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ABSTRACT: We report here a Ni-catalyzed reductive coupling of aldehydes with widely available 1,3-dienes under visible light 
photoredox dual catalysis. The homoallyic alcohols are obtained in broad scope with complete branched regioselectivity. Hantzsch 
ester is used as the hydrogen radical source to oxidize low-valent nickel salt affording Ni−H species. Preliminary mechanistic 
studies indicate a successive single-electron transfer (SET) pathway and the generation of a key π-allylnickel intermediate via Ni−H 
insertion of 1,3-diene in this synergistic catalytic process.

Allylation of aldehydes is one of the most important and 
reliable C−C bond-forming reactions for the production of 
homoallylic alcohols in synthetic chemistry. Traditionally, 
these valuable compounds are synthesized via addition of 
aldehydes with premetalated C-nucleophiles (from 
organometallic reagents or organic halides).1 These methods 
often pose issues of safety, cost, and multi-step pre-synthesis. 
Alternatively, 1,3-butadiene, an abundant petrochemical 
feedstock, has been applied to the reductive coupling with 
aldehydes producing homoallylic alcohols under various 
transition-metal catalysts.2 Remarkably, Ru or Ir-catalyzed 
borrowing hydrogen strategy with alcohol as reductant (or as 
both reductant and aldehyde precursor) reported by Krische 
and others is a tremendous improvement in the diene-aldehyde 
reductive coupling reactions.3-5

As a base metal catalyst, nickel has also been applied in 
reductive coupling reactions, as well as diene-aldehyde 
couplings (Scheme 1a).6 In 1994, Mori, Sato and colleagues 
reported the seminal Ni-catalyzed intramolecular coupling of 
1,3-dienes with carbonyl groups in the presence of silanes 
giving homoallylic or bishomoallylic alcohols.7 Shortly after 
that Tamaru et al. disclosed intermolecular reductive coupling 
reactions of 1,3-dienes with aldehydes by using BEt3 as 
reducing reagents to produce bishomoallylic alcohols.8 Elegant 
enantioselective reactions were also reported independently by 
the groups of Zhou and Sato.9 Recently, Breit and Krische 
realized that Ni-catalyzed reductive coupling of 1,3-dienes and 
formaldehyde afforded linear bishomoallylic alcohols with 
formaldehyde as both coupling partner and reductant.10 To the 
best of our knowledge, all of these reactions produce allylation 
or homoallylation products with linear regioselectivity. In 
addition, most of these reactions require toxic and flammable 
organometallic reagents (Et2Zn/Et3B) or silanes as reductants. 
The origin of the linear selectivity has been recognized to be 
Ni(0)-mediated oxidative coupling of diene with aldehyde 
generating an isolable π-allyloxanickelacycle intermediate.11 
Therefore, exploring new nickel based catalytic systems may 

enable branched selectivity, and this would highly broaden the 
synthetic utility of this diene-aldehyde coupling further.

Scheme 1. Ni-catalyzed Reductive Coupling of Aldehydes with 
1,3-Dienes
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Recently, the photocatalytic reductive coupling of aldehyde 
with electron-deficient olefins, such as acrylic ester and vinyl 
pyridine, generating alcohols via ketyl radicals has been 
disclosed by Chen, Ngai, and others using Hantzsch ester (HE) 
as reducing reagents.12 In addition, König and co-workers 
reported a photoredox Ni-catalyzed hydrocarboxylation of 
styrenes via nickel hydride intermediate using HE as the 
hydrogen source.13 Inspired by these elegant works, we aimed 
to develop a base metal catalyzed reductive allylation of 
aldehydes with 1,3-dienes to deliver the branched products. 
We hypothesized that merging visible light photoredox and 
nickel catalysis14 may achieve this goal. A key Ni−H species 
could be generated by oxidation of low valent nickel catalyst 
with hydrogen radical under photoredox catalysis.15 Then, 
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branch-selective allylation may be realized via addition of 
ketyl radical to π-allylnickel intermediate generated via Ni−H 
insertion of 1,3-diene followed by reductive elimination 
(Scheme 1b, path a). Alternatively, allylation of aldehyde with 
π-allylnickel intermediate through Zimmerman-Traxler 
transition state16 may also lead to branched homoallylic 
alcohols (Scheme 1b, path b). Herein, we report our 
preliminary results on the branch-selective reductive coupling 
of aldehyde with 1,3-dienes under visible light photoredox 
nickel dual catalysis (Scheme 1c).

