REACTION OF D-GALACTOSE PHENYLHYDRAZONE WITH NITRO-ALKENES: SYNTHESIS OF PENTAHYDROXYPENTYLPYRAZOLES*

MANUEL GÓMEZ GUILLÉN AND JUAN L. CONDE JIMÉNEZ

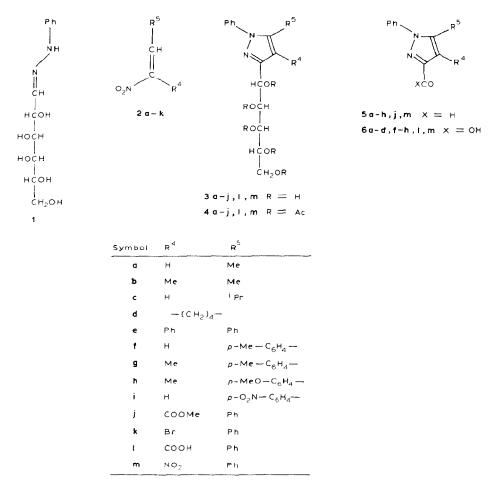
Departamento de Química Orgánica "Profesor García González" Facultad de Química, Universidad de Sevilla, 41071 Seville (Spain)

(Received April 8th, 1987; accepted for publication, October 14th, 1987)

ABSTRACT

D-Galactose phenylhydrazone reacts with 1- and 2-substituted and 1,2-disubstituted nitroalkenes, with loss of the nitro group, to give moderate yields of 3-(D-galacto-pentitol-1-yl)-1-phenylpyrazoles variously substituted at positions 4, 5, and 4,5, and a mechanism is proposed. Acetylation of these products affords pentaacetates and periodate oxidation gave the corresponding 1-phenylpyrazole-3carbaldehyde derivatives, some of which were oxidised to the carboxylic acids. U.v., i.r., and n.m.r. data confirm the proposed structures.

INTRODUCTION


C-Nucleosides and their analogoues are of interest because of their biological properties¹⁻³. C-Pentahydroxypentylpyrazoles can be transformed into C-nucleosides⁴, although not as easily as other C-polyhydroxyalkylheterocycles⁵. Such pyrazole C-nucleoside precursors have been synthesised from acetylenic sugars and hydrazine⁴ or from aldohexose arylhydrazones and acetylenic esters⁶. We now report the synthesis of 3-(pentahydroxypentyl)pyrazoles from D-galactose phenylhydrazone and nitroalkenes.

On the basis of the results⁷ of the reactions of aldehyde phenylhydrazones with β -nitrostyrene, it was anticipated that sugar arylhydrazones and nitroalkenes would react to give 4-nitropyrazoles. However, a preliminary study⁸ of the reaction of D-galactose phenyl(or *p*-tolyl)hydrazone with two 1-phenyl-2-nitroalkenes indicated that the products did not contain a nitro group and that the regioselectivity varied. These results prompted a wider study of the reaction.

RESULTS AND DISCUSSION

D-Galactose phenylhydrazone (1) reacted with a variety of nitroalkenes (2a-**k**) in *N*,*N*-dimethylformamide at room temperature, to give, after several days,

^{*}Presented at the 4th European Carbohydrate Symposium, Darmstadt, F.R.G., July 12-17, 1987.

3-(D-galacto-pentitol-1-yl)pyrazoles (3a-j,m) in moderate yields. As in the preliminary studies, the products did not contain a nitro group, except that from the reaction of 1 with β -bromo- β -nitrostyrene (2k), which led to 3m. The 4-carboxypyrazole 3l was easily obtained by saponification of 3j. Each of the compounds 3a-j,l,m gave a penta-acetate (4a-j,l,m) and the consumption of periodate confirmed the presence of the pentitol side-chain. The D-galacto configuration was assigned on the basis of that of 1. Periodate oxidation of the (pentitol-1-yl)pyrazoles 3a-h,j,m gave the corresponding pyrazole-3-carbaldehydes (5a-h,j,m) in high yields, the last one as an aldehyde hydrate. Several of these aldehydes (5a-d,f-h,j,m) were oxidised with moist silver oxide to yield the pyrazole-3-carboxylic acids 6a-d,f-h,l,m; in the case of 5j, simultaneous saponification led to 6l.

Each of the products **3**, except **3e**, was dextrorotatory. The u.v. absorptions for the series **3**, **5**, and **6** are summarised in Table I. The 1,5-diarylpyrazoles **3e-h,j,l** had λ_{max} in the range 250–258 nm, as do other 1,5-diarylpyrazoles^{9,10}, but the nitro

Compound	$\lambda_{max}(nm)$	ε (L.mol ⁻¹)	Compound	$\lambda_{max}(nm)$	ε (L.mol ⁻¹)
3a	243	6,400	5e	233sh	23,000
3b	249	8,200	5f	247	16,800
3c	244, 267sh ^b	9,600, 7,900	5g	245	25,600
3d	254	7,200	5h	249	25,800
3e	230sh, 256, 335	20,000, 16,100, 2,600	5j	245	13,000
3f	254	12,400	5m	217sh, 275	14,700, 6,700
3g	255	17,800	6a	227	11,500
3h	256	23,700	6b	221, 252	8,000, 11,000
3i	222,295	26,600, 17,400	6c	239	10,800
3ј	253	20,400	6d	220sh, 257	11,400, 8,500
31	253	14,800	6f	233	17,000
3m	218, 278	22,000, 8,400	6g	259	21,000
5a	244	5,600	6h	234, 260sh	22,300, 16,800
5b	223, 247	13,500, 14,400	61	229sh, 257	18,300, 8,500
5c	243	15,200	6m	222sh, 272sh	20,600, 6,800
5d	223, 254	12.000, 11,400		·	

TABLE I

U.V. ABSORPTION BANDS⁴ FOR COMPOUNDS 3, 5, AND 6

^aIn MeOH. ^bsh, shoulder.

group in **3i** and **3m** caused a bathochromic shift of 20–40 nm. The triphenyl derivative **3e** had an additional absorption at longer wavelength, and the monophenyl derivatives had λ_{max} in the range 243–254 nm as observed^{11,12} for related compounds.

The conjugated nitro group in the aldehyde **5m** caused a bathochromic shift of λ_{max} in comparison with the other pyrazole-3-carbaldehydes (see Table I), which had λ_{max} in the range 233–254 nm, showing a small hypsochromic shift with regard to the respective 3-(pentitol-1-yl)pyrazoles (3).

The 1,5-diarylpyrazole-3-carboxylic acids **6f-h**,**l** had λ_{max} in the range 233-260 nm, but the 4-nitropyrazole **6m** absorbed at higher wavelength (see above) and the monophenyl derivatives absorbed mainly in the range 227-257 nm.

The members of the series **3–6** had i.r. bands typical of the pyrazole ring and the appropriate functional groups (Table II). The pyrazole C=N stretching gives rise to a band⁴ at 1570–1530 cm⁻¹. One or two bands at 945–905 cm⁻¹ are assigned to pyrazole ring bending¹³.

