# ACS Medicinal Chemistry Letters

#### pubs.acs.org/acsmedchemlett

# Optimization of Novel Antagonists to the Neurokinin-3 Receptor for the Treatment of Sex-Hormone Disorders (Part II)

Hamid R. Hoveyda,\* Graeme L. Fraser, Guillaume Dutheuil, Mohamed El Bousmaqui, Julien Korac, François Lenoir, Alexey Lapin, and Sophie Noël

Euroscreen SA, 47 rue Adrienne Bolland, 6041 Gosselies, Belgium

Supporting Information

**ABSTRACT:** Further lead optimization on *N*-acyl-triazolopiperazine antagonists to the neurokinin-3 receptor (NK<sub>3</sub>R) based on the concurrent improvement in bioactivity and ligand lipophilic efficiency (LLE) is reported. Overall, compound 3 (LLE > 6) emerged as the most efficacious in castrated rat and monkey to lower plasma LH, and it displayed the best off-target safety profile that led to its clinical candidate nomination for the treatment of sex-hormone disorders.



 $\begin{array}{l} \text{MW/logD}_{7.4}/\text{TPSA}\\ 358 \ / \ 1.5 \ / \ 77\text{A}^2\\ \text{LLE/LE/Fsp}^3\\ 6.1 \ / \ 0.43 \ / \ 0.31\\ \text{Human NK}_3\text{R}\\ \text{binding } pK_i \ 7.6\\ \text{Ca}^{2+} \ \text{plC}_{50} \ 7.7\\ (\text{antagonist})\\ \text{Orally effective at 3}\\ \text{mg/kg (rat) and 5}\\ \text{mg/kg (monkey) in}\\ \text{LH inhibition assay} \end{array}$ 

KEYWORDS: NK3 antagonist, triazolopiperazine, neurokinin B, LH, FSH, GnRH

T he neurokinin-3 receptor  $(NK_3R)$  is a class A GPCR with neurokinin B (NKB) as its endogenous agonist. We present here the sequel on the lead optimization of *N*-acyltriazolopiperazine NK<sub>3</sub>R antagonists (1 and 2, Figure 1).<sup>1</sup>



Figure 1. Lead progression: iv POC (1), oral POC (2), and clinical candidate (3). (The "magic methyl" groups are shown in red.)

NK<sub>3</sub>R antagonists were speculated as therapeutically relevant for CNS dysfunctions, e.g., schizophrenia, predicated on the "hyperdopaminergic hypothesis", which repeatedly met with clinical failures in over a decade of efforts.<sup>2</sup> Meanwhile, emerging biology has unambiguously established the role of NK<sub>3</sub>R/NKB signaling in reproductive neuroendocrinology. Importantly, recent studies have revealed NK<sub>3</sub>R as a key regulatory component of the hypothalamic–pituitary–gonadal (HPG) axis wherein its tonic activation positively regulates the gonadotropin-releasing hormone (GnRH) pulse frequency.<sup>3</sup> In turn, the GnRH pulse frequency is known to differentially control the circulating levels of luteinizing hormone (LH) versus follicle-stimulating hormone (FSH). Thus, high frequency pulses stimulate LH release, whereas low frequency pulses favor FSH induction.<sup>4</sup> These gonadotropins ultimately act on the ovary and testis to promote production of gametes and sex-hormone release. In 2011, it was reported that patients with a loss of function mutation in NK<sub>3</sub>R display a phenotype of normosomic congenital hypogonadotropic hypogonadism, low plasma LH, and attendant low LH/FSH ratios that could be restored through exogenous administration of GnRH.<sup>5</sup> We have demonstrated elsewhere<sup>6</sup> that the foregoing NK<sub>3</sub>R antagonists slow the LH pulse and decrease circulating LH levels without affecting FSH, consistent with the literature reports.<sup>4</sup> As such, these antagonists are subtle modulators of gonadotropin secretion unlike GnRH ligands that abrogate both LH and FSH with the consequent decline in plasma estrogen to castration levels thereby triggering menopausal-like adverse events such as bone mineral density loss and incidences of hot flashes.<sup>7</sup> Hence, NK<sub>3</sub>R antagonists offer a potentially safer therapeutic approach due to a decreased rather than abrogated GnRH pulse frequency. Collectively, these findings offer a strong rationale for repositioning NK3R antagonists to address sex-hormones disorders such as polycystic ovary syndrome (PCOS) and uterine fibroids (UF), among others.