We began the research by studying allylation of 
benzaldehyde 1 with 1,3-butadiene (2) under visible light 
photoredox Ni dual catalysis. With Hantzsch ester (HE) as a 
reductant, initial investigation found that homoallylic alcohol 
3 was obtained in moderate yield with complete branch 
regioselectivity using NiCl2 as a catalyst, 4,4'-di(t-Bu)-2,2'-

Table 1. Reaction Developmenta

H

O OH

1.5 equiv Hantzsch ester
12 mol % or 2 equiv iPr2NEt
solvent, blue LED, rt, 16 h2 (2 equiv) 3

2 mol % photocatalyst
5 or 10 mol % Ni catalyst

5 or 10 mol % Ligand

CH3

1 (0.2 mmol)
Entry Photocatalyst Ni catalyst Ligand Solvent Yieldb (%) d.r.b

1 Ir(ppy)3 NiCl2 L1 DMF 39 1.1:1
2 I NiCl2 L1 DMF 50 1.9:1
3 II NiCl2 L1 DMF 54 1.2:1
4 III NiCl2 L1 DMF 39 1.4:1
5 I NiBr2 L1 DMF 33 0.8:1
6 I NiCl2·6H2O L1 DMF 67 1.7:1
7 I NiCl2·6H2O BiPy DMF 78 1.5:1
8 I NiCl2·6H2O L2 DMF 88 1.6:1
9 I NiCl2·6H2O L3 DMF 72 1.6:1
10 I NiCl2·6H2O L4 DMF 0 -
11 I NiCl2·6H2O L5 DMF 8 1:1
12 I NiCl2·6H2O L6 DMF 23 1.8:1
13 I NiCl2·6H2O L2 DMSO 71 1.5:1
14 I NiCl2·6H2O L2 MeOH 58 2.1:1
15 I NiCl2·6H2O L2 THF 85 1.9:1
16 I NiCl2·6H2O L2 Toluene 0 -
17 I NiCl2·6H2O L2 Et2O 0 -
18c I NiCl2·6H2O L2 THF 81 1.6:1
19c,d I NiCl2·6H2O L2 THF 86 1.9:1
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aAll reaction were performed with 2 mol % photocatalyst, 10 mol % Ni catalyst, 
10 mol % Ligand, 1.5 equiv Hantzsch ester, 2 equiv iPr2NEt, and 5 W blue 
LEDs if otherwise noted. bDetermined by crude 1H NMR with 1,1,2,2-
tetrachloroethane as an internal standard. cWith 5 mol % NiCl2·6H2O and 5 mol % 
L2. dWith 12 mol % iPr2NEt.

bipyridine (L1) as a ligand, and Ir(ppy)3 as a photocatalyst 
(Table 1, entry 1). Further examination of photocatalysts 
showed that product 3 was obtained in 50% yield with 1.9:1 
d.r. ratio with Ir[dF(CF3)ppy]2(dtbbpy)PF6 (I) (Table 1, entry 
2). Subsequent screening of the nickel catalysts demonstrated 
that NiCl2·6H2O gave better result with improved yield (Table 
1, entry 6, also see Table S2 in Supporting Information). The 
ligand played an important role in the reaction (Table 1, 
entries 7-12, and Table S3 in Supporting Information). 
Electron-rich 5,5'-dimethyl-2,2'-bipyridine (L2) gave better 
yield and similar d.r. ratio (Table 1, entry 8). No reaction 
occurred with ortho-disubstituted 6,6'-dimethyl-2,2'-bipyridine 
(L4) (Table 1, entry 10). Lower yields of 3 were obtained with 
1,10-phenanthroline (L5) and 2-(pyridin-2-yl)-4,5-
dihydrooxazole (L6) (Table 1, entries 11 and 12). Further 
inspection of the solvents indicated that easily handled THF 
was a better choice with similar yield as DMF but improved 
d.r. ratio (Table 1, entry 15). When reducing the catalyst 
loading of nickel and ligand from 10 mol % to 5 mol %, the 
catalytic efficiency can also be maintained (Table 1, entry 18). 
Finally, we were glad to find that the reaction ran smoothly 
with a catalytic amount of Hünig’s base (iPr2NEt, 12 mol %) 
(standard conditions, Table 1, entry 19). 

With the optimal reaction conditions in hand, we then 
examined the generality of this transformation (Table 2). Both 
aromatic and aliphatic aldehydes were found efficient 
coupling components affording the syn-homoallylic alcohols 
as the major products (up to 99% yield). The mild reaction 
conditions are compatible with a wide range of functional 
groups including OMe (5), SMe (6), OCF3 (7), ether (10, 27), 
phenol (11), CF3 (16), and ester (17, 18, 28). It is noteworthy 
that the ortho, meta, and para-substituents on aromatic 
aldehydes show little influence on the reaction yield (4, 5, 8, 
and 9). Moreover, sterically hindered 2,4,6-
trimethylbenzaldehyde also gave the corresponding product 12 
in moderate yield. In addition, the halogen functionalities 
remain intact after the coupling, furnishing additional reaction 
cite for further synthetic elaborations (13, 14, 15, 26). 
Considering the wide presence of heterocyclic structures in the 
biologically important molecules, heteroaryl aldehydes (20, 21) 
and alkyl aldehyde bearing heteroarene group (furan, 24) are 
found suitable substrates in this reductive coupling reaction.