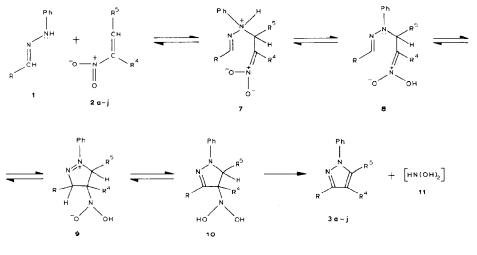

The ¹H-n.m.r. data are recorded in Table III. Assignments are based on literature data for related compounds and on double-resonance and/or deuteration experiments. The unique pyrazole proton in **3a,c,f,i**, the penta-acetates **4a,c,f,i**, the aldehydes **5a,c,f**, and the carboxylic acids **6a,c,f** resonated in the range δ 6.32–7.37 in agreement with the data reported for H-4 in other 1-phenylpyrazoles^{9,10,14–17} (cf. δ 7.85–8.78 for H-5 in such systems^{14–19}), thus emphasising the high regioselectivity of the reactions giving the compounds **3**. Comparison of observed J values with those calculated from modifications^{20–23} of the Karplus equation indicates that the C-1,2,3,4 portion of the penta-acetoxypentyl chain of compounds **4** adopts

TABLE II		

TYPICAL I.R. ABSORPTION BANDS FOR COMPOUNDS $3, 4, 5$, and 6^{a}

Compound	ν <i>Ο</i> -Η	Ester vC=0	Aldehyde νC=O	Carboxylic acid vC=0	Pyrazole vC=N	Pyrazəle ring bending
a	3280br., s ^h		······································		1545m	915m
ib	3300br, s				1570m	940w, 915m
c	3380br.s				1545m	905w
đ	3300br.s				1570w	910w
2	3350br.s				1550w	918m
7	3450br.s				1555w	913m
2	3420br, s				1545w	932w, 918m
h	3590d				1554sh	920sh
	3440br, s					
c	3480br.s				1537w	920w
	3390br, s	1720s			1547s	938w
	3400br.s			1680s	1546m	925w, 915w
				1676s		
n ^d	3360br.s				1553sh	915w
4	·	1740br. s			1545m	912m
b		1750br. s			1560m	930w, 916m
		1720m				
c		1760sh			1540m	944w, 910m
		1740br, s				
d		1760s			1576w	920w
		1753s				
		17405				
e		1745s			1550w	915w
7		1750s			n .o.	928w
g		1745s			n.o.	938w, 920w
- h		1740br, s			1565w	940w, 920w
e		1740s			1535sh	907w
		1750s			1545br, m	930w
		1705s				
	3300-2400w	1745br. s		1696sh	1540w	925w.915w
n⁄		1745br, s			1558m	920w
		,.	1695s		1545m	915m
5			1687s		1565m	910m
2			1700s		1535w	920m
1			1690s		1570m	930m
			1670sh			
2			1700s		1540w	918w
			1690s		124011	
ſ			1695s		1545w	912w
2			1690s		n.o.	912w
2			1742sh		1555w	910w
			1738s			
i		1710s	1690s		1542sh	920w
n ^g	3410br, m				1550s	914w
1	3200-2200m			1675br, s	1540m	920m
)	3280-2300m			1684br, s	1560w	910m
				1650sh		
:	3600-2300s			1695br, s	1535w	920w, 908m
ł	3600-2300m			1670s	1555w	910w
	3600-2300m			1700sh	1550w	910w
				1685s	· • • • • • •	
(3600-2300m			1680br, s	n .o.	930w, 915w
, 1	3600-2300m			1585s	1546w	938w, 910w
	3600-2300m			1720br, m	1530sh	922sh
				1620br, s		/ #60.961
n ^h	3300-2300m			1700s	1550sh	913w

"Recorded for KBr dises. ^bbr, broad; s, strong; m, medium; w, weak; sh, shoulder; n.o., not observed. 'The nitro group gives rise to strong bands at 1518 and 1342 cm⁻¹ (asym. and sym. stretching). ^dAs in c, at 1548 and 1347 cm⁻¹, "As in c, at 1510 and 1364 cm⁻¹, 'As in c, at 1558 and 1367 cm⁻¹, "Aldehyde hydrate; the nitro group gives rise to strong absorptions at 1550 and 1352 cm⁻¹, ^bAs in c, at 1515 and 1365 cm⁻¹.

R = D-galacto-pentitol~1-yl

preferentially a planar zigzag conformation in solution, but no preferential conformation around the C-4–C-5 bond in solution could be assigned.

The ¹³C-n.m.r. data for **3b** are summarised in Table IV. Assignments are based on multiplicities and literature data^{8,24,25} for related compounds. The δ value (124.0) observed for the phenyl *ortho*-carbon nuclei indicates²⁶ that Me-5 reduces the conjugation between the rings by steric hindrance to coplanarity.

The loss of the nitro group during the formation of **3a-i** is similar to that observed in the formation of other heterocyclic systems from nitroalkenes^{27,28}, and can be rationalised as indicated in the annexed scheme $(7\rightarrow 10)$. The aminic nitrogen of 1 acts as a nucleophile in attacking the β carbon atom of 2a-j to give the adduct 7, which tautometrises to give 8. Cyclisation of 8 by attack of the π electrons of the hydrazone moiety, to give the nitronic acid 9, and subsequent proton migration leads to the pyrazoline derivative 10, aromatisation of which by loss of dihydroxylamine (11) yields 3a-j. The alternative mechanism, involving nucleophilic attack of the azomethine carbon of 1 on the nitroalkene, would yield the isomer of 3 with R^4 and R^5 interchanged. Moreover, Le Fevre and Hamelin²⁹ have established that C-alkyl hydrazones (or the isomeric azo compounds), formed first in the reaction of simple phenylhydrazones with electron-deficient olefins under neutral conditions, do not cyclise. It is considered²⁹ more probable that 1,3dipolar addition of the isomeric ylids, in equilibrium with the hydrazones, to the olefins occurs. This mechanism would explain the formation of two products with both types of orientation. This last mechanism seems to be of little importance in our work, since the Griess-Ilosvay assay³⁰ for nitrite ion was negative and 1,3-dipolar addition would require the elimination of nitrous acid. The exception was 2k, which lost bromide ion instead of the nitro group, and can be explained in the annexed scheme $(12 \rightarrow 14)$. The intermediate adduct 7k, after tautomerisation to

