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Abstract: We report a highly efficient synthesis of (1R,4S)-1-meth-
yl-8-methoxy-3-(4-toluenesulfonyl)-2,3,4,5-tetrahydro-1,4-metha-
no-3-benzazepine in six steps from 5. The present work constitutes
a new formal synthesis of marine alkaloid (–)-aphanorphine.
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(–)-Aphanorphine (1, Scheme 1) was isolated by Shimizu
and Clardy in 1988 from the freshwater blue-green alga
Aphanizomenon flos-aquae.1 This tricyclic 3-benzazepine
derivative possesses a benzylic quaternary carbon and is
structurally analogous to another two naturally occurring
alkaloids, morphine2 and eptazocine.3 The presence of a
methylene bridge (C10) between stereogenic carbon cen-
ters C1 and C4 endows 1 with a rigid conformation. Due
to its structural novelty and potential analgesic property,
the syntheses of (–)-, (+)-, or (±)-aphanorphine, or the key
intermediates have stimulated considerable interest from
the synthetic community.4 In the majority of the previous
syntheses ring B was constructed prior to ring C; however,
there were three exceptions. Funk4n proved that rings B
and C could be simultaneously generated from a sub-
stituted e-lactam by an intramolecular mesylate displace-
ment. Ishibashi’s strategy4m involved the final formation
of ring B via an aryl radical cyclization. Recently, our
laboratory4q disclosed a formal asymmetric synthesis of 1
featuring the formation of ring B at the final stage by
Lewis acid-promoted Friedel–Crafts alkylative cycli-
zation of 2-arylmethyl-4-methyl-4-pyrrolidinol (corre-
sponding to 3 in Scheme 1), which was derived by a facile
reaction sequence including asymmetric Roush methally-
lation and intramolecular endo epoxy displacement, etc.4q

(2S,4R)-4-Hydroxyproline (4) was envisaged as an appro-
priate starting point to secure the key intermediates for
aphanorphine synthesis, such as 3 and eventually 2, as de-
lineated in Scheme 1. If successful, the current ‘chiral
pool’ strategy would constitute a new formal synthesis of
(–)-aphanorphine. Although we were not the first to ‘ex-
tract’ the chiron from 4 in synthesizing 1, the previous
approach4m made use of an initial enolate benzylation of a
derivative of 4 and decarboxylation at a later stage, which

adversely affected the overall synthetic efficiency in
terms of atom economy and stereoselectivity.

Thus we embarked on a novel expeditious synthesis of 2,
an advanced intermediate for aphanorphine synthesis, as
outlined in Scheme 2. By an established four-step process
(esterification, N-tosylation, O-silylation, and reduction),
(2S,4R)-4-hydroxyproline (4) could be efficaciously con-
verted to fully protected alcohol 5 in 72% yield.5 Swern
oxidation6 of 5 led to an aldehyde, which, without tedious
purification, was directly alkylated with 4-methoxyphe-
nylmagnesium bromide7 to provide the chain extension
products 6 as a pair of diastereomeric alcohols (91%,
dr = 3:2). Being equally useful, the two isomers were not
separated. Upon treatment of 6 with triethylsilane8 in the
presence of BF3·OEt2 in dichloromethane at 0 °C, PMB-
substituted pyrrolidinol 7 was attainable in high yield
(95%), as a result of benzylic reductive dehydroxylation
with concomitant O-desilylation. Under typical Swern
conditions,6 alcohol 7 was oxidized to afford pyrrolidino-
ne 8 in 88% yield. Nucleophilic addition9 of methylmag-
nesium iodide to ketone 8 in diethyl ether produced the
tertiary alcohols 3a/3b (apparently equally utilizable,
80%). The diastereomeric ratio was measured by 1H NMR
integral analysis to be 4:1, presumably favoring 3a (ac-
cording to steric hindrance considerations). By following
the same protocol4q developed in this laboratory previous-
ly, AlCl3-promoted Friedel–Crafts alkylative cyclization
of alcohols 3a/3b was effected to furnish the desired inter-
mediate 210 as colorless needles (64%). The sample ob-
tained from the abovementioned sequence was
determined by HPLC analysis (Chiralpak AD column
(250 × 4.6 mm), UV detector 254 nm, eluent hexanes/2-
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propanol (4:1), flow rate 0.7 mL/min) to be in high enan-
tiopurity (99.8% ee), indicating that essentially no
epimerization ever took place. The [a]D

20 of 2 was found
to be –14.2 (c 0.93, CHCl3) {lit.4q [a]D

20 –13.4 (c 0.969,
CHCl3)}. Other spectroscopic data of 2 were also in
agreement with those disclosed in the literature.4q

In summary, we have accomplished an efficient synthesis
of (1R,4S)-1-methyl-8-methoxy-3-(4-toluenesulfonyl)-
2,3,4,5-tetrahydro-1,4-methano-3-benzazepine (2) in six
steps from a known building block 5. The present work
can be considered as a new formal synthesis of marine
alkaloid (–)-aphanorphine, since 2 could further be ma-
nipulated to give 1 in three steps (desulfurization,4q N-me-
thylation,4q and 8-O-demethylation4l). The prominent
features of our synthesis include (i) preserving both C2
chirality and C6 atom of 4 (cf Ishibashi’s strategy4m), (ii)
concomitant benzylic reductive dehydroxylation and O-
desilylation in the formation of 7, and (iii) simultaneous
construction of ring B and the quaternary carbon center
(C1) in 2 via an intramolecular Friedel–Crafts reaction.
Finally, it is noteworthy that both epimers of 3 and of 6
were equivalently useful for their subsequent transforma-
tions, respectively.
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H, OCH3), 4.39–4.45 (m, 1 H. NCH), 6.72 (dd, J = 8.6, 2.8 
Hz, 1 H, CH), 6.78 (d, J = 2.1 Hz, 1 H, CH), 6.98 (d, J = 8.1 
Hz, 1 H, CH), 7.28 (d, J = 8.1 Hz, 2 H, 2 CH), 7.69 (d, 
J = 8.4 Hz, 2 H, 2 CH). 13C NMR (75 MHz, CDCl3): d = 
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(EI): 357 (18) [M+], 202 (15), 173 (100). Anal. Calcd for 
C20H23NO3S: C, 67.20; H, 6.49; N, 3.92. Found: C, 67.18; H, 
6.55; N, 3.80.

Scheme 2 Reagents and conditions: a) Swern oxidation; b) PMP–
MgBr, THF, –78 °C; 0 °C; c) Et3SiH, BF3·OEt2, DCM, 0 °C; d)
Swern oxidation; e) MeMgI, Et2O, –78 °C; –25 °C; f) AlCl3, DCM,
r.t. PMP = p-methoxyphenyl.
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