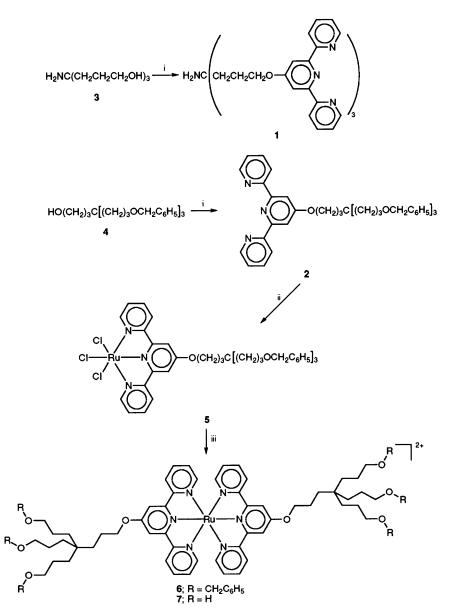
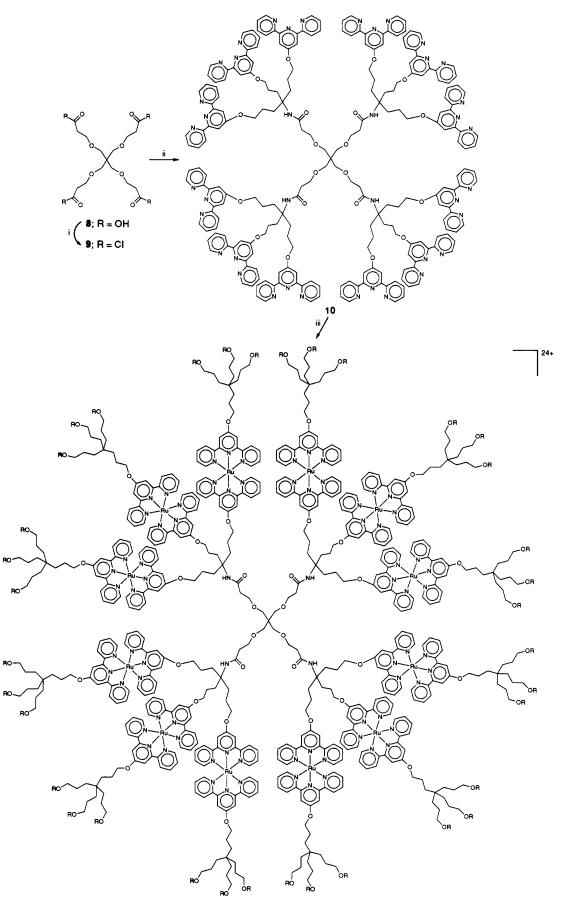
Metallomicellanols: Incorporation of Ruthenium(II)–2,2': 6',2"-Terpyridine Triads into Cascade Polymers

George R. Newkome,* ^a Francesca Cardullo, ^a Edwin C. Constable,* ^b Charles N. Moorefield ^cand Alexander M. W. Cargill Thompson^b


^a Center for Molecular Design and Recognition, Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA

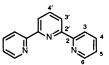
^b Cambridge Centre for Molecular Recognition, University Chemical Laboratory, Lensfield Road, Cambridge, UK CB2 1EW


• Tampa Bay Research Corporation, 3702 Spectrum Boulevard, Suite 145, Tampa, Florida 33612, USA

Facile alkoxylation of 4'-chloro-2,2': 6',2"-terpyridine with the mono- and tri-hydroxylic cascade (dendritic) building blocks, 4-(3-hydroxypropyl)-4-(3-benzyloxypropyl)-1,7-bis(benzyloxy)heptane **4** and 4-amino-4-(3-hydroxypropyl)heptane-1,7-diol **3**, has allowed the synthesis of a dodecaruthenium macromolecule **11** employing ligand—metal–ligand connectivity.