Com- nound	I-H	Н-2	<i>E-H</i>	H-4	Я-Н	Н-5'	НО	OAc	N-Ph	R^{4}	R ⁵
3a ⁶				- 3.30-5.05m		Annual Contractor of the second se	^		7.53s	6.355	2.33s
3b	4.94d $J_{1,2} 2.0$	$\frac{3.76}{J_{2,3}}\frac{3.76}{8.8}$	3.59dd $J_{3,4}$ 1.5	(11 H) 3.78ddd $J_{4.5}$ 6.1	3.45 dd $J_{s,s'}$ 10.8	3.42dd	4.10-4.55bs (5 H)		7.48s	2.05s	2.22s
3c ^c	6.13d J _{1.2} 4.4			$\frac{J_{4.5} 6.7}{3.44}$ (1)	.7 -3.44-4.92m (10 H)		A		7.40–7.56m 6.32s		3.02h 1.11d 1.10d
3ď	4.95 dd $J_{1,2}$ 2.0	3.75ddd $J_{2.3}$ 8.7	3.59 ddd $J_{3,4}$ 1.5	3.81dddd J _{4.5} 6.2 J _{4.5} 7.3		3.41ddd 4.71d I/ 4.36d 2 4.24d 3	4.71d 1/ 4.36d 2 4.24d 3		7.31–7.55m		9.6.8
3e'	J _{1.0H} 6.8 4.95s	J _{2.0H} b.0	J _{3.0H} /.4	J _{4.0H} 0.1	.1 J _{5,0H} = 2.78-4.57m — —	0.c = H0.5r	4.4715			<u>6</u> -7.54m ((4 H) 7.27bs)
31	6.20bs		3.3	(1 0-3.86m, 4.1((1	(10 H) 3.30-3.86m, 4.10-4.84m, 4.90-5.20m - (10 H))-5.20m			7.22-7.40r	(15 H) n 6.62s	(15 H) 7.22-7.40m 6.62s 7.16d 9.8.2
ей Г	5.05d J.7.0			-3.423.48m, 3.64m, 3.793.85m (5 H)	79-3.85m		 4.25d J.5.8 4.28d 4.28d 4.43d 4.43d 4.60 4.60 4.60 4.860 		7.03–7.35m ^g 2.07s	n ^s 2.07s	2.33s 7.03–7.35m

TABLE III

6

6.96d 7.10d 7.8.8 3.76s	7.47d 8.23d 18.8	7.18s ⁸	7.16–7.37m ^g	7.20-7.62m ^g	2.32s	2.16s	2.97h 1.12d 1.15d <i>J</i> 7.0	H) 1.88m → 1.76m → H)	Ì
7.15–7.33m 2.07s	7.24–7.43m 6.85s	7.18s ^g 3.48s	7.16–7.37m ^g 4.50bs	7.20–7.62m ^g	7.39–7.52m 7.37s	7.32–7.47m 2.12s	7.34–7.46m 7.28s	7.41s \leftarrow 1.68–1.88m - 7.43s (4 H) \leftarrow 2.26–2.76m - (4 H) (4 H)	• 6.9-7.35m (15 H)
→ 4.12-4.96bs (5 H)	Î	•	- 4.09-4.16m (2 H) 3 17-3 82m/		2.05s 2.08s 2.11s 2.11s	2.208 2.008 2.005 2.105 2.116	2.02s 2.05s 2.12s	2.005 2.015 2.015 2.105 2.105	1.915 2.015 2.025 (6 H) 2.075
					3.90dd	3.93dd	3.86dd	3.93 dd	3.92dd
	m, 5.04s ^h H)	3.05-4.75m	(11	m (3.48s) —	4.31dd J _{5.5} 11.6	4.28dd J _{5,5} , 11.6	4.32dd J _{5,5} , 11.7	4.28dd J _{5.5} 11.6	4.26dd J _{5.5} , 11.7
3.4 8 -3.84m (5 H)		- 3.05-4	3.17–3.82m ⁽		5.33ddd J _{4.5} 4.9 J _{4.5} 7.4	5.27 ddd $J_{4.5}$ 4.8 $J_{4.5}$ 7.3	5.32ddd J _{4.5} 4.8 J _{4.5} 7.6	5.29ddd $J_{4,5}$ 4.8 $J_{4,5'}$ 7.3 $J_{4,5'}$ 7.3	5.23ddd J _{4.5} 4.6 J _{4.5} 7.1
					5.51dd J _{3.4} 2.0	5.52dd J _{3.4} 2.3	5.49dd J _{3,4} 1.8	5.52dd J _{3.4} 2.4	5.41dd J _{3.4} 2.9
					5.62dd J _{2.3} 9.6	5.59dd J _{2,3} 8.8	5.58dd J _{2.3} 9.5	5.64dd J _{2.3} 9.0	5.48dd J _{2.3} 8.8
5.05s	5.04s ^h	5.38d •	5.36d +	5.52d 🔶	J _{1,2} 2.6	6.11d J _{1.2} 3.3	6.12d J _{1,2} 2.1	6.12d J _{1.2} 3.4	6.11d J _{1,2} 2.7
3h	3ť	3jd	31¢	$3\mathbf{m}^d$	4a°	4b¢	40%	4đ ^c	4e°

SYNTHESIS OF PENTAHYDROXYPENTYLPYRAZOLES

7

Table III	Table III (continued)			- ***** 					No		
Com- pound	І-Н	Н-2	Н-3	H-4	<i>S-H</i>	Н-5'	НО	ΟΑς	h-Ph	R⁴	R ^s
46	6.17d J ₁₂ 2.7	5.66dd $J_{2.3}$ 9.6	5.54dd $J_{3,4}$ 2.0	5.34 dd $J_{4.5} 5.0$ $J_{4.5} 7.5$	4.31dd J _{5.5} , 11.6	3.90dd		2.01s 2.03s 2.07s 2.13s 2.15s	7.27s	6.38s	7.05d 7.29d J.2.9 2.33s
4 20	6.21d J _{1.2} 3.6	5.67dd J _{2.3} 8.9	5.56dd J _{3.4} 2.5	5.29ddd $J_{4.5} 4.8$ $J_{4.5} 7.2$	4.30dd J _{5.5} , 11.7	3.94dd		2.00s 2.03s 2.12s 2.13s 2.13s	7.10–7.28m ^{&} 2.07\$	2.07 <i>s</i> کړ	6.99d 7.27d* J.8.0 2.34s
4h,	6.21d J _{1.2} 3.7	5.67dd J _{2.3} 8.9	5.56dd J _{3.4} 2.6	5.28ddd $J_{4.5}$ 4.7 $J_{4.5}$ 7.2	4.30dd J _{5.5} , 11.7	3.94dd		2.13 2.03 2.11s 2.13 2.13	7.06–7.27m 2.06s	a 2.06 <i>s</i>	6.84d 7.03d J.8.7 3.80s
4i°	6.16d J _{1.2} 2.5	5.65dd J _{2.3} 9.6	5.55dd J _{3,4} 2.1	5.35ddd 7 _{4.5} 4.9 7 _{4.5} 7.3	4.32dd J _{s.5} . 11.6	3.91dd		2.13 2.008 2.035 2.135 2.135	7.24–7.43m 6.56s	n 6.56s	7.32d 8.13d J.8.8
4j°	6.64d $J_{1,2} 2.0$	5.76dd J _{2.3} 9.8	5.64dd $J_{3,4}$ 2.1	5.43ddd $J_{4.5}$ 4.9 $J_{4.5}$ 7.5	4.34dd J _{5,5} , 11.5	3.96dd		2.105 1.955 2.035 2.225 2.225	7.10–7.50m ^g 3.74s	n ^s 3.74s	7.10–7.50m [×]
4	6.60d J _{1.2} 1.8	5.61dd J _{2.3} 9.8	5.54dd ^k J _{3.4} 1.5	5.44dd& J _{4.5} 4.9 J _{4.5} 7.5	4.30dd J _{5.5} , 11.6	3.93dd		1.925 1.948 2.048 (6 H)	7.12–7.42m ^k n.r. ^k	n ^k n.r. ^k	7.12–7.42m [×]
4m°	6.56bs $J_{1,2} < 1$	5.70d' J _{2.3} 10.0	5.65d' $J_{3,4} < 1$	5.47ddd ^m J _{4.5} 4.9 J _{4.5} 7.8	4.36dd J _{5.5} , 11.7	3.96dd		2.205 1.925 2.005 2.028 2.205 (6 H)	6.95-7.50m [#]	2 2	6.95-7.50m ^s