The synthetic approach to the analogues herein was previously described.<sup>1</sup> With minor modifications, Scheme 1 was used for the GMP scale-up of 3 in overall 42% yield (2.7 kg) with 99.3% purity and >99.9% enantiomeric excess.

Received: March 17, 2015 Accepted: May 19, 2015

ACS Publications © XXXX American Chemical Society





<sup>a</sup>Reagents and conditions: (a)  $Et_3OBF_4$ ,  $Na_2CO_3$ ,  $CH_2Cl_2$ , 45 min, 68%; (b) MeOH, 70 °C, 8 h, 80%; (c) TFA, 2 h, >99% conversion; (d) 4-fluorobenzoyl chloride,  $NaHCO_3$ , 15 min, 97%; (e) recrystallization (EtOH/H<sub>2</sub>O), 97% (DMB = 2,4-dimethoxybenzyl).

The in vitro bioactivity structure–activity relationship (SAR) was established through radioligand binding  $(pK_i)$  and aequorin functional assays  $(pIC_{50})$  data from recombinant human NK<sub>3</sub>R in CHO cells. The lead optimization strategy<sup>1</sup> of combined improvement in both bioactivity and ligand lipophilic efficiency (LLE =  $pK_i - \log D_{7.4})^9$  was maintained. An initial emphasis was placed on LLE as a predictive marker of improved safety profiles.<sup>10</sup> Other efficiency metrics such as LE<sup>11</sup> and Fsp<sup>3 12</sup> (Table 1) were also tracked, though not as a primary focus. The previously discovered "magic methyl" groups in Rings B and D (Figure 1),<sup>1</sup> so-called due to their significant impact in improving potency *and* LLE, remained crucial and rendered feasible improvements in Fsp<sup>3</sup> and LE as well (see below).

To recall, replacing 2-methylthiazole (2) at Ring D with 3methyl-1,2,4-thiadiazole (8) was reported earlier to markedly improve bioactivity and LLE (Table 1).<sup>1</sup> Moreover, 1,2,4thiadiazole is regarded as a means of circumventing bioactivation liabilities potentially relevant to the thiazole ring.<sup>13</sup> These considerations overall prompted us to retain the 1,2,4-thiadiazole, but to modify the 4-(thiophen-2-yl)phenyl in 8 to the 4-fluorophenyl Ring A (i.e., 3) present in the earlier lead structures.<sup>1</sup> Progression from 8 to 3 helped reduce lipophilicity ( $\Delta \log D_{7.4} = -1.5$ ), which not surprisingly rightshifted bioactivity by nearly one log. However, in evaluating 3 against 8, the improved LLE and absence of the thiophene ring (a potential structural safety alert)<sup>14</sup> was considered of greater importance due to the reduced toxicological risk. In addition, 3 was nearly equipotent to the oral POC lead 2, while >1-log superior in LLE. Narrowing our focus on the thiadiazole Ring D and related variants, we observed the following descending trend in bioactivity (Table 1): 1,2,4-thiadiazole (3) > 1,2,4oxadiazole  $(10) \gg 1,3,4$ -thiadiazole (9). As with the Ring A cases, increased lipophilicity in Ring D helped improve bioactivity albeit offset by a loss in LLE, e.g., 11 vs 10 (Table 1). The impact of Rings B and D magic methyl groups on SAR trends was quite pronounced, as expected based on previous results,<sup>1</sup> since the corresponding des-Me analogues of 3, whether at Ring B or D (12 and 13, respectively), were decidedly inferior in both bioactivity and LLE (Table 1). Gem dimethyl Ring B substitution substantially eroded the bioactivity (14 vs 3) in keeping with the unfavorable impact of (S)-Me at this Ring B position (data not shown).<sup>1</sup> Once again, improved bioactivity followed increased lipophilicity whether at Ring A (15) or at Ring D (16) positions, but this gain was negated by a deteriorated LLE against 3. Conversely, replacing 4-fluorophenyl with phenyl at Ring A, i.e., 17, helped diminish lipophilicity, but it also deteriorated bioactivity.