The construction of most cascade macromolecules has relied on heteroatom connectivity¹ with several notable exceptions.² Thus, in our quest of new supramolecular systems, we have created a new family of multifunctional molecules possessing a predetermined spherical morphology which utilizes an octahedral or pseudooctahedral ruthenium(II) metal centre coordinated to two different orthogonal 2,2':6',2''-terpyridines (tpy) [Ru^{II}(Ytpy)(Xtpy)]³ to build the arms of the cascade polymer. Such technology permits the placement of multiple, heteroleptic metal complexes at predetermined

Scheme 1 Reagents and conditions: i, Cltpy, KOH, DMSO, 60 °C, 20 h; ii, RuCl₃·3H₂O, absolute EtOH, reflux, 20 h; iii, N-ethylmorpholine, MeOH, reflux, 2 h


11; $R = CH_2C_6H_5$

Scheme 2 Reagents and conditions: i, SOCl₂, CH₂Cl₂, 45 °C, 13 h; ii, Et₃N, 1 (4 equiv.), 25 °C, 3 days; iii, N-ethylmorpholine, 5 (15 equiv.), MeOH, reflux, 1.5 h

internal sites within the hydrophilic-surfaced Micellane framework. $^{\rm 4}$

The key building blocks, amine 1^{\dagger} and tpy $2,^{\dagger}$ were prepared by the treatment of triol⁵ **3** and alcohol² **4**, respectively, with 4'-chloro-2,2':6',2"-terpyridine (Cltpy)⁶ in the presence of solid KOH in anhydrous dimethyl sulfoxide (DMSO) (Scheme 1). The ¹³C NMR spectra for **1** and **2** show the expected shift of the peak for the 4'-carbon from δ 146.1 to 167.1 denoting the successful formation of the ethereal bond. The addition of 1 equiv. of **2** with RuCl₃·3H₂O in boiling ethanol gave (72%) the orange microcrystalline, paramagnetic complex **5**, which was used without further purification owing to its limited solubility. In order to test the facility of the coupling procedure, this ruthenium(III) complex **5** was treated with 1 equiv. of ligand **2** in boiling methanol and *N*-ethylmorpholine, as the reducing agent, then after a brief period of

