultaneously in the network, the less efficient template trans-Tm reached a higher concentration than 

trans-Tp, the replicator found to be more efficient in isolation ([trans-Tm]/[trans-Tp] = 2.0 after 4 h, 

Figure 4a).  

 

Figure 4. The effect of instructing the T
p–T

m network with preformed template (added at t = 0), on the ratio of 
[Tm]/[Tp] determined after (a) 4 h (black circles) and (b) 16 h (black squares). Dashed lines represent the [Tm]/[Tp] ratio 
determined in the uninstructed kinetic experiments, for comparison. Concentrations were determined using 470.3 MHz 
19F{1H} NMR spectroscopy ([Mp] = [Mm] = [N] = 5 mM, if present, [template] = 1 mM, CDCl3, 5 °C).  

 

In the presence of preformed trans-Tp, added to the reaction mixture at the start of the reaction, the 

observed outcome was altered significantly—the instructing replicator, trans-Tp, outperformed trans-

T
m in the competition for N and the two products were formed in a ratio of 0.80 ([trans-Tm]/[trans-Tp] 

after 4 h, Figure 5a). When preformed trans-Tm was added at the start of the reaction, the network 

displayed the opposite behavior—i.e., formation of replicator trans-Tm was enhanced further ([trans-

T
m]/[trans-Tp] = 2.38 after 4 h, Figure 5a). Interestingly, when both trans-Tp and trans-Tm were used 

to instruct the replication processes simultaneously, the two replicators were formed at a ratio of 0.99 

([trans-Tm]/[trans-Tp]) after 4 h (Figure 5a). The simultaneous addition of both Tp and Tm enhances 

the formation of trans-Tp relative to the uninstructed scenario, nevertheless trans-Tm remained the 

dominant species in solution in this experiment after 4 h. This observation can be attributed to the fact 
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that the formation of replicator trans-Tm proceeds through two template-mediated channels, whilst 

replicator trans-Tp is formed through a single autocatalytic pathway only.  

The ratios of the two replicators, [trans-Tm]/[trans-Tp], were re-examined after 16 h, revealing 

a trend similar to that observed for the %EFs discussed earlier for the auto- and crosscatalytic pathways 

in isolation. Specifically, the values of [trans-Tm]/[trans-Tp] at t = 16 h were determined to be 1.13, 

0.80, 1.58, and 0.93 in the presence of no template, trans-Tp, trans-Tm, and both trans-Tp
 and trans-

T
m, respectively (Figure 5b). Comparison of the ratios determined after 4 and 16 h showed that the 

selectivity in experiments instructed with T
p only changed less over time (4 h → 16 h) than the 

selectivity in experiments employing no template or T
m. These differences in product ratio as a 

function of time can be attributed to the fact that only a single crosscatalytic pathway is active in this 

network and thus, while the presence of T
p affects the formation of both templates, addition of T

m 

enhances the production of itself exclusively. Overall, these results demonstrate that the [trans-

T
m]/[trans-Tp] ratio is strongly dependent on both the reaction time and the identity of the instructing 

template or templates. 

 

Examining the role of the [T
p
•T

m
] heteroduplex 

The kinetic analyses revealed that the two replicators examined in this study exhibit markedly different 

replication efficiencies as a result of small structural changes engineered in their molecular 

frameworks. Although the kinetics of the competition experiments utilized data from 19F NMR 

spectroscopy, 1H NMR spectroscopic data was also acquired at the same time during each of the 

competition experiments. Examination of these 1H NMR spectra revealed interesting changes in the 

chemical shifts of the resonances arising from the trans protons (Figure 5a) on the isoxazolidine rings 

present in T
p and T

m. These changes are visible most clearly in the competition kinetic experiment 

where the reaction mixture is instructed with 20 mol% of Tp (Figure 5a). 