Next, isoprene, another important industrial raw material 
with annual production scale of about 1 milllion tons,17 was 
tested in this transformation. Benzaldehyde coupled with 
isoprene to furnish 29 and 30 at C2 and C3 position in 
moderate yield with branch selectivity. Notably, allylic 
alcohol 30 was obtained in excellent d.r. ratio. Furthermore, 
coupling of 2,3-dimethyl-1,3-butadiene with benzaldehyde 
occurred smoothly producing 31 in 66% yield. Unfortunately, 
no reaction occurred with 1-phenyl substituted 1,3-butadiene 
and cyclohexa-1,3-diene.

To further demonstrate the synthetic utility of the reaction, 
we tested the natural products and complex molecules 
containing aldehyde functionality. For example, coupling of 
1,3-butadiene with natural citronellal or myrac aldehyde 
afforded the desired product 32 and 33 as diastereomeric 
mixtures in moderate to good yields. The sugar group, 
diacetone-D-glucose, could also be tolerated in this reductive 
coupling reaction (34). 
    We next explored the mechanism of this reductive diene-
aldehyde coupling reaction. First, control experiments showed 
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Table 2. Scope of Photoredox Ni-catalyzed Branch-Selective Reductive Coupling of Aldehydes with 1,3-Dienesa

MeS
8, 92%, 1.7:1 dr4, 91%, 2:1 dr 5, 92%, 2.4:1 dr 6, 54%, 2.2:1 dr

CH3

OH

CH3

OH

MeO
CH3

OH

CH3

OH

CH3

OH

Me
9, 91%, 2.4:1 dr

CH3

OH

Me
14, 88%, 1.3:1 dr10, 96%, 1.7:1 dr 11, 89%, 0.6:1 dr 12, 59%, 0.72:1 dr

CH3

OH

CH3

OH

CH3

OH

CH3

OH

CH3

OH

15, 50%, 1.7:1 dr

CH3

OH
Cl

F

MeO
20, 55%, 1.3:1 dr16, 34%, 1.5:1 dr 17, 79%, 1.4:1 dr 18, 99%, 2.3:1 dr

CH3

OH

CH3

OH

CH3

OH

CH3

OH

CH3

OH
O

21, 70%, 4.5:1 dr

CH3

OH
N
Ts

MeO2CMeO2C

aromatic aldehydes

alkyl aldehydes

CH3

OH

H3C

27, 85%, 1.3:1 dr24, 78%, 1.3:1 dr 25, 81%, 1:1 dr

CH3

OH
Ph

CH3

OH

CH3

OH

CH3

OH

28, 93%, 1:1 dr

CH3

OHCl OBn CO2Me

29 31, 66%

OH

CH3

OHCH3

32, 88%, 1:1:1.2:1 dr

H3C

CH3

34, 64%, 1.4:1 dr
from (R)-citronellal

Me
MeO

F3CO

Cl

Me

Me

OH
O

O

F3C

CH3

OHO

O

OO

CH3
CH3

O
O

OH3C
H3C

H3C CH3

OH

H3C CH3

CH3

CH3 CH3

CH3

isoprene 2,3-dimethyl-1,3-butadiene

n = 1, 22, 73%, 1.2:1 dr
n = 2, 23, 70%, 1.2:1 dr

n
O

Me 7

26, 80%, 1:1 dr

19, 87%, 1.3:1 dr

13, 89%, 2:1 dr

7, 92%, 1.7:1 dr

H

O OH

N

N

Ir
N

N

F

F

CF3

F

F
CF3

tBu

tBu

PF6

homoallylic alcohol

NN
Me Me

Ni
Cl Cl

Ni PC

scope of aldehydes with 1,3-butadiene 2

allylation of natural products or complex molecules

scope of dienes with benzaldehyde 1

[Ir(dFCF3ppy)2(dtbbpy)]PF6 ()

aryl, alkyl:

Hantzsch ester

L2NiCl2

Ni catalyst & photocatalyst (PC)

OH

CH3

CH3

30, >20:1 dr

+

57% (29/30 = 1.9/1)

33, 53%, 1:1:1:1 dr

CH3

OH

from myrac aldehyde

H3C

CH3

aAll reactions performed with 0.2 mmol of aldehyde and 0.4 mmol 1,3-dienes. Isolated yield was provided. The d.r. value (syn:anti) was 
determined by 1H NMR analysis. For standard conditions, see Table 1, entry 19. For details, see Supporting Information.