Interestingly, a hydroxyethyl substitution at Ring B (18) afforded an alternative means of reducing lipophilicity ( $\Delta \log D_{7.4} = -0.5 \text{ vs } 3$ ) with minimal impact on bioactivity, thus resulting in a 0.4-log superior LLE vs 3. Despite this, 18 proved inferior to 3 due to P<sub>gp</sub> efflux that in turn markedly diminished its brain exposure level (Table 2 and discussion further below).

The hERG SAR herein (Table 1) was governed by the interplay between lipophilicity and the hydrogen-bond acceptor (HBA) count in the heteroaryl Ring D, as previously reported.<sup>1</sup> For instance, in progressing from 8 to 3 ( $\Delta \log D_{74} = 1.5$ ), the hERG  $IC_{50}$  was improved by over 12-fold. However, the poor hERG IC<sub>50</sub> = 1.6  $\mu$ M in 11 (log $D_{7,4}$  = 1.7) was in keeping with the increased HBA count in the Ring D oxadiazole (N + N +O) in stark contrast to the thiadiazole (N + N) Ring D variations (3 and 15-18), all of which displayed a superior hERG, IC<sub>50</sub>  $\geq$  39  $\mu$ M (logD<sub>7.4</sub> = 1.3-2.4). Interestingly, the Ring B hydroxyl group in 18 did not adversely impact hERG  $(IC_{50} = 50 \ \mu M)$  suggesting that the HBA effect on hERG SAR is primarily a Ring D related effect. Finally, the Ring B magic methyl also reduced hERG efficacy, i.e., 3 (IC<sub>50</sub> > 100  $\mu$ M) vs 12 (IC<sub>50</sub> = 50  $\mu$ M). Compound 3 was the best overall in the hERG and CYP safety profile evaluation.

Based on the free drug hypothesis, the unbound fraction rather than total drug is relevant for PKPD analysis.<sup>15</sup> The NK<sub>3</sub>R is mainly expressed on KNDy neurons in the ARC region of the hypothalamus<sup>3</sup> that is part of the circumventricular organs lacking blood-brain barrier and are therefore exposed to blood solutes.<sup>16</sup> As such, both the unbound plasma  $(f_u)$  and the unbound brain levels  $(bf_u)$  must be considered here (Table 2). While lipophilicity alone does not correlate well to albumin binding, this trend is often apparent in a congeneric series.<sup>17</sup> Hence, a compound with balanced lipophilicity such as 3 (log $D_{7,4} = 1.5$ ) displayed high  $f_u$  and  $bf_u$  levels (>50%) in contrast to the more lipophilic congeners, e.g., 16 (Table 2). It is noteworthy that despite an increase in unbound plasma concentration, the systemic clearance levels  $(CL_T)$  remained low (e.g., 3, Table 2). The comparatively lower  $CL_T$  in para substituted phenyl Ring A (3, 15) against the unsubstituted congener 17 is likely due to the metabolic blocking effect. All analogues except 18 displayed high Caco-2 permeability with no evidence of appreciable  $P_{gp}$  efflux (ER = 0.6-1.2), consistent with the high oral availability (%F) and brain-toplasma ratios observed. The so-called Pgp rule-of-4 suggests that increasing the number of HBA atoms to  $(N + O) \ge 8$  tends to confer an increasing likelihood of  $P_{gp}$  efflux.<sup>18</sup> This is in keeping with the  $P_{gp}$  efflux in 18 (ER = 3.8) given its HBA atom count (N + O = 8). As with  $2^{1}_{2}$  a complete oral absorption (%F > 100) was also observed in rat with compound 12 and in monkey with 3. This phenomenon is well-known and various underlying causes have been reported.<sup>19</sup> No drug accumulation was observed in 5-day once-daily oral dosing studies in rats (3 and 12) or monkeys (3), despite administration of elevated doses (e.g., up to 1 g/kg in rats with 12), in step with the relatively short half-life values and the previous related observations with 2.<sup>1</sup> Moreover, no adverse hepatotoxicity (AST, ALT, and bilirubin levels normal) was detected in these subchronic studies. Furthermore, 3 displayed the highest  $bf_u =$ 0.525 and brain unbound concentration ( $C_{\text{brain,u}} = 343 \text{ nM}$ ) herein (Table 2). In contrast, 18 although nearly completely unbound in the brain displayed a comparatively low  $C_{\text{brain.u}} =$ 45.6 nM consistent with its elevated  $P_{gp}$  efflux ratio.

