Enzymatic Ring Expansion of Penicillins to Cephalosporins: Side Chain Specificity

Jack E. Baldwin,* Robert M. Adlington, Janice B. Coates, M. James C. Crabbe, John W. Keeping, Graham C. Knight, Takashi Nomoto, Christopher J. Schofield, and Hong-Hoi Ting

The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, U.K.

Structural variants on the acylamino-side chains of penicillins as substrates for the ring expansion enzyme from *Cephalosporium acremonium* CO728 show that a six carbon chain terminating in a carboxy group permits efficient conversion into cephems with the exception of δ -(ι - α -aminoadipoyI) [5-(5*S*)-amino-5-carboxypentanoyI].

The biosynthesis of cephalosporins involves a ring expansion of penicillin N (1, R = a) to deacetoxycephalosporin C (DAOC) (2, R = a).¹ The δ -(α -aminoadipoyl) side chain of (1) is D-configured, deriving from the L-side chain of isopenicillin N,² the first formed penicillin.³ We have purified the ring expansion activity from Cephalosporium acremonium CO7284 and used it to assess the side chain specificity of this important enzymatic step. Thus a series of penicillins were exposed to this purified activity and their conversions into cephems monitored by ¹H n.m.r. spectroscopy, bioassay, and steadystate initial rate measurements based on the generation of increased u.v. absorption at λ_{max} . 260 nm, characteristic of the dihydrothiazine moiety of cephalosporins.⁵ In those cases where the efficiency of the conversion permitted we isolated and characterised the so-formed cephalosporins. The results are shown in Table 1. In the case of (1, R = b) the product, active against Escherichia coli both in the presence and absence of β -lactamase 1 (from *Bacillus cereus*), was purified by h.p.l.c. [reverse phase ODS column, acetonitrile: water (1:40)] to give the cephem (2, R = b), $\delta_H (D_2O, 500 \text{ MHz})^{\dagger}$ 1.77 (3H, s, 3-Me), 3.03, 3.35 (2H, ABq, J 18 Hz, 4-H), 3.53, 3.58 (2H, ABq, J 15 Hz, COCH₂), 4.88 (1H, d, J 4.5 Hz, β-lactam-H), 5.36 (1H, d, J 4.5 Hz, β-lactam-H), and 7.23–7.35 (4H, 2 × m, ArH), m/z (fast atom bombardment) 360 (MH^+ , 45%), which was identical to a synthetically prepared sample.[‡]

Similarly with (1, R = c) the product was purified by h.p.l.c. (reverse phase ODS column, 7.5 mM NH₄HCO₃) to yield the cephem (2, R = c), $\delta_{\rm H}$ (D₂O, 500 MHz)[†] 1.46–1.53 (4H, m, [CH₂]₂CH₂CO), 1.79 (3H, s, 3-Me), 2.06–2.10 (2H, m, CH₂CO), 2.22–2.30 (2H, m, CH₂CO), 3.12, 3.47 (2H, ABq, J 13 Hz, 4-H), 5.44 (1H, d, J 4.5 Hz, β -lactam-H), and 5.96 (1H, d, J 4.5 Hz, β -lactam-H), which was identical to an authentic sample. The dimethyl ester of (2, R = c) obtained (diazomethane) from the enzymatic reaction gave m/z (NH₃ desorption chemical ionisation) 388 (MNH_4^+ , 32%) and 371 (MH^+ , 34%), identical to an authentic sample.§ This result is in contrast to that of Kupka *et al.*⁶ who reported, using a protoplast lysate from *C. acremonium* CW-19, containing ring

† Referenced to sodium $[2,2,3,3-^{2}H_{4}]$ -3-trimethylsilylpropanoate (TSP) = 0.00 p.p.m.

‡ Prepared by hydrogenation (Pd/C, H₂, 20 °C) of the bis-pnitrobenzyl ester of (2, R = b).