8

Compound 3-CHO	3-CH0	N-Ph	R ⁴	R ³	Compound 3-COOH	3-СООН	N-Ph	R'	R°
Sar	10.125	7.45s	6.72s	2.325	6ar	6.40-6.80bs	7.48s	6.80s	2.36s 73 H)
$\mathbf{S}\mathbf{b}^{d}$	10.16s	7.33s	2.15s	2.215	ęp,	8.46bs	7.46s	2.258	(11 c) 2.31s
Sc	10.01s	7.42-7.55m	(3 H) 6.77s (1 H)	(3 H) 3.04h ⁿ 1.19d	ęc.	4.20-6.30bs	7.40–7.54m	(3 H) 6.34s (1 H)	(3 H) 3.00h ⁿ 1.18d
Sď ^d	10.07s	7.60s	1.	16.8 1.70-2.15m (4 H) 2 65 3 15m	હ્વ	8.86bs	7.32-7.52m	J 6.7 1.81bs (4 H) 2 71be 2 octes	J 6.7 1.81bs (4 H)
Se ^c	10.16s		-7.01-7.39m (15 H)	(4 H)	ولړ.	7.55bs	7.35s	7.06s (1 H)	7.10s 7.10s 2.34s
Sfr	10.08s	7.12s	7.00s (1 H)	7.35-7.40m 2.35s	¢Ę,	4.20-5.24bs	7.29s	2.34s (3 H)	(3.H) 7.04d 7.17d
Se Ge	10.17s	7.27–7.33m	2.34s (3 H)	(3 H) 7.05d 7.18d	€ŀ,	n.r. ^k	7.29s	2.33\$	J 8.2 2.37s (3 H) 6.88d
Sh [¢]	10.17s	7.27–7.34m	2.34s (3 H)	2.37s 6.90d 7.09d				(3 H)	7.08d J 8.7 3.82s
Sj ^d	10.40s	7.20bs¢	3.86s	3.83s 7.20bs ^e	ور وسر	5.09bs [#] 4.95bs	7.26m ^g 7.26-7.46m ^g	5.09bs ⁴	7.26m ^g 7.26-7.46m ^g
Sm ^d	10.50s	$7.30-7.70m^{g}$		$7.30-7.70m^{g}$					

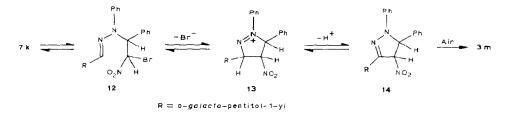

 ${}^{4}Me_{4}Si$ as internal reference. ${}^{5}In$ (CD₃)}SO. ${}^{c}In$ CDCI3, ${}^{d}At$ 60 MHz. ${}^{c}At$ 200 MHz. ${}^{f}Locant$ at the side chain. ${}^{g}Overlapped$ signals. ${}^{h}As$ in g, total intensity, 2 H. ${}^{i}As$ in g, total intersity, 8 H. This assignment may be interchanged with one of the AcO signals. ${}^{h}Not$ recorded. The internal peaks overlap. ${}^{m}Poor$ resolved peaks. "Pseudoquintet.

TABLE IV

¹³C-N.M.R. CHEMICAL SHIFTS (δ , P.P.M.)^{*a*}, MULTIPLICITIES, AND ASSIGNMENTS FOR **3b**

Chemical shift and multiplicity	Assignment
8.4q	$pyrazole 4-CH_3$
10.4q	pyrazole 5-CH ₃
63.0t	C-5 of the alditol chain
66.4d	C-1
68.9d	C-4
70.0d	C-3
73.0d	C-2
113.0s	pyrazole C-4
124.0d	phenyl ortho-C
126.8d	phenyl para-C
129.0d	phenyl meta-C
135.9s	pyrazole C-5
139.7s	phenyl ipso-C
152.8s	pyrazole C-3

^aInternal Me₄Si.

12, cyclises to give 13, which is deprotonated to give the pyrazoline 14. In this case, air oxidation must be accepted.

EXPERIMENTAL

General methods. — Solvents were evaporated in vacuo at $<45^{\circ}$. Melting points were determined with a Büchi apparatus and are uncorrected. Optical rotations were measured with a Perkin–Elmer 241 MC polarimeter. T.I.c. was performed on Silica Gel HF₂₅₄ (Merck) with 10:1 dichloromethane–methanol and detection with u.v. light. Column chromatography was conducted on Silica Gel 60 (Merck, 63–200 μ m) with the eluant stated and the flash technique³¹. I.r. spectra were recorded with Perkin–Elmer 299 or 1310 spectrophotometers, using KBr discs for solids and films for liquids. U.v. spectra were recorded with a Perkin–Elmer 545 spectrophotometer. ¹H-N.m.r. spectra (60 and 200 MHz, internal Me₄Si) were recorded with a Perkin–Elmer R-12B and a Varian XL-200 spectrometer, respectively. Coupling constants were measured directly from the spectra and assignments were confirmed by deuteration and/or double-resonance experiments. ¹³C-N.m.r. spectra (50.3 MHz) were recorded with a Varian XL-200 spectrometer; chemical shifts were assigned from APT^{32} spectra and are relative to that of internal Me₄Si. Consumption of periodate was determined by a method based on the Fleury and Lange³³ procedure.

Preparation of 3-(D-galacto-pentitol-1-yl)-1-phenylpyrazoles (3). — Nitroalkene (**2a-k**) was added to a solution of an equimolecular amount of D-galactose phenylhydrazone³⁴ (1) in N,N-dimethylformamide. The mixture was kept for several days at room temperature and monitored by t.l.c. The solvent was then evaporated *in vacuo* (<1 Torr), the residue was treated with ethyl acetate, and the product was recrystallised from methanol.

Starting nitroalkene (g, mmol)	HCONMe ₂ (mL)	Time (days)	Product	Yield of pure product (g, %)
$2a^{35}$ (2.61, 30)	10	5	3a	3.46, 37ª
$2b^{36}$ (3.03, 30)	12	76	3b	5.72, 59
2c ^c (3.45, 30)	15	13	3c	3.58, 35
$2d^{37}$ (3.81, 30)	12	15	3d	4.63, 44
$2e^{38}$ (5.63, 25)	12	15	3e	$2.59, 23^{d}$
2f ^e (4.69, 30)	15	20	3f	4.03, 35 ^f
2g ⁴⁰ (5.90, 33)	13	18	3g	5.41,41
2h ⁴¹ (5.79, 30)	12	20	3ĥ	6.81, 55
2 i ^g (4.27, 22)	20	18	3i	0.83, 8.7
2 j ⁴² (4.14, 20)	12	7	3j	3.64, 42
$2k^{43}$ (4.56, 20)	10	12	3m	$1.10, 13^{a}$

The following amounts and conditions were used.