#### ACS Medicinal Chemistry Letters

| Table 1. Human NK <sub>3</sub> R In Vitro | Bioactivity, LogD <sub>7.4</sub> , I | igand Efficiency Metrics, <sup>10</sup> | <sup>-12</sup> and Off-Target Safety SAR |
|-------------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|
|-------------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|

. . . .

| Cpd | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pK <sub>i</sub> , pIC <sub>50</sub> | $\log D_{7.4}^{a}$ | LLE | LE   | Fsp <sup>3</sup> | CYP panel IC <sub>50</sub> (µM) <sup>b</sup> | hERG IC <sub>50</sub> $(\mu M)^c$ |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------|-----|------|------------------|----------------------------------------------|-----------------------------------|
| 1   | See Figure 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.7, 7.7                            | 5.0                | 3.7 | 0.33 | 0.15             | 19, 7, 3, 4, 21                              | 1.4                               |
| 2   | See Figure 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.9, 7.8                            | 3.1                | 4.8 | 0.38 | 0.24             | 50, >100, 21, 34, 26                         | 24                                |
| 3   | See Figure 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.6, 7.7                            | 1.5                | 6.1 | 0.43 | 0.31             | 90, >100, 42, 48, >100                       | >100                              |
| 8   | The second secon | 8.5, 8.4                            | 3.0                | 5.5 | 0.41 | 0.24             | 79, 39, 13, 19, 67                           | 8                                 |
| 9   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0, 4.8                            | 0.8                | 4.2 | 0.28 | 0.31             |                                              |                                   |
| 10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.9, 6.8                            | 0.7                | 6.2 | 0.39 | 0.31             | >100, >100, 42, 34, 86                       |                                   |
| 11  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.6, 7.4                            | 1.7                | 5.9 | 0.39 | 0.39             | >100, >100, 64, 56, 100                      | 1.6                               |
| 12  | N-S N-N F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.0, 6.8                            | 1.2                | 5.8 | 0.41 | 0.27             | >100, >100, 82, 56, >100                     | 50                                |
| 13  | F N N N N F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.9, 5.9                            | 1.1                | 4.8 | 0.34 | 0.27             |                                              |                                   |
| 14  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.7, 6.2                            | 2.0                | 4.7 | 0.36 | 0.35             | >100, >100, 12, 4, 51                        |                                   |
| 15  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.7, 7.5                            | 2.0                | 5.7 | 0.43 | 0.31             | >100, 88, 7, 50, 99                          | 66                                |
| 16  | F <sub>3</sub> C <sub>N</sub> N <sub>N</sub> N <sup>(R)</sup> <sub>N</sub> N <sub>N</sub> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.1, 8.2                            | 2.4                | 5.7 | 0.40 | 0.31             | >100, >100, 45, 57, 54                       | 39                                |
| 17  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.3, 7.2                            | 1.3                | 6.0 | 0.42 | 0.31             | 31, >100, 12, 17, 63                         | 50                                |
| 18  | N-S N-N OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.5, 7.1                            | 1.0                | 6.5 | 0.39 | 0.35             | >100, >100, 77, 54, >100                     | 50                                |

 $^{a}N = 3$ , %RSD  $\leq 5$ .  $^{b}$ CYP 3A4, 2D6, 2C9, 2C19, and 1A2, respectively (N = 2, <10% variability).  $^{c}N = 3$ , coefficient of variation < 6%.