§ Prepared by hydrogenation (Pd/C, H_2 , 20 °C) of the bis-*p*-nitrobenzyl ester of *N*-adipoyl-7-aminodeacetoxycephalosporin C.

expansion activity, that 'carboxy n-butyl penicillin' [which we assume to be (1, R = c)] did not give cephalosporin products (by bioassay or h.p.l.c.).

It is of some interest that the *m*-carboxyphenylacetyl side chain of (1, R = b) provides a 'rigid' version of the adipoyl side chain of (1, R = a) and (1, R = c), cf. Figure 1.

Of the other penicillins (1, R = d-k) we tested as substrates for the ring expansion activity only the γ -(Dglutamyl) penicillin (1, R = d) gave a low conversion into a cephem product detectable by ¹H n.m.r. spectroscopy and

Table 1. Side chain specificity of the ring expansion of penicillins to cephalosporins.^a

^a Conditions: [substrate] = 1 mM; [enzyme] = 4 μ M; cofactors FeSO₄, O₂, α -ketoglutarate, ascorbate, dithiothreitol; buffer: Tris·HCl, pH 7.5; temp. 30 °C.

375

antibacterial activity in the presence of β -lactamase 1. However, using the more sensitive spectrophotometric assay, based on the observation of the 260 nm chromophore of the products (2) we found that both the γ -(D-glutamyl) penicillin (1, R = d) and the glutaryl penicillin (1, R = e) were poor substrates (see Table 1).

In conclusion these studies indicate that a six carbon-*N*-acyl side chain, terminating in a carboxy group, permits reasonable penicillin into cephem conversion by the ring expansion enzyme. Although we have found a broadly similar requirement for the isopenicillin N synthetase enzyme,^{7,8} the ring expansion enzyme differs in its inability to process isopenicillin N (1, R = f) bearing the δ -(L- α -aminoadipoyl) side chain.⁹

Received, 14th October 1986; Com. 1466

References

1 J. E. Baldwin, P. D. Singh, M. Yoshida, Y. Sawada, and A. L. Demain, *Biochem. J.*, 1980, **186**, 889.

- 2 J. E. Baldwin, J. W. Keeping, P. D. Singh, and C. A. Vallejo, *Biochem. J.*, 1981, **194**, 649.
- 3 J. E. Baldwin in 'Recent Advances in the Chemistry of β-Lactam Antibiotics,' (3rd International Symposium), eds. A. G. Brown and S. M. Roberts, Royal Society of Chemistry Special Publication No. 52, 1985, p. 62.
- 4 J. E. Baldwin, R. M. Adlington, J. B. Coates, M. J. C. Crabbe, N. P. Crouch, J. W. Keeping, G. C. Knight, C. J. Schofield, H.-H. Ting, C. A. Vallejo, M. Thorniley, and E. P. Abraham, *Biochem. J.*, in the press.
- 5 J. E. Baldwin and M. J. C. Crabbe, FEBS Lett., in the press.
- 6 J. Kupka, Y-Q. Shen, S. Wolfe, and A. L. Demain, FEMS Microbiol. Lett., 1983, 16, 1.
- 7 J. E. Baldwin, E. P. Abraham, R. M. Adlington, G. A. Bahadur, B. Chakravati, B. P. Domayne-Hayman, L. D. Field, S. L. Flitsch, G. S. Jayatilake, A. Špakovskis, H-H. Ting, N. J. Turner, R. L. White, and J. J. Usher, J. Chem. Soc., Chem. Commun., 1984, 1225.
- 8 J. E. Baldwin, E. P. Abraham, G. L. Burge, and H-H. Ting, J. Chem. Soc., Chem. Commun., 1985, 1808.
- 9 J. Kupka, Y-Q. Shen, S. Wolfe, and A. L. Demain, *Can. J. Microbiol.*, 1983, **29**, 488; A. Scheidegger, M. T. Küenzi, and J. Nüesch, *J. Antibiot.*, 1984, **37**, 522.