 At the beginning of this reaction, replicator T
p, added at a concentration of 1 mM, is the 

dominant template in solution and no T
m is present at the start of the reaction. In the presence of 

preformed T
p template, M

p, M
m, and N, are transformed quickly into both T

p and T
m. As the 

concentration of Tm increases in the reaction mixture over time, a significant change in the chemical 

shift of the resonance associated with the trans proton present in T
p is observed. However, the 

resonance arising from replicator T
m itself is apparently unperturbed. These observations are 

instructive, since they demonstrate strikingly the ability of replicators Tp and Tm to assemble into both 

homoduplexes ([Tp•Tp] and [Tm•Tm]) and the corresponding heteroduplex ([Tp•Tm]). The presence of 

a single resonance for each template indicates that the exchange between these species is fast on the 1H 
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NMR chemical shift timescale. For each replicator, the observed chemical shift depends on the mole 

fraction of the replicator bound within its homoduplex and the heteroduplex. 

 

Figure 5. (a) Arrayed partial 499.9 MHz 1H NMR spectra showing the changes in the chemical shifts of the 
resonances associated with the trans protons on the isoxazolidine ring of Tp (red) and Tm (blue) replicators formed within a 
competition experiment instructed with Tp template ([Mp] = [Mm] = [N] = 5 mM, [trans-Tp] = 1 mM, CDCl3, 5 °C) over 
time. (b) Overlay of partial 400.1 MHz 1H NMR spectra (RT) showing the trans resonances belonging to the Tp and Tm 
cycloadducts. The chemical shift changes for these trans products were examined at five different conditions: starting with 
T

p only and progressively increasing the content of T
m to 100% (combined concentration of T

p and T
m = 10 mM). (c) 

Simulated changes in the chemical shifts of the isoxazolidine trans proton (see (a)) in trans-Tp (red triangles) and in trans-
T

m (blue triangles), arising as a result of the distribution of these products in homo and heteroduplexes. Data are derived 
from simulations run using Gepasi 3 (Ref. 22), using the duplex association constants determined through fitting of kinetic 
data and estimated/determined chemical shifts for each duplex in the system. 
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In order to develop a better understanding of these chemical shift changes, we examined the 1H 

NMR spectra (Figure 5b) recorded on five solutions of Tp and Tm at a combined concentration of 10 

mM in CDCl3, starting with a composition of 100% Tp and increasing the fraction of Tm progressively 

from 0% to 25%, 50%, 75%, and, finally, 100%. Each mixture was analyzed by 500.1 MHz 1H NMR 

spectroscopy (Figure 5b, for the corresponding 19F{1H} NMR spectra, see Figure S9). These five 

experiments allowed the changes in the chemical shifts arising from the resonances of both replicators 

to be examined under conditions where only homoduplex [Tp•Tp] or homoduplex [Tm•Tm] are present, 

as well as the three intermediate conditions where both homo- and heteroduplexes are present together. 

Analysis of the chemical shift changes observed in the isoxazolidine ring protons colored red and blue 

(Figure 5) as a function of the T
p and T

m composition revealed a markedly different behavior for 

replicator Tp relative to Tm. While the chemical shift of the resonance arising from Tm varied very little 

across the four different compositions examined (25% T
m → 100% T

m), the chemical shift of the 

resonance arising from Tp exhibited a dramatic downfield shift (>0.2 ppm, Figure 5b) as the fraction 

of Tm in the solution increases.  

We modelled the steady state distributions of Tp and Tm within the various product duplexes 

present in solution and, consequently, the expected chemical shift for the resonances arising from the 

isoxazolidine protons present in Tp and Tm (colored red and blue in Figure 5c) by combining the data 

in Figure 5b with the corresponding association constants for the homo- and heteroduplexes 

determined earlier through kinetic fitting. Figure 5c shows the calculated chemical shifts for the 

appropriate proton resonances in Tp and Tm at nine different concentration ratios. Comparison of these 

calculated chemical shifts to the experimentally determined 1H NMR data shows a clear qualitative 

agreement. The high stability of [Tm•Tm] is reflected by the fact that the chemical shift of the 

isoxazolidine proton associated with this product remains virtually unchanged throughout the 

experiments. Since [Tp•Tp] is the least stable duplex, as the concentration of T
m is increased, the 

distribution of T
p is shifted towards the more stable [Tp•Tm] duplex, evidenced by the 0.2 ppm 

downfield shift in the resonance arising from trans-Tp. The analysis of the behavior of the [Tp•Tm] 

heteroduplex demonstrated that the differences in duplex stabilities have a dramatic influence over not 

only the auto- and crosscatalytic efficiencies of the two replicators, but also the chemical shifts of the 