The key PKPD parameters for interpreting the LH inhibition data are the unbound plasma and brain levels normalized with respect to the bioactivity, i.e.,  $C_{\text{plasma,u}}/K_i$  and  $C_{\text{brain u}}/K_i$  (Table 3).<sup>1</sup> The plasma and brain levels were determined at the  $T_{\text{max}}$ for the minimum effective dose (MED). As noted before for **2** and **8**,<sup>1</sup> a statistically significant effect was attained at  $C_{\text{plasma,u}}/K_i \ge 7.6$  and  $C_{\text{brain,u}}/K_i > 1$  in rat oral LH inhibition studies. This was also the case here, i.e., for analogues **3**, **12**, and **16–18**, with MED values ranging from 3 mg/kg (3) to 30 mg/kg (**12** and **17**). For example, in rats, **3** was 20-fold more efficacious in vivo against the initial POC lead **2** despite being 3-fold right-shifted in  $K_i$ . This ameliorated efficacy is reflected in their respective MED-normalized plasma and brain PKPD parameters (Table 3, the last two columns). Otherwise stated, the >1-log LLE superiority of 3 vs 2 underscores the greater unbound exposure levels and consequently the greater in vivo efficacy of 3. Likewise, the monkey LH data (Figure 2) mirrored these trends with 3 4-fold more efficacious (MED levels) although nearly equipotent to 2 in monkey  $K_i$  values (Table 3) in keeping with the significantly better MED-normalized plasma PKPD parameter for 3 vs 2.

In summary, **3** proved a superior lead candidate based on bioactivity, LLE, LE, and Fsp<sup>3</sup> (Table 1) criteria. Apart from its excellent hERG and CYP safety profile, **3** was highly efficacious in LH inhibition, showed >2.5-log selectivity against NK<sub>1</sub>R and NK<sub>2</sub>R subtypes, proved >300-fold selective against related HPG axis receptors<sup>1</sup> (KOR, GnRH, GnIH-R, GPR54), and was highly selective in the broad CEREP off-target screen (<25%)

|                        | Ca<br>( | aco-2 P <sub>a</sub><br>nm/sec) | pp  |         |                   |                   |                               |                             |           |                                   |                              |                    |      |
|------------------------|---------|---------------------------------|-----|---------|-------------------|-------------------|-------------------------------|-----------------------------|-----------|-----------------------------------|------------------------------|--------------------|------|
| Cpd                    | AB      | BA                              | ER  | species | plasma $f_{ m u}$ | brain $f_{\rm u}$ | C <sub>plasma,u</sub><br>(nM) | $C_{ m brain,u}\ ({ m nM})$ | $(B/P)_u$ | iv Cl <sub>T</sub><br>(min/mL/kg) | iv V <sub>ss</sub><br>(L/kg) | iv $T_{1/2}$ (min) | %F   |
| $2^b$                  | 339     | 224                             | 0.7 | rat     | 0.055             | 0.028             | 54.4                          | 7.79                        | 0.14      | 7.4                               | 1.4                          | 126                | 119  |
| $2^{c}$                | -       | _                               | -   | monkey  | 0.043             | _                 | 17.9                          | _                           | -         | 16.5                              | 1.52                         | 210                | 12   |
| $3^b$                  | 487     | 465                             | 1.0 | rat     | 0.639             | 0.525             | 1507                          | 343                         | 0.23      | 1.5                               | 0.60                         | 279                | 62.5 |
| 3 <sup>c</sup>         | -       | _                               | -   | monkey  | 0.532             | _                 | 5040                          | _                           | -         | 3.17                              | 1.15                         | 324                | 107  |
| $8^d$                  | 360     | 221                             | 0.6 | rat     | 0.065             | 0.031             | 58.6                          | 39.3                        | 0.67      | 7.3                               | 2.8                          | 267                | _    |
| $12^d$                 | 477     | 528                             | 1.1 | rat     | 0.674             | 0.436             | 1767                          | 212                         | 0.12      | 1.94                              | 0.65                         | 239                | 126  |
| 15 <sup>d</sup>        | 467     | 345                             | 0.7 | rat     | 0.408             | _                 | _                             | _                           | -         | 2.2                               | 0.91                         | 294                | 73.6 |
| 16 <sup>d</sup>        | 419     | 368                             | 0.9 | rat     | 0.291             | 0.109             | 348.0                         | 85.4                        | 0.25      | 1.07                              | 2.25                         | 1479               | 98.2 |
| $17^d$                 | 437     | 519                             | 1.2 | rat     | 0.592             | 0.604             | 406.7                         | 68.6                        | 0.17      | 13.7                              | 0.68                         | 35                 | 55   |
| <b>18</b> <sup>d</sup> | 91      | 345                             | 3.8 | rat     | 0.662             | 0.995             | 897.4                         | 45.6                        | 0.05      | 5.07                              | 1.59                         | 215                | 46.6 |

