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Abstract: A practical, total synthesis of polyamine amide spider toxin NSTX-3, a potent glutamate receptor 
antagonist with potential as a n e ~ t e c t i v e  agem, is reported. The tuuymmetrical polyamine moiety was 
built by a conjugate addition to afford putreaaine and regioseleetive acylation of L-asparaginyi-cadaverine. 

Nephila clavata is an orb-weaver spider which envenomates with essentially millimolar glutamate 

and a complex mixture of unsymmetrical polyamine amides toxins e.g. NSTX-3 (1) I and peptide based 

toxins, NPTXs. 2,3 The polyamine amide components are open-channel glutamate receptor blockers. 1 The 

unusual structure of NSTX-3 (1) was solved and published by Nakajima, Kawai, and their co-workers. 1,4 

This spider toxin contains an unsymmetrical polyamine (5. ~Ala.4.Arg), regioselectively acylated on the 

primary amino functional group of the cadaverine (1,5-diaminopentane) moiety with 2,4-dihydroxyphenyl- 

acetyl-L-asparagine. The terminal amine of the putreanine (~Ala.4) moiety is acylated with L-arginine. 

Polyamine amide ~Ala.4.Arg carries up to three positive charges, at physiological pH. Confirmation of the 

structure of this regioselectively diacylated unsymmetrical polyamine came with the total syntheses of 

NSTX-3 (!) 5,6 and the closely related tripeptide (Ala.Gly.Arg) containing spider toxin clavamine (2). 7-9 

There is continuing interest in polyamine amides as channel blockers for glutamic acid and/or nicotinic 

acetylcholine-gated cation channels, and certain voltage-sensitive calcium channels 1,10-16 and as novel 

natural products containing polyamine amides. 17 In this Letter, we present a convergent total synthesis of 

NSTX-3 (1) 18 based upon a strategy which allows the putreanine moiety (~-Ala.4) to be incorporated first. 

This practical route ensures sufficient material is available for pharmacological evaluation. 
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NSTX-3 (1) synOwsil: 2,4-Dibenzyioxyphenylacetic acid activated as its N-hydroxysuccinimide 

ester (3) was prepared by an Amdt-Eistert chain homologation strategy from 2,4-dibenzyloxybenzoie acid 

(4). After conversion of acid (4) into the corresponding acid chloride (5) (oxalyl chloride, 1.2 eq., pyr., 1.1 

eq., PhMe, 0 to 20"C, 30 mins), reaction with an ethereal (EtOH free) solution of diazomethane (10 eq., 0 to 

20"C, 2 h) gave diazoketone (6) as a yellow solid mp 98-99"C dec., in 81% yield from acid (4). Amdt- 

Eistert reaction (anhydrous DMF, 20"C, PhCOOAg 0.2 eq., 75 mins) gave the desired activated ester (3) as a 

white solid (80 %) mp 145-146"C (lit. 5 mp 143-143.5"C), after silica gel chromatography, v/a trapping of 

the presumed ketene intermediate (7) in situ with N-hydroxysuccinimide (10 eq.). 

The cadaverine moiety of NSTX-3 (1) was incorporated in (2,4-dibenzyloxy)phenylacetyl-L-Asn- 

mono-BOC cadavenne (8) which was designed for selective deprotection to afford free primary amine (9) for 

coupling with a putreanine containing polyamine amide moiety. 6 Thus, mono-BOC cadaverine was prepared 

by reacting cadaverine (1,5-diaminopentane) (3.0 eq.) with BOC20 (1.0 eq., THF, 0*C, 16 h, 62 %).19 N- 

BOC-1, 5-Diaminopentane was then acylated with Z-L-AsnOpNP (10) (1.1 eq., DCM, 20"C, 16 h) which 

efficiently gave orthogonally protected Asn-cadaverine (11) (69 %). Hydrogenolysis (H 2, 1 atm, 10 % Pd/C, 

MeOH, 15"C, 16 h) of Z-protected Asn (11) gave free amine (12) (86 %) which was then N-acylated with 

activated chromophore (3) (DCM, NEt 3 1.1 eq., 20"C, 16 h) affording BOC protected amine (8) (79 %). 