resonances associated with these templates. In this case, we were able to use the thermodynamic 

parameters derived though kinetic fitting to successfully relate the variation in duplex and heteroduplex 

stabilities to the variation in the chemical shifts observed for templates Tp and Tm within the highly 

interconnected network. Additionally, these differences in the strengths of recognition processes that 

underlie the formation of replicators T
p and T

m and the associated complexes/duplexes also help to 
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determine the outcome of competition in this network of replicators—T
m is not only able to exploit Tp 

for its formation, it is also capable of sequestering T
p in a duplex that decreases its availability in 

solution and, as a result, the efficiency of the autocatalytic pathway leading to the formation of Tp. 

 

What governs the outcome of competition in T
p
–T

m network? 

The comprehensive set of kinetic experiments described here allowed us to examine each catalytic 

pathway in isolation and within a number of competition scenarios. The observed results demonstrate 

clearly that the absence of one crosscatalytic relationship (Tm is not a catalyst for the formation of Tp) 

has a significant influence on the behavior of the replicator network in a situation where Tm and Tp 

have to compete for a shared building block. The kinetic fitting demonstrates that there are significant 

differences between the two replicators in terms of the duplex association constants and unimolecular 

rate constants for the reactions that take place on templates. The origin of the disparity in the 

crosscatalytic efficiencies of Tm and Tp, identified by our kinetic simulations and fitting, must lie in 

subtle differences in the stabilities and structures of the ternary complexes, [N•Mp•Tm] and 

[N•Mm•Tp], and the transition states accessed from these complexes. In order to gain a better 

understanding of these processes, we undertook a series of density functional theory calculations that 

examined the structures of the ternary complexes [N•Mp•Tm] and [N•Mm•Tp], the heteroduplex 

[Tp•Tm], and the transition states (TSs) that connect these complexes. All of these calculations were 

performed at the ωB97X/def2-SVP level of theory using a continuum solvation model (PCM) for 

chloroform (see Supporting Information for details). In addition, we compared the transition state 

structures calculated for the template-directed reactions with that computed for the prototypical 1,3-

dipolar cycloaddition of diphenylnitrone to N-phenyl maleimide. Although the relative stereochemistry 

of the forming cycloadduct is controlled very well in favor of the trans diastereoisomer, the absolute 

stereochemical relationships between the templates are more complex. The template-directed reactions 

can proceed by one of two pathways. The stereochemistry of the newly formed replicator can match 

that of the template, for example, RSR-Tp → RSR-Tm — we will refer to this pathway as “matched”. 

Alternatively, the stereochemistry of the newly formed replicator can be mismatched compared to that 

of the template, for example, RSR-Tp → SRS-Tm — we will refer to this pathway as “mismatched”.  
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Figure 6. (a) Calculations reveal that the ternary complexes [N•Mm•Tp] and [N•Mp•Tm] can react to form the 
template duplex [Tp•Tm] through two sets of transition states—in which, the stereochemistries of the forming cycloadducts 
can be either matched or mismatched with respect to the replicator template—giving rise to four possible reaction pathways. 
Calculations were performed at the ωB97X/def2-SVP level of theory using a continuum solvation model for chloroform. 
Energies are in kJ mol–1. Hydrogen bonds are represented by dashed lines. The colored shaded areas indicated by letters are 
discussed in the main text. (b) Structural parameters describing the calculated structures (ωB97X/def2-SVP) for the four 
transition states accessed from either [N•Mm•Tp] or [N•Mp•Tm]. Data for the corresponding parameters for the transition 
state located for the reaction of diphenylnitrone and N-phenyl maleimide are provided for comparison. All distances are in 
Å and angles are in degrees.  
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The consequence of these relationships is that heteroduplex [Tp•Tm], and the transition states leading to 

it, can exist either as a structure in which the stereochemistries of the templates are matched or as a 

structure in which the stereochemistries of the templates are mismatched. We computed the four 

possible pathways—matched and mismatched for both Tp → Tm and Tm → Tp. The results of these 

calculations are summarized in Figure 6.  

