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Abstract: A novel chiral 1,5-N,N-bidentate ligand based on a 

spirocyclic pyrrolidine oxazoline (SPDO) backbone has been 

designed and prepared, which in situ coordinates with CuBr to form 

an unprecedented catalyst that enables an efficient oxidative cross 

coupling of 2-naphthols using air as external oxidant, generating a 

series of C1-symmetric chiral BINOL derivatives in high 

enantioselectivity (up to 99% ee) and good yield (up to 87%). This 

approach could be nicely tolerant of much broader substrates scope, 

particularly bearing bran-new various 3- and 3-substituents. A 

preliminary investigation using a prepared C1-symmetric BINOL-

derived aldehyde organocatalyst exhibits better enantioselectivity 

than the previously reported organocatalyst toward the asymmetric 

α-alkylation of amino esters. 

As a core structural element, the binaphthyl has been prevalently 
found in numerous chiral ligands, functional materials, and 
biologically active natural products.[1] During the past decades, the 
C2-symmetrical chiral BINOL (binaphthol) and its derivatives have 
exerted historical effect on asymmetric catalysis, particularly as 
exemplified by BINAP,[1b] BINOL derived phosphoric acid,[1h] and so 
on, that have been enabling a broad scope of enantioselective 
transformations. In recent years, however, the C1-symmetric BINOL-
derived ligands and catalysts[2] bearing different functional groups at 
the 3,3’-positions (e.g. PPh3 and Bn) have been found to exhibit 
better enantio-induction toward some transformations than the 
corresponding C2-symmetric catalyst (e.g. Scheme 1A) [2g] . This 
observation indicates  the C1-symmetric chiral binaphthyls, that bear 

variable  3- and 3-disubstituents as a “two-arms” tool to improve the 
stereo-controlling, would have great potential to prompt the future 
asymmetric catalysis.                     

Undoubtedly asymmetric oxidative coupling of 2-naphthol 
derivatives is the most straightforward approach to build up the 
binaphthyl chirality.[1e] And the homocoupling versions have already 
received a great success by use of chiral copper,[3] vanadium,[4]  iron[5] 
and other metal catalysts.[6] In sharp contrast, the cross coupling of 

two different 2-naphthols have much less been described, despite 
Katsuki and Pappo groups have reported separately two approaches 
with Fe-complexes to generate a limited number of C1-BINOLs with a 
single or no 3-functional group (Scheme 1B).[3b,7] Therefore, 
development of an effective catalytic system for affording a cross 

coupling to generate the 3,3-disubstituted C1-symmetric BINOLs is 
of particular demand.  

 
Scheme 1. C1-symmetric BINOLs Catalysis and their Construction  

 
An ideal asymmetric catalytic system for efficient oxidative cross 

coupling of 2-naphthol should reach not only high enantioselectivity 
as well as chemoselectivity, but also a wide substrate toleration 

especially with the 3,3-disubstitution. To date, however, there is still 
lack of sufficient knowledge documented to guide such a catalytic 
system design. Fortunately, a homocoupling catalyst developed by 

Kozlowski group, the Cu-1,5-diazadecalin affording the 3,3-homo-
disubstitution, shows the unique high efficiency toward the homo-
coupling of 2-naphthol with 3-EWG (electron-withdrawing group),[3b] 
which gives a clue for seeking this type of catalyst. In connection with 
our recent effort toward this subject, two novel SPD (spirocyclic 
pyrrolidine) and SPA (spirocyclic amide) -type organocatalysts have 
successfully facilitated several asymmetric transformations,[8] 
suggesting that these backbones would be possibly a privileged 
structure for further building up new effective ligands. Herein we 
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hypothesize that the 1,5-N,N-bidentate ligands SPDO (SPD-oxazoline) 
and SPAO (SPA-oxazoline) would be designed and made into Cu-
SPDO or Cu-SPAO complexes, that would enable the catalytic 
asymmetric oxidative cross coupling as above (Scheme 1C). 

Our investigation began with the preparation of our newly 
designed SPDO and SPAO ligands L1-L4 easily in gram-scale from 
SPD and SPA backbones, respectively (for details, please see 
supporting information). Then the asymmetric homocoupling of the 
3-methyloxycarbonyl-2-naphthol using in situ prepared Cu-L1-L4 
complexes as catalyst was initially examined. To our delight, after 
screening of Cu(I) salts, ligands and solvents, the complex CuBr/L1 in 
MeOH could catalyze the homocoupling to generate desired product 
in remarkably high 84% yield and 94% ee.[9] Under this conditions, 
other esters (with Bn and Ph) of 3-carbonyl-2-naphthols could also be 
readily coupled to give the satisfying results (Table 1), demonstrating 
the efficiency of Cu(I)-L1 system toward the oxidative homocoupling 
of 2-naphthol. 

 
Table 1 Prelimary test of L1-L4 toward homocoupling of 2-naphthol 

[a]
 

 
[a] Reactions conditions: CuBr (0.05 equiv), L1 (0.05 equiv), 2-naphthols (0.1 
mmol) in MeOH (1 mL) at rt for 24 h. 