<sup>*a*</sup>PK doses: iv, 1 mg/kg (rat), 10 mg/kg (monkey); oral, 3 mg/kg (rat), 5 mg/kg (monkey). Brain exposure dose: 1 mg/kg. Mean values for N = 3-4 rats, or 4 monkeys, per group. All rat data at 60 min: (B/P)<sub>u</sub> =  $C_{\text{brain},u}/C_{\text{plasma},u}$  with  $C_{\text{brain},u} = C_{\text{brain}, \text{total}} \times bf_u$  and  $C_{\text{plasma},u} = C_{\text{plasma},\text{total}} \times f_u$ . Monkey  $C_{\text{plasma},u}$  data at 90 min (oral). <sup>*b*</sup>PK formulation: HP $\beta$ CD. <sup>*c*</sup>PK formulation: iv HP $\beta$ CD; oral 0.5% MC/water. <sup>*d*</sup>PK formulation: 1% DMSO, HP $\beta$ CD in 0.9% NaCl.

Table 3. PKPD Analysis of the Oral LH Inhibition Studies<sup>a</sup>

| Cpd | species | $K_{\rm i}$ (nM) | LLE | MED (mg/kg) | $T_{\rm max}~({ m min})$ | $C_{ m plasma,u}/K_{ m i}$ | $C_{\rm brain,u}/K_{\rm i}$ | $(C_{\text{plasma,u}}/K_{\text{i}})/\text{MED}$ | $(C_{\text{brain},u}/K_i)/\text{MED}$ |
|-----|---------|------------------|-----|-------------|--------------------------|----------------------------|-----------------------------|-------------------------------------------------|---------------------------------------|
| 2   | rat     | 76               | 4.0 | 60          | 150                      | 16.4                       | 2.32                        | 0.273                                           | 0.039                                 |
| 2   | monkey  | 20               | 4.6 | 20          | 60                       | 13.3                       | _                           | 0.665                                           | -                                     |
| 3   | rat     | 219              | 5.2 | 3           | 150                      | 22.0                       | 5.03                        | 7.33                                            | 1.68                                  |
| 3   | monkey  | 25               | 6.1 | 5           | 90                       | 192                        | -                           | 38.4                                            | -                                     |
| 8   | rat     | 22               | 4.6 | 10          | 150                      | 15.0                       | 12.4                        | 1.5                                             | 1.24                                  |
| 12  | rat     | 2033             | 4.5 | 30          | 150                      | 22.5                       | 2.77                        | 0.75                                            | 0.09                                  |
| 16  | rat     | 85               | 4.7 | 10          | 150                      | 23.8                       | 5.87                        | 2.38                                            | 0.59                                  |
| 17  | rat     | 573              | 4.9 | 30          | 45                       | 47.3                       | 7.71                        | 1.58                                            | 0.26                                  |
| 18  | rat     | 244              | 5.6 | 10          | 45                       | 38.9                       | 1.82                        | 3.89                                            | 0.18                                  |

<sup>a</sup>Plasma concentrations coincident with LH measurements. MED determined by a significant decrease (p < 0.05) in LH vs baseline with a lower nonsignificant dose established in all cases.