^aFrom water. ^bAt 30°. ^cPrepared from nitromethane and isobutyraldehyde by a procedure similar to that described ³⁶ for other nitroalkenes. 3-Methyl-1-nitrobutanol (b.p. 104–109°/50 Torr) was dehydrated with phthalic anhydride to give 41% (overall yield) of 3-methyl-1-nitro-1-butene, b.p. 71–73°/20 Torr. ^dYield of crude product, 5.14 g (46%); m.p. 114–119°. ^cPrepared from *p*-tolualdehyde and nitromethane, as described for β -nitrostyrene³⁹, **2f** had m.p. 102° (from ethanol). [/]From ethyl acetate. ^sPrepared from *p*-nitrobenzaldehyde and nitromethane, as described for β -nitrostyrene³⁹, **2i** had m.p. 200–201° (from acetone).

The following compounds were prepared, for which the spectral data are given in Tables I–IV.

5-Methyl-3-(D-*galacto*-pentitol-1-yl)-1-phenylpyrazole (**3a**), m.p. 154–155° (from water), $[\alpha]_D^{20} + 30^\circ$ (*c* 1.2, pyridine); periodate consumption, 4.01 mol (Found: C, 57.59; H, 6.70; N, 8.97. C₁₅H₂₀N₂O₅·0.25 H₂O calc.: C, 57.59; H, 6.61; N, 8.96%).

4,5-Dimethyl-3-(D-galacto-pentitol-1-yl)-1-phenylpyrazole (**3b**), m.p. 180– 181°, $[\alpha]_D^{25}$ +16° (c 1.1, pyridine); periodate consumption, 3.84 mol (Found: C, 59.81; H, 7.14; N, 8.72. C₁₆H₂₂N₂O₅ calc.: C, 59.61; H, 6.88; N, 8.69%).

5-Isopropyl-3-(D-*galacto*-pentitol-1-yl)-1-phenylpyrazole (**3c**), m.p. 156–157°, $[\alpha]_D^{25}$ +24° (*c* 1.3, pyridine); periodate consumption, 3.97 mol (Found: C, 60.41; H, 7.27; N, 8.48. C₁₇H₂₄N₂O₅ calc.: C, 60.70; H, 7.19; N, 8.33%). 4,5,6,7-Tetrahydro-3-(D-galacto-pentitol-1-yl)-1-phenyl-1*H*-indazole (**3d**), m.p. 187–188°, $[\alpha]_D^{25}$ +25° (*c* 1, pyridine); periodate consumption, 3.98 mol (Found: C, 62.05; H, 7.09; N, 8.21. C₁₈H₂₄N₂O₅ calc.: C, 62.05; H, 6.94; N, 8.04%).

3-(D-galacto-Pentitol-1-yl)-1,4,5-triphenylpyrazole (3e), m.p. 157–158°, $[\alpha]_D^{22}$ –23° (c 1.2, pyridine); periodate consumption, 3.87 mol. The elemental analysis gave no satisfactory results.

3-(D-galacto-Pentitol-1-yl)-1-phenyl-5-(p-tolyl)pyrazole (**3f**), m.p. 147–148° (from ethyl acetate), $[\alpha]_D^{25} + 33^\circ$ (c 1.1, pyridine); periodate consumption, 3.86 mol. The elemental analysis gave no satisfactory results.

4-Methyl-3-(D-*galacto*-pentitol-1-yl)-1-phenyl-5-(*p*-tolyl)pyrazole (**3g**), m.p. 168–169°, $[\alpha]_{D}^{22}$ +25° (*c* 1.2, pyridine); periodate consumption, 3.91 mol (Found: C, 66.45; H, 6.59; N, 7.11. C₂₂H₂₆N₂O₅ calc.: C, 66.31; H, 6.58; N, 7.03%).

5-(*p*-Methoxyphenyl)-4-methyl-3-(D-*galacto*-pentitol-1-yl)-1-phenylpyrazole (**3h**), m.p. 172–173°, $[\alpha]_{D}^{2^2}$ +16° (*c* 1, pyridine); periodate consumption, 4.02 mol (Found: C, 64.00; H, 6.39; N, 6.56. C₂₂H₂₆N₂O₆ calc.: C, 63.75; H, 6.32; N, 6.76%).

5-(*p*-Nitrophenyl)-3-(D-*galacto*-pentitol-1-yl)-1-phenylpyrazole (**3i**), m.p. 198–200°, $[\alpha]_D^{22}$ +48° (*c* 0.8, pyridine); periodate consumption, 2.92 mol (Found: C, 55.26; H, 5.36; N, 9.39. C₂₀H₂₁N₃O₇·H₂O calc.: C, 55.42; H, 5.35; N, 9.70%).

4-Methoxycarbonyl-3-(D-*galacto*-pentitol-1-yl)-1,5-diphenylpyrazole (**3j**), m.p. 170–171°, $[\alpha]_D^{2^4} + 9^\circ$ (*c* 1.2, pyridine); periodate consumption, 3.98 mol (Found: C, 59.98; H, 5.54; N, 6.21. $C_{22}H_{24}N_2O_7 \cdot 0.5 H_2O$ calc.: C, 60.40; H, 5.76; N, 6.40%).

4-Nitro-3-(D-galacto-pentitol-1-yl)-1,5-diphenylpyrazole (**3m**), m.p. 184–185° (from water), $[\alpha]_D^{20} + 3^\circ$ (*c* 0.3, pyridine); periodate consumption, 4.0 mol (Found: C, 57.44; H, 5.17; N, 10.20. C₂₀H₂₁N₃O₇ calc.: C, 57.83; H, 5.10; N, 10.12%).

3-(D-galacto-Pentitol-1-yl)-1,5-diphenylpyrazole-4-carboxylic acid (**3**l). — M NaOH (1 mL) was added to a boiling solution of **3**j (340 mg, 0.78 mmol) in water (20 mL), and the mixture was heated for 6 h under reflux and then acidified to pH 3-4 with hydrochloric acid. The precipitate (318 mg, 98%) was recrystallised from methanol to afford **3**l (298 mg, 92%), m.p. 238–239°, $[\alpha]_{D}^{2^{2}}$ +5° (*c* 0.9, pyridine); periodate consumption, 3.95 mol (Found: C, 60.71; H, 5.64; N, 6.32. C₂₁H₂₂N₂O₇ calc.: C, 60.86; H, 5.35; N, 6.76%). For the spectral data, see Tables I–III.

Acetylation of compounds 3. — Compounds 3(a-j,l,m) were conventionally treated in pyridine with acetic anhydride for 48 h at 0°. After precipitation in ice-water, crude products were recrystallised from ethanol-water.

The amounts used and the yields of pure products were as follows.

	ting compound nmol)	Ac ₂ O (mL)	Pyridine (mL)	Product	Yield (g, %)
3a	(0.24, 0.77)	2.4	2.4	4 a	0.33, 83
3b	(0.31, 0.96)	3.1	3.1	4b	0.50, 97
3c	(0.25, 0.74)	2.5	2.5	4c	0.31, 76
3d	(0.26, 0.75)	2.6	2.6	4d	0.40,96
3e	(0.21, 0.46)	2.1	2.1	4 e	0.16, 52
3f	(0.30, 0.78)	3.0	3.0	4f	0.34, 73
3g	(0.22, 0.55)	2.2	2.2	4g	0.32,96
3ĥ	(0.28, 0.66)	2.8	2.8	4ĥ	0.38,92
3i	(0.15, 0.34)	1.5	1.5	4i	0.19,89
3j	(0.25, 0.57)	2.5	2.5	4j	0.30, 83
31	(0.05, 0.12)	0.7	0.7	41	0.06, 85
3m	(0.25, 0.60)	2.5	2.5	4m	0.22, 58

The following compounds were prepared, for which the spectral data are given in Tables II and III.