In the case of the template duplexes, the matched form of [Tp•Tm] is predicted to be around 

30 kJ mol–1 more stable than the corresponding mismatched duplex. In part, this observation may be 

explained by the presence of stabilizing C–H•••O interactions along the spine of the template (marked 

A and highlighted in blue in Figure 6a) that are present in the matched duplex, but not in the 

mismatched one. Additionally, there are some distortions in the conformations of the fused bicyclic 

cycloadducts present in the mismatched [Tp•Tm] duplex that are required in order to maintain the four 

hydrogen bonds connecting the two templates. 

Comparison of the transition states that were located for the four available pathways reveals that 

one structure—mismatched T
p → T

m (Figure 6a)—is significantly lower in energy than the other 

three. This observation is consistent with the experimental results indicating that T
p can act as a 

catalyst for the formation of Tm, but Tm is not a particularly efficient catalyst for the formation of Tp. 

Comparison of the transition state structures with that of the parent cycloaddition between 

diphenylnitrone and N-phenyl maleimide (Figure 6b) reveals that the mismatched transition state 

[N•Mm•Tp]‡ has a geometry that differs considerably from the other three and from the parent. In this 

transition state, C–O bond formation is more advanced (C•••O = 2.002 Å vs. 2.086 Å in parent TS) and 

C–C bond formation is much less advanced (C•••C = 2.187 Å vs. 2.146 Å in parent TS) than in any of 

the other three transition states accessible from the ternary complexes. This distortion suggests a 

transition state that may be slightly more polar23 that the other three and may be stabilized by a series 

of C–H•••O interactions present along the spine of the template (marked B and highlighted in green in 

Figure 6a). 

Whilst the structures of the transition states and the duplexes have limited conformational 

freedom as they adopt co-conformations that maintain four hydrogen bonds, the ternary complexes are 

much less restricted in a conformational sense. Bruice and Lightstone have shown24 that the rates of 

intramolecular reactions can be related to the fraction of low energy conformations that are present as 

near-attack conformations (NACs). Previously, we have applied25 this type of analysis successfully to a 

recognition-mediated pseudointramolecular cycloaddition reaction. Therefore, when considering these 

structures, we restricted our examination to structures that could be categorized loosely as NACs, i.e., 

we examined the structures in which the termini of the 4π and 2π components of the cycloaddition were 

Page 19 of 31

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 20

in closest proximity. Interestingly, in the lowest energy structure located for each ternary complex, 

there is a striking difference between the distances that separate the reactive termini of the 4π and 2π 

components (C•••O and C•••C) depending on the identity of the replicator that is acting as the template.  

In the ternary complex [N•Mp•Tm], where T
m is templating the formation of T

p, all of the 

C•••O and C•••C distances are above 4 Å and, in the case of matched [N•Mp•Tm], over 5 Å (marked C 

and highlighted in red in Figure 6a). These large distances suggest that the low energy co-

conformations of [N•Mp•Tm] are unlikely to contain a high fraction of NACs. This observation is 

consistent with lower efficiency of this ternary complex determined experimentally. By contrast, in 

[N•Mm•Tp], where T
p is templating the formation of T

m, all of the C•••O and C•••C distances are 

below 4 Å and in the case of the mismatched ternary complex, these distances are both below 3.40 Å. 

These very short distances suggest that the low energy co-conformations of mismatched [N•Mp•Tm] 

are likely to contain a high fraction of NACs and this observation is consistent with this ternary 

complex accessing the lowest energy transition state. 

These calculations also offer a window into a more complex world that is currently beyond the 

reach of our experiments, in which the stereochemical relationships between replicators can play an 

important role in determining the outcome of competition8b,8e,26 between the replicators. Going 

forward, these results demand that, in order to maximize the efficiency of a template-directed process, 

it will be necessary to consider the detailed relationship between individual molecular structures and 

their co-conformations within complexes.  