**Figure 2.** Oral LH inhibition with 3 (0.5% MC/water) in castrated cynomolgus monkey (2-way ANOVA and Dunnet's comparison to the vehicle; \*\*\*p < 0.001, \*\*p < 0.01).

inhib at 10  $\mu$ M). Finally, **3** showed no effect either in Langendorff cardiac safety in rabbits (up to 30  $\mu$ M) or in AMES genotoxicity test (up to 100  $\mu$ M). Compound **3** (ESN364) is currently in phase 2 clinical trials for the treatment of PCOS and UF.

#### ASSOCIATED CONTENT

#### **S** Supporting Information

Experimental details for the synthesis and characterization of compounds, X-ray structure of **3** (accession code: CCDC 1052911), and pharmacology and profiling assays. The

Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsmedchem-lett.5b00117.

## AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: hhoveyda@euroscreen.com. Tel: +32-71.348.502.

# Funding This wo

This work was supported by the Ministry of Sustainable Development and Public Works, Walloon Region, Belgium.

#### Notes

The authors declare no competing financial interest.

### ACKNOWLEDGMENTS

We thank Prof. Tony Plant and Dr. Suresh Ramaswamy (University of Pittsburgh) for the monkey LH assays.

#### ABBREVIATIONS

ARC, arcuate nucleus; AST, aspartate transaminase; ALT, alanine aminotransferase;  $bf_{uv}$  brain fraction unbound;  $(B/P)_{uv}$ unbound brain-to-plasma; CYP, cytochrome P-450; FSH, follicle-stimulating hormone; Fsp<sup>3</sup>, fraction sp<sup>3</sup> carbon content;  $f_{uv}$  plasma fraction unbound; GnRH, gonadotropin-releasinghormone; HBA, hydrogen-bond acceptor; hERG, human etherà-go-go related gene; HP $\beta$ CD, 9% hydroxypropyl- $\beta$ -cyclodextrin; HPG, hypothalamic—pituitary—gonadal; KNDy, kisspeptin-neurokinin B-dynorphin A neuron; LH, luteinizing hormone; LE, ligand efficiency; LLE, ligand lipophilicity efficiency; MC, methyl cellulose; MED, minimum effective dose; NKB, neurokinin B; NK<sub>3</sub>R, neurokinin-3 receptor; P<sub>gp</sub>, P-glycoprotein; PKPD, pharmacokinetic–pharmacodynamic; POC, proof-of-concept;  $T_{1/2}$ , elimination half-life;  $V_{ss}$ , steady-state volume of distribution

# REFERENCES

(1) Hoveyda, H. R.; Fraser, G. L.; Roy, M.-O.; Dutheuil, G.; Batt, F.; El Bousmaqui, K. J.; Lenoir, F.; Lapin, A.; Noël, S.; Blanc, S. Discovery and optimization of novel antagonists to the human neurokinin-3 receptor for the treatment of sex-hormone disorders (Part I). *J. Med. Chem.* **2015**, *58*, 3060–3082 (Cpds **1**, **2**, and **8** were reported in ref 1 as **3**, **31**, and **39**, respectively.).

(2) Dawson, L. A.; Porter, R. A. Progress in the development of neurokinin 3 modulators for the treatment of schizophrenia: molecule development and clinical progress. *Future Med. Chem.* **2013**, *5*, 1525–1546 and references therein.

(3) For a recent review, see: Skorupskaite, K.; George, J. T.; Anderson, R. A. The kisspeptin-GnRH pathway in human reproductive health and disease. *Hum. Reprod. Update* **2014**, 0, 1–16. (4) Marshall, J. C.; Griffin, M. L. The role of changing pulse

frequency in the regulation of ovulation. *Hum. Reprod.* **1993**, *8*, 57–61.

(5) Francou, B.; Bouligand, J.; Voican, A.; Amazit, L.; Trabado, S.; Fagart, J.; Meduri, G.; Brailly-Tabard, S.; Chanson, P.; Lecomte, P.; Guiochon-Mantel, A.; Young, J. Normosomic congenital hypogonadotropic hypogonadism due to *TAC3/TACR3* mutations: characterization of neuroendocrine phenotypes and novel mutations. *PLoS One* **2011**, *6*, e25614.