5-Methyl-3-(D-*galacto*-penta-acetoxypentyl)-1-phenylpyrazole (4a), m.p. 133–134°, $[\alpha]_D^{20}$ +51° (c 0.9, chloroform) (Found: C, 57.68; H, 5.76; N, 5.20. C₂₅H₃₀N₂O₁₀ calc.: C, 57.91; H, 5.83; N, 5.40%).

4,5-Dimethyl-3-(D-galacto-penta-acetoxypentyl)-1-phenylpyrazole (**4b**), m.p. 110–111°, $[\alpha]_D^{20}$ +42° (c 1.2, chloroform) (Found: C, 58.60; H, 6.16; N, 4.86. C₂₆H₃₂N₂O₁₀ calc.: C, 58.64; H, 6.06; N, 5.26%).

5-Isopropyl-3-(D-*galacto*-penta-acetoxypentyl)-1-phenylpyrazole (4c), m.p. 104–105°, $[\alpha]_D^{22}$ +49° (c 1.2, chloroform) (Found: C, 59.08; H, 6.18; N, 5.02. C₂₇H₃₄N₂O₁₀ calc.: C, 59.33; H, 6.27; N, 5.13%).

4,5,6,7-Tetrahydro-3-(D-galacto-penta-acetoxypentyl)-1-phenyl-1*H*-indazole (4d), m.p. 155–156°, $[\alpha]_D^{25}$ +57° (c 1.1, chloroform) (Found: C, 60.08; H, 6.38; N, 5.14. C₂₈H₃₄N₂O₁₀ calc.: C, 60.21; H, 6.14; N, 5.02%).

3-(D-galacto-Penta-acetoxypentyl)-1,4,5-triphenylpyrazole (**4e**), m.p. 98–99°, $[\alpha]_D^{2^2}$ -4° (c 1, chloroform) (Found: C, 65.83; H, 5.59; N, 4.60. C₃₆H₃₆N₂O₁₀ calc.: C, 65.84; H, 5.53; N, 4.27%).

3-(D-galacto-Penta-acetoxypentyl)-1-phenyl-5-(p-tolyl)pyrazole (4f), m.p. 140–141°, $[\alpha]_D^{22}$ +54° (c 0.8, chloroform) (Found: C, 62.35; H, 5.62; N, 4.72. C₃₁H₃₄N₂O₁₀ calc.: C, 62.60; H, 5.76; N, 4.71%).

4-Methyl-3-(D-galacto-penta-acetoxypentyl)-1-phenyl-5-(p-tolyl)pyrazole (4g), m.p. 123–124°, $[\alpha]_D^{22}$ +55° (c 0.8, chloroform) (Found: C, 62.84; H, 6.06; N, 4.64. C₃₂H₃₆N₂O₁₀ calc.: C, 63.15; H, 5.96; N, 4.60%).

5-(*p*-Methoxyphenyl)-4-methyl-3-(D-*galacto*-penta-acetoxypentyl)-1-phenylpyrazole (4h), m.p. 107–108°, $[\alpha]_{D}^{22}$ +57.5° (*c* 1.1, chloroform) (Found: C, 61.88; H, 6.13; N, 4.58. C₃₂H₃₆N₂O₁₁ calc.: C, 61.53; H, 5.81; N, 4.48%).

5-(*p*-Nitrophenyl)-3-(D-galacto-penta-acetoxypentyl)-1-phenylpyrazole (**4i**), m.p. 84–85°, $[\alpha]_{D}^{2^{2}}$ +56° (*c* 1, chloroform) (Found: C, 57.26; H, 4.86; N, 6.50. C₃₀H₃₁N₃O₁₂ calc.: C, 57.60; H, 4.99; N, 6.72%). 4-Methoxycarbonyl-3-(D-*galacto*-penta-acetoxypentyl)-1,5-diphenylpyrazole (**4**j), m.p. 115–116°, $[\alpha]_D^{24}$ +24° (*c* 0.9, chloroform) (Found: C, 59.97; H, 5.25; N, 4.14. C₃₂H₃₄N₂O₁₂ calc.: C, 60.18; H, 5.37; N, 4.39%).

3-(D-galacto-Penta-acetoxypentyl)-1,5-diphenylpyrazole-4-carboxylic acid (41), m.p. 151–152°, $[\alpha]_D^{22}$ +19° (c 0.9, chloroform) (Found: C, 59.85; H, 5.46; N, 4.23. $C_{31}H_{32}N_2O_{12}$ calc.: C, 59.61; H, 5.16; N, 4.49%).

4-Nitro-3-(D-galacto-penta-acetoxypentyl)-1,5-diphenylpyrazole (**4m**), m.p. 135–136°, $[\alpha]_D^{20} = -7^\circ$ (c 0.9, chloroform) (Found: C, 57.74; H, 5.08; N, 6.97. C₃₀H₃₁N₃O₁₂ calc.: C, 57.60; H, 4.99; N, 6.72%).

Preparation of 1-phenylpyrazole-3-carbaldehydes (**5a-h,j,m**). — A solution of sodium metaperiodate in water (50 mL) was added to a suspension of the substrate (**3a-h,j,m**) in water (50 mL), and the mixture was covered with ether (50 mL) and stirred at room temperature. The aqueous layer was removed and extracted with several portions of ether. The combined and dried (Na₂SO₄) ethereal layers were concentrated, and the residue was purified to give the aldehyde.

Starting compound (g, mmol)		NaIO ₄ (g, mmol)	Stirring time (h)	Ether (mL)	Product	Yield (g, %)
3a	(0.90, 2.88)	2.57, 12.0	1	4×30	5a	0.47, 88ª
3b	(1.00, 3.10)	2.74, 12.8	3	3×25	5b	$0.55, 89^{b}$
3c	(1.02, 3.03)	2.67, 12.5	1	3×40	5c	$0.64, 98^{c}$
3d	(1.05, 3.0)	2.66, 12.4	1	3×25	5d	$0.55, 80^{\circ}$
3e	(0.60, 1.34)	1.19, 5.54	3	2×50	5e	0.39, 89 ^c
3f	(1.00, 2.60)	2.30, 10.8	4	3×50	5f	$0.65, 95^{d}$
3g	(1.00, 2.51)	2.21, 10.35	3	3×40	5g	0.64, 92 ^c
3h	(1.00, 2.40)	2.13, 9.95	3	2×50	5h	$0.54, 76^{e}$
3j	(0.78, 1.78)	1.57, 7.34	2	3×30	5j	$0.50, 91^{b}$
3m	(0.36, 0.86)	0.70, 3.30	3	3×25	5m/	$0.195,73^{b}$

The following amounts and conditions were used.

^{*a*}After flash chromatography³¹ (ether-hexane, 1:3). ^{*b*}From ether-hexane. ^{*c*}After column chromatography (ether-hexane, 1:1). ^{*d*}After column chromatography (ether-hexane, 2:1). ^{*c*}After column chromatography (ether-hexane, 3:2). ^{*f*}As a *gem*-diol.

The following compounds were prepared, for which the spectral data are given in Tables I-III.

5-Methyl-1-phenylpyrazole-3-carbaldehyde (5a) was isolated as a yellow oil.