 

Table 2 Optimization of asymmetric oxidative cross coupling 
[a]

 

 

entry Cu(I) /L (mol %) solvent t (h) Yield (%) 
[b]

 Ee (%) 
[c] 

 

1 CuBr/L1 (10) THF 10 81 78 

2 CuBr/L2 (10) THF 24 70 36 

3 CuBr/L3 (10) THF 24 51 54 

4-
symme
tric 

CuBr/L4 (10) THF 48 20 24 

5 CuCl/L1 (10) THF 24 80 67 

6 CuI/L1 (10) THF 24 72 56 

7 CuBr/L1 (10) MeOH 10 78 20 

8 CuBr/L1 (10) EtOH 16 75 82 

9 CuBr/L1 (10) 
i
PrOH 16 85 96 

10 CuBr/L1 (5) 
i
PrOH 36 83 85 

11
 [d]

 CuBr/L1 (5) 
i
PrOH 36 86 94 

12 
[d,e]

 CuBr/L1 (5) 
i
PrOH 30 86 96 

[a] Unless otherwise noted, reactions were performed (for detail, see 
supporting information) using: CuBr (0.1 equiv), ligand (0.1 equiv), 1a (0.1 
mmol), and 2a (1.5 equiv) in solvent (1 mL) at rt. [b] Isolated yield. [c] 
Determined by chiral HPLC. [d] 4Å molecular sieves (30 mg) was used. [e] 1a 
was added in two batches over 3 h. 
 

Subsequently, the more challenging oxidative cross coupling[10] 

process with two different 3-substituted-2-naphthol partners was 
investigated. Based on literature information, the oxidative cross 
coupling could preferentially occur through radical-anion coupling 

process only when two coupling partners have large enough redox 

potential difference (RPD) orΔN values (N = theoretical global 
nucleophilicity).[2a,7,10] Thus the electron-deficient 3-
phenyloxycarbonyl-2-naphthol (1a) and electron-rich 3-benzyloxy-2-
naphthol (2a) were selected to search for the coupling conditions. 
Pleasingly as indicated in Table 2 (entry 1), when CuBr/L1 (1:1, 10 
mol %) in THF was used, the desired product 3aa could be obtained  
with 81% yield and 78% ee.[11] Then the ligands L2-L4 were further 
investigated, showing the alkyl-substituted L2 and L3 gave slightly 
poor results  (entries 2-3 vs 1). And the SPAO ligand L4 gave even the 
worst result (entry 4). Subsequently, Cu(I) salts (entries 5-6) and 
solvents (entries 7-9) were screened, indicating the system CuBr/ L1 
in iPrOH could give the remarkably high 85% yield and 96% ee 
(entries 5-8 vs 9). However, a lower loading of L1 (5 mol %) would 
decrease the yield and ee (entry 10). Fortunately, this result could be 
further improved by adding the 4Å  molecular sieves [3g] and feeding 
1a in two batches [7d] (entries 11- 12). 

 

Table 3 Scope of electron-rich 2-naphthol patners 2 
[a]

 

 
[a]

 
Unless otherwise noted, reactions were performed (for detail, see 

supporting information) using 1  (0.1 mmol), CuBr (0.05 equiv) and L1 (0.05 
equiv), 2 (1.5 equiv) and 4Å molecular sieves (30 mg) in 

i
PrOH (1 mL) at rt for 

30 h. [b] CuBr (0.1 equiv) and L1 (0.1 equiv) were used. [c] BQ (0.1 mmol) 
was extra used. [d] 2j (1 mmol), 2l (0.5 mmol) and BQ (0.5 mmol) were used, 
and 99% ee, 34% yield were obtained after recrystallization. 
 

After identifying the optimal catalyst CuBr/L1 and experimental 
procedures for the cross coupling (Table 2, entry 12), then a wide 
range of electron-rich or deficient 2-naphthols 2a-2m with varying R5 
and R6 were investigated with the electron-deficient partners 1a and 
1f. The results (Table 3) showed that most examples could work well 
to generate the expected C1-symmetric BINOLs 3 with high 
enantioselectivity (up to 99% ee) and good yield (up to 86% yield). 
Just as we assumed in the first group of examples 2a-2h with varying 

electron-rich 3-benzyloxyl, the coupling with 1a gave dominantly the 
C1-symmetric BINOLs 3aa-3ah with up to 86% yield and 99% ee 

because the bigger difference of 1 and 2. Notably, 2h with 3,5-

di(trifluro)methyl- 3-benzyloxyl gave the best 99% ee of 3ah. 