Scheme 2. Control Experiments
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Scheme 3. Proposed Catalytic Pathway
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that no reaction occurred without ligand L2. The reaction ran 
smoothly affording 2 in excellent yield with L2NiCl2 as the 
catalyst, indicating that the ligand coordinated Ni complex is 
an active catalyst (Scheme 2, eq 1). Next, addition of radical 
scavengers into the reaction did not inhibit the reaction, such 
as 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) or ethene-
1,1-diyldibenzene (See Supporting Information). 
Furthermore, the radical clock experiment18 was conducted 
with cyclopropane-substituted aldehyde 35 as a substrate 
under standard conditions. The direct coupling product 36 
was formed, but no ring opening product was observed 
(Scheme 2, eq 2). This result demonstrates that the reaction 
may not occur via ketyl radical intermediate generated 
through single electron transfer between photoexcited 
Hantzsch ester and aldehyde. Moreover, a trace amount of 
product was observed in the absence of Hünig’s base 
(iPr2NEt) (Scheme 2, eq 3). In addition, moderate yield of 
product was obtained in the presence of stoichiometric 
iPr2NEt without Hantzsch ester as the reducing reagent 
(Scheme 2, eq 4). These results indicate that iPr2NEt can 
function as a reductant albeit with low efficiency comparing 
with Hantzsch ester in this transformation. The iPr2NEt is 
considered to be an electron shuttle between Hantzsch ester 
and photocatalyst.19

Our proposed catalytic cycle for this transformation is 
described in Scheme 3. Initial excitation of IrIII photocatalyst 
Ir[dF(CF3)ppy]2(dtbbpy)PF6 (I) generates the photoexcited 
*IrIII intermediate. The *IrIII catalyst (E1/2

red [*IrIII/IrII] = 
+1.21 V vs. saturated calomel electrode (SCE) in CH3CN)20 
is reduced by iPr2NEt (Eox (iPr2NEt) = +0.65 V)21 via SET to 
produce a highly reducing IrII species and [iPr2NEt]•+, which 
accepts one electron from Hantzsch ester (HE) to regenerate 
iPr2NEt and the corresponding Hantzsch ester radical cation 
(HE•+).22 Reduction of ligand coordinated NiII complex 

(LnNiII) by IrII (E1/2
red[IrIII/IrII] = −1.37 V vs. SCE in 

CH3CN)20 affords active NiI species (E1/2
red[NiII/NiI] = -0.68 

V vs. SCE in DMSO)23 and IrIII to close the iridium 
photoredox catalytic cycle. The following capture of the 
hydrogen radical from HE•+ with NiI species would yield 
pivotal nickel hydride (Ni−H) species and pyridinium ion 
PyH+. The kinetically preferred hydrometalation of the s-cis 
conformer of 1,3-diene with the nickel hydride generates the 
key anti-π-allyl-nickel intermediate INT1,24 which can 
isomerize to syn-π-allyl-nickel intermediate INT1' rapidly. 
The corresponding (Z)- and (E)-σ-crotyl nickel intermediate 
INT2 and INT2' would be formed subsequently. In our 
reaction, the unusual syn-diastereoselectivity is observed in 
most of the cases. The syn-product may be achieved via 
Zimmerman-Traxler transition state INT3, generating syn-
homoallylic nickel alkoxide INT4 through C−C bond 
formation. Finally, protonation of INT4 by PyH+ affords 
homoallylic alcohol product. The corresponding pyridine 
compound (HP) has been isolated as a byproduct. The crotyl 
methyl group placed pseudoaxially in transition state INT3 
may minimize gauche interactions between this group and 
the substituent of the aldehyde, which has been observed in 
certain reactions.25 This may account for INT3 more 
favorable than INT3' in this reaction, and the latter TS 
model results in anti-diastereoselectivity.

In summary, the first Ni-catalyzed branch-selective 
reductive coupling of aldehydes with 1,3-dienes has been 
developed under visible light photoredox catalysis. A novel 
strategy was realized to achieve the branch selectivity 
through the key π-allylnickel intermediate which was 
obtained via insertion of 1,3-dienes with a Ni−H 
intermediate derived from oxdative addition of low valent Ni 
salt with hydrogen radical. Coupling of widely available 1,3-
dienes with (hetero)aryl, and alkyl aldehydes afforded 
homoallylic alcohols with broad scope and good 

Page 4 of 7

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



functionality tolerance under the synergistic catalysis. 
Development of an enantioselective version of this novel 
transformation is currently ongoing in our laboratory.
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