4,5-Dimethyl-1-phenylpyrazole-3-carbaldehyde (**5b**), m.p. 87–88° (Found: C, 71.80; H, 6.18; N, 13.80. C₁₂H₁₂N₂O calc.: C, 71.98; H, 6.04; N, 13.99%).

5-Isopropyl-1-phenylpyrazole-3-carbaldehyde (5c) was isolated as a nearly colourless oil.

4,5,6,7-Tetrahydro-1-phenyl-1*H*-indazole-3-carbaldehyde (**5d**), m.p. 55–56° (Found: C, 74.61; H, 6.43; N, 12.32. $C_{14}H_{14}N_2O$ calc.: C, 74.31; H, 6.24; N, 12.38%).

1,4,5-Triphenylpyrazole-3-carbaldehyde (5e), m.p. 176–177° (Found: C, 81.15; H, 5.13; N, 8.46. $C_{22}H_{16}N_2O$ calc.: C, 81.46; H, 4.97; N, 8.64%).

1-Phenyl-5-(p-tolyl)pyrazole-3-carbaldehyde (5f) was isolated as a yellow oil.

4-Methyl-1-phenyl-5-(p-tolyl)pyrazole-3-carbaldehyde (**5g**), m.p. 111–112° (Found: C, 77.92; H, 5.96; N, 9.85. $C_{18}H_{16}N_2O$ calc.: C, 78.24; H, 5.84; N, 10.14%).

5-(p-Methoxyphenyl)-4-methyl-1-phenylpyrazole-3-carbaldehyde (5h) was isolated as an oil.

4-Methoxycarbonyl-1,5-diphenylpyrazole-3-carbaldehyde (**5j**), m.p. 120–121° (Found: C, 70.28; H, 4.82; N, 9.27. $C_{18}H_{14}N_2O_3$ calc.: C, 70.58; H, 4.61; N, 9.15%).

4-Nitro-1,5-diphenylpyrazole-3-carbaldehyde (**5m**) hydrate, m.p. 84–85° (Found: C, 61.35; H, 4.43; N, 13.17. $C_{16}H_{13}N_3O_4$ calc.: C, 61.73; H, 4.21; N, 13.50%).

Preparation of 1-phenylpyrazole-3-carboxylic acids (6a-d,f-h,l,m). — A mixture of the aldehyde (5a-d,f-h,l,m), aqueous silver nitrate, and M NaOH was boiled under reflux for several hours and filtered whilst hot, and the solid residue was washed with a few mL of hot water. The filtrate was then acidified to pH 3-4 with nitric acid, to precipitate crude product that was recrystallised from ethanol-water.

Starting compound (g, mmol)		AgNO ₃ ª (g, mmol)	м NaOH (mL)	Reflux time (h)	Product	Yield (g, %)
5a	(0.20, 1.07)	0.40, 2.35	4.0	15	6a ^b	0.14,60
5b	(0.20, 1.0)	0.37, 2.2	3.5	6	6b	0.15,71
5c	(0.14, 0.65)	0.24, 1.44	2.5	15	6c	0.073,48
5d	(0.23, 1.0)	0.37, 2.2	3.5	15	6d	0.16,65
5f	(0.26, 1.0)	0.37, 2.2	4.0	9	6f	0.22,80
5g	(0.27, 0.98)	0.37, 2.2	4.0	8	6g	0.12,40
5ĥ	(0.26, 0.87)	0.33, 1.93	3.5	14	6h	0.19, 70
5j	(0.26, 0.85)	0.32, 1.88	3.0	6	61 ^b	0.23, 82
5m	(0.27, 0.86)	0.34, 2.0	3.5	13	6m	0.16, 57

The following amounts and conditions were used.

^aDissolved in water (0.5-1.0 mL). ^bAs a monohydrate.

The following compounds were prepared, for which the u.v., i.r., and n.m.r. data are given in Tables I-III.

5-Methyl-1-phenylpyrazole-3-carboxylic acid (**6a**), as a monohydrate, m.p. 132–133°; lit.⁴⁴ m.p. 134–136° (Found: C, 60.31; H, 5.28; N, 12.64. $C_{11}H_{10}N_2O_2 \cdot H_2O$ calc.: C, 59.99; H, 5.49; N, 12.72%).

4,5-Dimethyl-1-phenylpyrazole-3-carboxylic acid (**6b**), m.p. 162–163° (Found: C, 66.63; H, 5.72; N, 12.73. $C_{12}H_{12}N_2O_2$ calc.: C, 66.65; H, 5.59; N, 12.96%).

5-Isopropyl-1-phenylpyrazole-3-carboxylic acid (**6c**), m.p. 142–143° (Found: C, 67.62; H, 5.97; N, 12.40. $C_{13}H_{14}N_2O_2$ calc.: C, 67.81; H, 6.13; N, 12.17%).

4,5,6,7-Tetrahydro-1-phenyl-1*H*-indazole-3-carboxylic acid (**6d**), m.p. 153–154° (Found: C, 69.70; H, 5.84; N, 11.41. $C_{14}H_{14}N_2O_2$ calc.: C, 69.40; H, 5.82; N, 11.56%).

1-Phenyl-5-(*p*-tolyl)pyrazole-3-carboxylic acid (**6f**), m.p. 174-175° (Found: C, 71.71; H, 4.85; N, 10.41. $C_{17}H_{14}N_2O_2 \cdot 0.5 H_2O$ calc.: C, 71.06; H, 5.26; N, 9.75%).

4-Methyl-1-phenyl-5-(*p*-tolyl)pyrazole-3-carboxylic acid (**6g**), m.p. 194–195° (Found: C, 67.63; H, 5.20; N, 9.17. $C_{18}H_{16}N_2O_2 \cdot 1.5 H_2O$ calc.: C, 67.69; H, 5.99; N, 8.77%).

5-(p-Methoxyphenyl)-4-methyl-1-phenylpyrazole-3-carboxylic acid (6h), m.p. 164–165° (Found: C, 70.16; H, 5.37; N, 9.21. C₁₈H₁₆N₂O₃ calc.: C, 70.12; H, 5.23; N, 9.09%).

1,5-Diphenylpyrazole-3,4-dicarboxylic acid (**6**) monohydrate had m.p. 222–223°; lit.⁴⁵ m.p. 217–218° (Found: C, 62.32; H, 4.28; N, 8.12. $C_{17}H_{12}N_2O_4 \cdot H_2O$ calc.: C, 62.57; H, 4.32; N, 8.59%).

4-Nitro-1,5-diphenylpyrazole-3-carboxylic acid (**6m**), m.p. 197–198° (Found: C, 62.26; H, 3.80; N, 13.63. $C_{16}H_{11}N_3O_4$ calc.: C, 62.13; H, 3.58; N, 13.59%).

ACKOWLEDGMENTS

We thank the Instituto de Química Orgánica General (C.S.I.C., Madrid) for the microanalyses, and the Comisión Asesora de Investigación Científica y Técnica (Ministerio de Educación y Ciencia) of Spain for financial support (Grant No. 0232/ 81) and a predoctoral fellowship (to J.L.C.J.).