† All new compounds gave consistent spectral and analytical data. 1H and ¹³C NMR data were obtained on a Brüker 360 MHz AMX NMR spectrometer using CDCl₃ as the solvent and SiMe₄ as the reference (¹H NMR); Superscripts ext and int refer to external and internal moieties, respectively. Selected NMR data for new compounds: 1 1H NMR δ 1.66, 1.92 (2 m, CH₂CH₂CH₂O, 12 H), 2.59 (s, NH₂, 2 H), 4.28 (t, CH₂O, J 6.1 Hz, 6 H), 7.28 (t, 5-H, J 4.3 Hz, 6 H), 7.80 (t, 4-H, $J = (1, CH_2, CH_2, CH_2, CH_1, CH_2, CH_1, CH_2, CH$ (C-4), 123.7 (C-3), 136.6 (C-3'), 149.0 (C-6), 156.2 (C-2), 157.0 (C-2'), 167.1 (C-4'); 2 ¹H NMR 8 1.10-1.85 [m, C(CH₂CH₂)₄, 16 H], 3.41 (t, CH₂OCH₂C₆H₅, J 6.5 Hz, 6 H), 4.16 (t, CH₂Otpy, J 6.1 Hz, 2 H), 4.48 (s, CH₂C₆H₅, 6 H), 7.32 (m, C₆H₅, 5-H, 17 H), 7.83 (t, 4-H, J 7.9 Hz, 2 H), 8.01 (s, 3'-H, 2 H), 8.59 (d, 3-H, J 7.9 Hz, 2 H), 8.67 (d, 6-H, J 4.0 Hz, 2 H); ¹³C NMR δ 23.0 (CH₂CH₂Otpy), 23.6 $\begin{array}{l} (CH_2CH_2OCH_2C_6H_5), & 32.6 \quad [C(CH_2)_4], & 36.6 \quad (C-quat.), & 68.9 \\ (CH_2Otpy), & 71.2 \quad (CH_2OCH_2C_6H_5), & 72.9 \quad (CH_2C_6H_5), & 107.5 \quad (C-5), \\ 121.4 \quad (C-4), & 123.8 \quad (C-3), & 136.8 \quad (C-3'), & 148.9 \quad (C-6), & 156.1 \quad (C-2), & 157.0 \\ (C-2'), & 167.3 \quad (C-4'), & 127.4, & 127.6, & 128.3, & 138.7 \quad (C_6H_5); & 6\ ^{1}\text{H} \text{ NMR } \delta \end{array}$ 1.20-1.95 [m C(CH₂CH₂)₄, 32 H], 3.46 (t, CH₂OCH₂C₆H₅, J 6.1 Hz, 12 H), 4.48 (br s, CH₂C₆H₅, CH₂Otpy, 16 H), 7.03 (t, 5-H, J7.6 Hz, 4 H), 7.26 (m, C_6H_5 , 6-H, 34 H), 7.61 (t, 4-H, J7.6 Hz, 4 H), 8.07 (s, 3'-H, 4 H), 8.20 (d, 3-H, J 7.9 Hz, 4 H); 13 C NMR δ 22.8 $(CH_2CH_2Otpy), 23.5 (CH_2CH_2OCH_2C_6H_5), 32.3 [CH_2(CH_2)_2Otpy], 32.5 [C(CH_2)_3], 36.5 (C-quat.), 70.8 (CH_2Otpy), 71.2$ 32.5 $[C(CH_2)_3]$, 36.5 (C-quat.), 70.8 (CH_2Otpy) , 71.2 $(CH_2OCH_2C_6H_5)$, 72.8 $(CH_2C_6H_5)$, 110.8 (C-5), 124.1 (C-4), 127.6 (C-3), 137.5 (C-3'), 151.8 (C-6), 155.7 (C-2), 157.8 (C-2'), 166.0 (C-4'), 127.3, 127.5, 128.2, 138.5 (C₆H₅); **10** ¹H NMR δ 0.80–2.50 [m, CH_2CONH , $C(CH_2CH_2)_3$, 56 H], 2.95-4.25 (m, CH_2OCH_2 , CH₂Otpy, NH, 44 H), 7.00–8.80 (m, tpy-H, 120 H); ¹³C NMR δ 23.3 (CH_2CH_2Otpy) , 35.5 $(CH_2CH_2CH_2O)$, 37.5 (CH_2CONH) , 45.5 $[C(CH_2O)_4]$, 58.0 (HNC-quat.), 68.2, 68.0 (CH_2OCH_2) , 68.1 (CH_2Otpy) , 107.4 (C-5), 121.2 (C-4), 123.7 (C-3), 136.6 (C-3'), 148.9 C-6), 156.1 (C-2), 156.9 (C-2'), 167.0 (C-4'), 171.0 (C=O); 11 ¹H NMR δ 1.10-2.80 [m, CH₂CONH, HNC(CH₂CH₂)₃, C(CH₂CH₂)₄, 248 H], 3.47 [br s, CH2OCH2C6H5, C(CH2OCH2), 88 H], 4.49 (br s NH, $CH_2C_6H_5$, CH_2Otpy , 124 H), 6.70–8.65 (m, tpy-H, C_6H_5 , 420 H); ¹³C NMR δ 22.9 ($CH_2CH_2Otpy^{ext}$), 23.5 ($CH_2CH_2OCH_2C_6H_5$), 25.5 (CH₂CH₂Otpy^{int}), 32.2 (CH₂CH₂CH₂Oe^{xt}), 36.6 (C-quat.ext), 67.9 (CH₂Otpy^{int}), 70.9 (CH₂Otpy^{ext}), 71.2 (CH₂OCH₂C₆H₃), 72.8 (CH₂C₆H₅), 110.7, 111.7 (C-5), 123.9, 124.5 (C-4), 127.4 (C-3), 137.3 (C-3'), 151.5, 152.4 (C-6) 155.7, 155.9 (C-2), 157.7, 158.4 (C-2'), 166.1, 166.7 (C-4'), 127.4, 127.6, 128.3, 138.6 (C₆H₅). Terpyridine spectral assignments were based on the following numbering scheme.