 

Conclusions 

Small networks of minimal replicators may serve27 as simple models for primitive metabolic pathways 

in that the population of an individual replicator within these networks can be manipulated by 

exploiting the autocatalytic properties of the replicating template in order to specifically upregulate the 

rate of formation of that template. In this work, we describe the experimental implementation of such a 

network constructed from three simple building blocks—two maleimides (Mm and M
p) and a single 

nitrone (N)—that react to create two synthetic replicators (Tm and T
p) that can template their own 

formation. Within this network, the two replicating templates compete for a common reagent, namely 

nitrone N. In order to understand the system-level behavior of this network, it is important to 

characterize each replicator in isolation. In this case, our kinetic studies on T
m and T

p in isolation 

reveal that Tp is the more efficient replicator of the pair. In isolation, Tp benefits from a significantly 

higher effective molarity for the key cycloaddition step than Tm. Additionally, the [Tp•Tp] duplex is 

somewhat less stable than the [Tm•Tm] duplex, thereby ensuring that the concentration of catalytically 
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active, monomeric Tp is higher than in the corresponding reaction involving Tm. The abilities of both 

T
p and Tm to replicate are confirmed by their capacity to template their own formation as evidenced by 

experiments in which pre-formed template is added to a mixture of the nitrone and the appropriate 

maleimide at the start of the reaction. The structural similarity between Tp and Tm opens the possibility 

that a mutual crosscatalytic relationship may exist between these two templates. By exploring the 

response of reactions that form either Tp or Tm to the addition of the other template as an instruction, 

we established that, although Tp can template the formation of Tm, Tm does not catalyze the formation 

of Tp effectively. The absence of reciprocity in the crosscatalytic relationship between Tp and Tm is 

critical to understanding the outcome of experiments in which Tp and Tm are placed in a competitive 

situation. Analysis of experiments in which Tp and Tm replicate in the same flask reveal the apparently 

anomalous observation that the replicator that is less efficient in isolation (Tm) becomes the dominant 

species in the complete network. This observation is a direct result of the presence of the non-

reciprocal crosscatalytic interaction between T
p and T

m, which allows T
m to exploit T

p for its 

formation but not vice versa. The system-level outcome is also driven by the subtle interplay of the 

recognition and reaction processes. Replicator Tm forms more stable complexes and duplexes, which 

allows it to reduce the replication efficiency of Tp by sequestering it within the [Tp•Tm] heteroduplex 

that is more stable than the [Tp•Tp] homoduplex. However, our attempts to direct the competition 

between the replicators using preformed templates under the well-stirred batch reactor conditions 

employed here always result in the erosion of the imbalance between the two replicators generated at 

early time points. This effect is a direct result of the exhaustion of building blocks that limits the 

efficiency of replication processes, thereby preventing the initially dominant replicator from enhancing 

its advantage. This observation illustrates clearly that the ability of one replicator to dominate within 

this network depends not only on its catalytic relationship with the other replicator in the network but 

also their reaction environment. The current work represents a firm foundation for the expansion of the 

study of replicator networks under conditions where dynamic processes or diffusion contribute to the 

outcome of replicator competition—i.e., reaction conditions where replication processes can operate 

with increased efficiency. These studies are currently underway in our laboratory. 
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(a)

C
N

O

Cdtet

[N•Mp•Tm]

Mismatched

[Tp•Tm][N•Mm•Tp]

[N•Mp•Tm]‡

[N•Mm•Tp]‡

0.1662.002 1.289 1.341 2.187 1.393 100.35 102.87

Mismatched d1 θ ɸd2 d3 d4 d5 dtet

[N•Mm•Tp]‡

[N•Mp•Tm]‡

Matched

[N•Mp•Tm]

[Tp•Tm]

[N•Mm•Tp]

[N•Mp•Tm]‡

[N•Mm•Tp]‡

ΔG‡

+95.2

ΔG‡

+88.9 Tp templates Tm

Tm templates Tp

ΔG‡

+96.5

ΔG‡

+98.0 Tp templates Tm

Tm templates Tp

0.1482.096 1.277 1.346 2.128 1.386 96.95 104.37

0.1512.078 1.277 1.346 2.149 1.387 95.25 100.90

Matched d1 θ ɸd2 d3 d4 d5 dtet

[N•Mm•Tp]‡

[N•Mp•Tm]‡ 0.1492.106 1.277 1.348 2.106 1.387 95.26 106.18

0.015— 1.264 1.309 — 1.332 — —

Comparison d1 θ ɸd2 d3 d4 d5 dtet

Reagents
Parent TS 0.1412.086 1.279 1.345 2.140 1.386 96.95 103.09

‡

Relative Energy
0

Relative Energy
+31

‡

‡

‡

B

C

A
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