REFERENCES

- 1 R. J. SUHADOLNIK, Nucleoside Antibiotics, Interscience, New York, 1970; Nucleosides as Biological Probes, Wiley-Interscience, New York, 1976.
- 2 J. G. BUCHANAN AND R. H. WIGHTMAN, in P. G. SAMMES (Ed.), *Topics in Antibiotic Chemistry*, Vol. 6, Ellis Horwood, Chichester, 1982, pp. 229-339.
- 3 L. CARRASCO AND D. VÁZQUEZ, Med. Res. Rev., 4 (1984) 471-512.
- 4 J. G. BUCHANAN, D. SMITH. AND R. H. WIGHTMAN, *Tetrahedron*, 40 (1984) 119–123, and previous papers in the same series.
- 5 A. GÓMEZ SÁNCHEZ AND M. A. RODRÍGUEZ ROLDÁN, Carbohydr. Res., 22 (1972) 53-62; F. GARCÍA GONZÁLEZ, M. GÓMEZ GUILLÉN, J. A. GALBIS PÉREZ, AND E. ROMÁN GALÁN, *ibid.*, 80 (1980) 37-43; J. FERNÁNDEZ-BOLAÑOS, J. FUENTES MOTA, AND J. FERNÁNDEZ-BOLAÑOS GUZMÁN, An. Quím., Ser. C, 79 (1983) 345-349; M. A. E. SALLAM AND S. M. E. ABDEL MEGID, Carbohydr. Res., 125 (1984) 85-95; J. A. GALBIS PÉREZ, E. ROMÁN GALÁN, M. A. ARÉVALO ARÉVALO, AND F. POLO CORRALES, An. Quím., Ser. C, 82 (1986) 76-79.
- 6 M. GÓMEZ GUILLÉN, L. M. VÁZQUEZ DE MIGUEL. AND J. VELÁZQUEZ JIMÉNEZ, Carbohydr. Res., 108 (1982) 51-58; An. Quím., Ser. C, 79 (1983) 152-157; J. VELÁZQUEZ JIMÉNEZ, Doctoral Thesis, Universidad de Extremadura, 1985.
- 7 B. B. SNIDER, R. S. E. CONN, AND S. SEALFON, J. Org. Chem., 44 (1979) 218-221.
- 8 M. GÓMEZ GUILLÉN, J. L. CONDE JIMÉNEZ. AND V. PODIO LORA, An. Quím., Ser. C, 82 (1986) 204–210.
- 9 I. L. FINAR AND D. M. RACKHAM, J. Chem. Soc., B, (1968) 211-214.
- 10 T. RULL AND G. LE STRAT, Bull. Soc. Chim. Fr., (1975) 1375-1379.
- 11 D. DALMONTE, A. MAGNINI, AND R. PASSERINI, Gazz. Chim. Ital., 86 (1956) 797-848.
- 12 S. TABAK, I. I. GRANDBERG, AND A. N. KOST, Tetrahedron, 22 (1966) 2703-2705.
- 13 A. ZECCHINA, L. CERUTTI, S. COLUCCIA, AND E. BORELO, J. Chem. Soc., B, (1967) 1363-1367.
- 14 J. ELGUERO, R. JACQUIER, AND H. C. N. TIEN DUC, Bull. Soc. Chim. Fr., (1966) 3727-3743.
- 15 L. G. TENSMEYER AND C. AINSWORTH, J. Org. Chem., 31 (1966) 1878–1883.
- 16 J. ELGUERO, E. GONZÁLEZ, AND R. JACQUIER, Bull. Soc. Chim. Fr., (1967) 2998-3003.

- 17 M. R. GRIMMETT, S. R. HARTSHORN, K. SCHOFIELD, AND J. B. WESTON, J. Chem. Soc., Perkin Trans. 2, (1972) 1654–1660.
- 18 T. RULL AND G. LE STRAT, Bull. Soc. Chim. Fr., (1975) 1371-1374.
- 19 M. GENAS, R. LANDEREETHE, A. MASSIOU, AND T. RULL, Bull. Soc. Chim. Fr., (1979) 17-25.
- 20 C. A. G. HAASNOOT, F. A. A. M. DE LEEUW, AND C. ALTONA, Tetrahedron, 36 (1980) 2783-2792.
- 21 P. L. DURETTE AND D. HORTON, Org. Magn. Reson., 3 (1971) 417-427.
- 22 M. KARPLUS, J. Am. Chem. Soc., 85 (1963) 2870-2871.
- 23 K. G. R. PACHLER, Tetrahedron, 27 (1971) 187–199; J. Chem. Soc., Perkin Trans. 2, (1971) 1936– 1940.
- 24 K. BOCK AND C. PEDERSEN, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-66.
- 25 J. ELGUERO, C. MARZIN, AND J. D. ROBERTS, J. Org. Chem., 39 (1974) 357-363; G. E. HAWKES, E. W. RANDALL, J. ELGUERO, AND C. J. MARZIN, J. Chem. Soc., Perkin Trans. 2, (1977) 1024-1027.
- 26 M. BEGTRUP, Acta Chem. Scand., 27 (1973) 3101-3110.
- 27 H. MEYER, Justus Liebigs Ann. Chem., (1981) 1534-1544.
- 28 A. GÓMEZ-SÁNCHEZ, R. FERNÁNDEZ-FERNÁNDEZ, C. PASCUAL, AND J. BELLANATO, J. Chem. Res. (S), (1986) 318-319.
- 29 G. LE FEVRE AND J. HAMELIN, Tetrahedron, 36 (1980) 887-891.
- 30 A. I. VOGEL, Química Analítica Cualitativa, Kapelusz, Buenos Aires, 1974, pp. 264-265.
- 31 W. C. STILL, M. KAHN, AND A. MITRA, J. Org. Chem., 43 (1978) 2923-2925.
- 32 R. BENN AND H. GÜNTHER, Angew. Chem., Int. Ed. Engl., 22 (1983) 350-380.
- 33 P. F. FLEURY AND J. LANGE, J. Pharm. Chim., 17 (1933) 107-113, 196-208.
- 34 L. MESTER AND A. MESSMER, Methods Carbohydr. Chem., 2 (1963) 117-118.
- 35 G. D. BUCKLEY AND C. W. SCAIFE, J. Chem. Soc., (1947) 1471-1472.
- 36 M. MIYASHITA, T. YANAMI, AND A. YOSHIKOSHI, J. Am. Chem. Soc., 98 (1976) 4679-4681.
- 37 E. J. COREY AND H. ESTREICHER, J. Am. Chem. Soc., 100 (1978) 6294-6295.
- 38 E. KNOEVENAGEL AND L. WALTER, Ber., 37 (1904) 4502-4510.
- 39 A. VOGEL, A Text Book of Practical Organic Chemistry, Longmans, Green, London, 1957, pp. 717-718.
- 40 H. B. HASS, A. G. SUSIE, AND R. L. HEIDER, J. Org. Chem., 15 (1950) 8-14.
- 41 C. B. GAIRAUD AND G. R. LAPPIN, J. Org. Chem., 18 (1953) 1-3.
- 42 O. S. WOLFBEIS, Z. Naturforsch., Teil B, 31 (1976) 594-598.
- 43 W. E. PARHAM AND J. L. BLEASDALE, J. Am. Chem. Soc., 73 (1951) 4664-4666.
- 44 Beilsteins Handbuch der organischen Chemie, 25 (1936) 120.
- 45 Beilsteins Handbuch der organischen Chemie, 25 (1936) 173.