reflux, the solution was filtered hot and an excess of NH_4PF_6 was added to give the homoleptic complex 6.[†] Although the NMR data for 6 fit with the general ranges previously delineated, the downfield shift (Δ +0.32 ppm comparative to ligand 2; ¹H NMR) for the CH₂Otpy protons was greater than anticipated, whereas the upfield shift (Δ -1.41 ppm) for 6-H was at the upper range. As noted the delicate balance of positive charge upon coordination, juxtaposition of pyridine rings and unknown anisotropic effects caused by the metal centre, limit assignment predictability. Upon removal of the benzyl protecting groups, this red, microcrystalline complex is the precursor to the corresponding two-directional arborol 7.

The carboxylic acid 8, core for the construction of a four-directional cascade series,7 was transformed by careful treatment with redistilled SOCl₂ in CH₂Cl₂ to the corresponding acyl chloride 9, which, without further purification, was dissolved in anhydrous CH₂Cl₂ containing an excess of Et₃N and carefully added to 4 equiv. of amine 1 to afford (73%) the dodeca(tpy) 10,[†] as a white solid. The ¹³C NMR spectrum of 10 confirmed the amidation by the presence of peaks attributed to both components and the observation of the expected downfield shift (from δ 52.2 to 58.0) of the signal assigned to newly introduced quaternary carbon moiety (CONHC). Treatment of 10 with 15 equiv. of complex 5 generated (76%) the red crystalline dodecaruthenium heteroleptic complex 11.[†] The symmetry and simplified spectral data for 11 support the assigned structure. The ¹³C NMR spectrum was most useful structure verification due to significant broadening of signals in the ¹H NMR spectrum. Peak broadening was observed for the carbon resonances also, however it was not as pronounced. Characteristic absorptions (¹³C NMR) evidencing cascade complex formation include δ 22.9 (CH₂CH₂Otpy^{ext}), 23.5 (CH₂CH₂OCH₂C₆H₅), 25.5 (CH₂CH₂Otpyint), 32.5 (CH₂CH₂CH₂Oext) and 36.6 (Cquat.ext).

This research was supported (G. R. N.) by the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Science Foundation, (DMR 89-06792, 92-17331).

Received, 5th February 1993; Com. 3/00727H

References

- 1 G. R. Newkome and C. N. Moorefield, in *Advances in Dendritic Macromolecules*, ed. G. R. Newkome, JAI Press, Greenwich, Connecticut, 1993, in the press.
- 2 G. R. Newkome, C. N. Moorefield, G. R. Baker, R. K. Behera and A. L. Johnson, Angew. Chem., 1991, 103, 1205; Angew. Chem., Int. Ed. Engl., 1991, 30, 1176.
- 3 E. C. Constable, A. M. W. Cargill Thompson, D. A. Tocher and M. A. N. Daniels, New J. Chem., 1992, 16, 855; E. C. Constable and A. M. W. Cargill Thompson, J. Chem. Soc., Dalton Trans., 1992, 3467.
- 4 Metallomicellanoic acids: G. R. Newkome and C. N. Moorefield, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem., 1993, 34, 75.
- 5 G. R. Newkome, C. N. Moorefield and K. J. Theriot, J. Org. Chem., 1988, 53, 5552; M. Broussard, B. Juma, F. R. Fronczek, S. F. Watkins, G. R. Newkome and C. N. Moorefield, Acta Crystallogr., Sect. C, 1991, 47, 1245.
- 6 E. C. Constable and M. D. Ward, J. Chem. Soc., Dalton Trans., 1990, 1405.
- 7 G. R. Newkome and X. Lin, Macromolecules 1991, 24, 1443.