Secondly, substrate 2i with 6-OMe rather than 3-substituent could 
still couple well with 1a and 1f to furnish 3ai in good 84% ee and 3fi in 
high 92% ee, respectively, which provided further possibility to 
modify the ligand/catalyst.[2] In third group of examples with both 
partners  being the electron-deficient, however, cross coupling often 
led to the lower yields (40-65%) and/or ee (74%) of the products 3aj-
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3al and 3jl due to the minor difference between two partners.[12,13] 
Importantly for the product 3jl, its low enantio-purity (74% ee) could 
be improved to 99% ee after recrystallization, which presented good 
enatio-induction in an aldehyde catalysis[14] bellow (Scheme 3B). In 
most examples (3aa-3ai, 3fi) of Table 3 unless those noticed (3aj-3al, 
3jl), the homocoupling byproducts of 2 were not up to 10% yield, and 
no homocoupling byproduct of 1a or 1f was isolable. 

 

Table 4 Scope of electron-deficient 2-naphthol partners 1 [a]
 

 
[a]

 
Unless otherwise noted, reactions were performed (for detail, see 

supporting information) using 1  (0.1 mmol), CuBr (0.05 equiv) and L1 (0.05 
equiv), 2 (1.5 equiv) and 4Å molecular sieves (30 mg) in 

i
PrOH (1 mL) at rt for 

30 h.  

 
Subsequently, the cross coupling scope was further expanded by 

using a series of the electron-deficient partners 1b-1p varying the 3-
ester group to couple with 2a. As summarized in Table 4, most 
examples could also work well to give high enantioselectivity and 
yield. Generally, the aromatic esters 1b-1n gave better ee values than 
that of the aliphatic 1o and 1p (3ba-3na vs 3oa-3pa), although the 
yield maintained the same level. Further detailed inspection showed 
that in the first group of examples 1b-1k with mono, di and tri-
substitutents at the aromatic ring, the EWG and ENG (electron-
neutral group) substitutions gave better results than the EDG (3ba-

3ha and 3ka vs 3ia), with the 3,5-difluoro-phenyl  ester 1h giving 
the best ee (99%) of 3ha. An additional reason for the poor result (70 
ee% and 72% yield) of 3ja was possibly the presence of highly steric 
bulky t-butyl. The second group of examples (1l-1n) indicated that 
this method could even be tolerant of the 6-substitution of the 
naphthyl framework. And either electron-rich 6-MeO, or electron-
deficient 6-Br substitution could afford 3la-3na in high ee (92-96%) 
and yield (75-84%), which provided additional chances to modify C1-
symmetric BINOL-derived ligand/catalyst. In the third group (1o-1p), 
however, both alkyl esters 1o-1p gave poor enantioselectivity of 3oa-
3pa (20-61% ee), possibly due to the lack of aromatic π-π stacking 
between 1o-1p and L1. The same as Table 3, in all cases of Table 4, no 
homocoupling byproduct of 1 was observed, and just less than 10% 
yield of the self-coupling byproduct of 2a was isolable.   

Based on the experimental results above and the literature reports 
on the aerobic oxidative coupling,[3b,7] a possible radical-anion 
coupling process was proposed (Scheme 2). Initially, the Cu(II)/L1 
complex was formed from Cu(I) and L1 under air. Then this complex 

coordinated with 1a to form species A, which subsequently coupled 
with the radical species B (generated from 2a through an outer 
sphere electron transfer with another Cu(II) complex), to form the 
intermediate C via TS (transition states). The chiral coupling product 
(S)-3aa was afforded after tautomerization of C. Noticeable was that 
during this coupling process as shown in TS, species B tended to 
attack from Si-face of species A to give the (S)-3aa, which was 
consistent with our observed experiment results. While a Re-face 
attack forming (R)-3aa was disfavored because of the bigger steric 
hindrance effect between species B and A.  

 
Scheme 2. The postulated TS for explaining the stereoinduction.  

 

To support the utility of our asymmetric catalytic protocol, a gram-
scale experiment was carried out in Scheme 3A, and the desired 3aa 
could be obtained in 1.47 g (72% yield) with ideal 95% ee under 
standard conditions. In addition, the chiral C1-symmetric BINOL 
product 3jl obtained above was also used as an aldehyde-activating 
catalyst toward a direct enantioselective α-alkylation of amino esters 
(Scheme 3B). Compared with a reported result (81% ee) with catalyst 
9, 3jl could yield product 8 with a much better enantioselectivity (94% 
ee). [14b] 

 

 
Scheme 3. Synthetic applicability. 

 

In summary, we have successfully developed a novel Cu-SPDO 
complex catalytic system (Cu-L1), using which a catalytic asymmetric 
aerobic oxidative cross coupling approach of 2-naphthols has been 
explored, generating a series of chiral C1-symmetric BINOLs. This 

convergent approach allows the rapid construction of various 3,3-

disubstitued axially chiral BINOLs, including 3-carboxylic ester, 3-
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oxylbenzyl, aldehyde, halides, and so on, featuring high 
enantioselectivity, good chemoselectivity (homocoupling byproducts 

10% in most cases), and particularly a bran-new and broad substrate 
scope. We believe this methodology and the BINOL products 
obtained would find potential utility in asymmetric catalysis in future.  
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