Free amine (9), 20 incorporating the required protected chromophore-L-Asn-cadaverine moiety, was obtained 

by brief treatment (1 h) of BOC protected amine (8) with TFA in DCM (1:1) at 0*C (79 % as the free base 

after silica gel chromatography DCM:MeOH:COnc. NH4OH 75:10:1 v/v/v). 19 

The l~-Ala.4.Arg moiety of NSTX-3 (1) was designed to be incorporated by acylation of primary 

amine (9). Therefore, polyamine-Arg (13) was prepared from putrescine (1,4-diaminobutane) (14). Mono-Z 

protection of putrescine (14) to afford carbamate (15) 21 was not found to be a practical strategy, yields were 

typically <3% using Z-CI in aq. NaOH/THF at 0*C where the di-Z protected diamine predominated. 21 A 

convenient way around this problem was v/a mono-BOC-mono-Z-putrescine. Mono-BOC protection of 

putrescine (14) (3.0 eq.) (BOC20 1.0 eq., THF, 0*C, 16 h) afforded carbamate (16) (76 %) which was then 

reacted with Z-CI (1.I eq.) under Schotten-Baumann conditions (1 M aq. NaOH, 1.1 eq., 0 to 20"C, 16 h) to 

give the required unsymmetrical dicarbamate (82 %) which was selectively deprotected with TFA in DCM 

(1:1) (0*C, 1 h) to yield mono-Z-putrescine (15) 21 (76 %). Amine (15) underwent 1,4-Michael addition with 

t-butyl acrylate (1.1 eq.) (MeOH, 20"C, 16 h) to afford the desired conjugate (17) (39 %). The protected 

terminal amine of conjugate (17) was hydrogenolysed (H 2, 1 atm, 10 % Pd/C, MeOH, 15"C, 16 h) to yield 

primary amine t-butyl ester (18) (96 %) which was acylated with Z3ArgOH (I . I  eq.) (DCM, DCC 1.5 eq., 

HOBt 0.05 eq., 20"C, 16 h) to afford the desired amide (19) (75 %). The secondary amine functional group 

of the amide ester (19) was protected by carbamoylation with Z-CI ( 1.1 eq.), in DCM, using NaOEt (1.1 eq. 

in EtOH) to yield the fully protected polyamine amide (20) (73 %) whose t-butyl ester was deprotected with 

TFA in DCM (1:1) (20"C, 16 h) to afford the desired protected I~-Ala.4.Arg as the free acid (13) (91%). 

Putreanine moiety (13) was acylated with primary amine (9) ( 1.0 eq., DMF, 7 d, 20"C) after the acid 

had been activated as its pentafluorophenyl ester [free acid (13) activated with pentafluorophenol (1.1 eq.) 

(THF, DCC 1.5 eq., 16 h, 20"C)]. The activated ester was not isolated, but the solution was used directly in 

the next step, to afford protected NSTX-3 (21), in 65 % overall yield from primary amine (9). 
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Efficient deprotection was accomplished by hydrogenolysis (I-t2, 1 atm, 20"C, 4 h) of the polyamine 

amide (21), in the presence of Pearlman's catalyst, Pd(OH)2 on carbon in glacial acetic acid, to afford spider 

toxin polyamine amide NSTX-3 (1) as the corresponding polyacetate salt. Crude NSTX-3 (1) was purified 

by RP-HPLC, linear gradient elution with A = H20, 0.1% TFA; B = MeCN; 0 to 20 min, 95 to 85 % A; 20 

to 25 rain, 85 to 10 % A; 25 to 30 rain, 10 % A; 30 to 35 rain, 10 to 95 % A; ;k = 280 nm, C8 column, 25 cm 

x 10 mm i.d., 4 ml/min, to afford NSTX-3 (1) polytrifluoroacetate salt, a cream eoloured foam (98 % after 

RP-HPLC). FAB mass spectroscopy, in 3-nitrobenzyi alcohol matrix, displayed FAB +ve ion 665, FAB -ve 

ion 663, C30H52N 100 7 requires M = 664; FAB -ve ion (M+ITFA) 777, C32H53NIoF30 9 requires M = 778. 
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