(6) Fraser, G. L.; Hoveyda, H. R.; Clarke, I. J.; Ramaswamy, S.; Plant, T. M.; Rose, C.; Millar, R. P. The NK3 receptor antagonist ESN364 interrupts pulsatile LH secretion and moderates levels of ovarian hormones throughout the menstrual cycle. *Endocrinology*, submitted for publication.

(7) Riggs, M. M.; Bennets, M.; van der Graaf, P. H.; Martin, S. W. Integrated pharmacometrics and systems pharmacology model-based analysis to guide GnRH modulator development for management of endometriosis. *CPT: Pharmacometrics Syst. Pharmacol.* **2012**, *1*, e11.

(8) Millar, R. P.; Newton, C. L. Current and future applications of GnRH, kisspeptin and neurokinin B analogues. *Nat. Rev. Endocrinol.* **2013**, *9*, 451–466 and references therein.

(9) Hopkins, A. L.; Keserü, G. M.; Lesson, P. D.; Rees, D. C.; Reynolds, C. H. The role of ligand efficiency metrics in drug discovery. *Nat. Rev. Drug Discovery* **2014**, *13*, 105–121 and references therein.

(10) Leeson, P. D.; Empfield, J. R. Reducing the risk of drug attrition associated with physicochemical properties. *Annu. Rep. Med. Chem.* **2010**, 45, 381–391 and references therein.

(11) LE = (1.37/HAC)  $\times$  pK<sub>i</sub>. HAC = number of non-hydrogen atoms (ref 9).

(12) Lovering, F.; Bikker, J.; Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. *J. Med. Chem.* **2009**, *52*, 6752–6756.

(13) Kalgutkar, A. S.; Driscoll, J.; Zhao, S. X.; Walker, G. S.; Shepard, R. M.; Soglia, J. R.; Atherton, J.; Yu, L.; Mutlib, A. E.; Munchhof, M. J.; Reiter, L. A.; Jones, C. S.; Doty, J. L.; Trevena, K. A.; Shaffer, C. L.; Ripp, S. L. A rational chemical intervention strategy to circumvent bioactivation liabilities associated with a nonpeptidyl thrombopoietin receptor agonist containing a 2-amino-4-arylthiazole motif. *Chem. Res. Toxicol.* **2007**, *20*, 1954–1965.

(14) Gramec, D.; Mašič, L. P.; Dolenc, M. S. Bioactivation potential of thiophene-containing drugs. *Chem. Res. Toxicol.* **2014**, *27*, 1344–1358 and references therein.

(15) Trainor, G. L. The importance of plasma protein binding in drug discovery. *Expert Opin. Drug Discovery* 2007, 2, 51–64 and references therein.

(16) Morita, S.; Miyata, S. Accessibility of low-molecular-mass molecules to the median eminence and arcuate hypothalamic nucleus of adult mouse. *Cell Biochem. Funct.* **2013**, *3*, 668–677.

(17) Kratochwil, N. A.; Huber, W.; Muller, F.; Kansy, M.; Gerber, P. R. Predicting plasma protein binding of drugs: a new approach. *Biochem. Pharmacol.* **2002**, *64*, 1355–1374.

(18) Kerns, E. H.; Di, L. Drug-like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization; Elsevier: Burlington, MA, 2008; pp 112–116.

(19) For example, see: Godbole, A. M.; Ramalingam, S.; Ramamurthy, V. P.; Khandelwal, A.; Bruno, R. D.; Upreti, V. V.; Gediya, L. K.; Purushottamachar, P.; Mbatia, H. W.; Addya, S.; Ambulos, N.; Njar, V. C. O. VN/14–1 induces ER stress and autophagy in HP-LTLC human breast cancer cells and has excellent oral pharmacokinetic profile in female Sprague-Dawley rats. *Eur. J. Pharmacol.* **2014**, *734*, 98–104 and references therein.